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Abstract 

This paper examines the relationship between return volatility and the level of 

returns in commodity markets. We develop a simple commodity price model and show 

that the volatility of price changes can be positively or negatively related to demand 

shocks depending on the demand and supply elasticities. We empirically examine the 

behaviour of volatility using both time-series conditional volatility models and 

historical volatility measures for a range of commodities including agricultural products, 

energy, industrial metals and precious metals. An “inverse leverage effect” – the 

conditional volatility is higher following a positive shock -- is found in more than half 

of the daily spot prices in time-series models. The effect is much weaker in 3-month 

futures market and monthly historical volatility measures. Only crude oil is found to 

exhibit a “leverage effect” – a higher volatility follows a negative shock, and the reason 

is explored in the context of its special market structure.    
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1. Introduction 

This paper studies the relationship between return volatility and the level of 

returns in commodity markets. Specifically, we examine whether, and why, volatility 

responds asymmetrically to positive and negative return shocks in a range of 

commodities including agricultural products, energy, industrial metals and precious 

metals. 

It is well-established in the finance literature that volatility in stock markets is 

asymmetric in that return volatility tends to be negatively correlated with stock returns. 

This is usually referred to as the "leverage effect" because as the stock price decreases 

firms' leverage (debt to equity ratio) naturally rises, which makes the stock riskier and 

increases its volatility (see Black, 1976 and Christie, 1982 for example). Other 

arguments include risk premium and herding behaviour.1 Empirically, the leverage 

effect has found support in numerous studies employing both asymmetric GARCH 

models and implied volatility measures derived from option prices. Ederington and 

Guan (2010) provide a summary of the empirical literature.    

Compared to that in equity markets, the return-volatility relationship for 

commodities is less well-studied and papers examining commodity price volatilities 

tend to focus on one or a group of specific commodities. Some noticeable empirical 

studies include Shawky et al. (2003), Hadsell et al. (2004), and Knittel and Roberts 

(2005) on electricity prices in deregulated US markets; Lee and Zyren (2007) on 

gasoline and heating oil; Hammoudeh and Yuan (2008) for gold, silver and copper; and 

Lucey and Tully (2006) for gold and silver; and Baur (2012) for gold. Except 

Hammoudeh and Yuan (2008), who reported that a negative return shock has a larger 

                                                           
1 Influential studies in this area includes Schwert(1989), Campbell & Hentschel(1992), Bekaert and Wu 

(2000) and Wu(2001), to name a few.   
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impact on conditional volatility (i.e. leverage effect) of three-month copper futures in 

an EGARCH model using data for January 2, 1990 – May 1, 2006, all other 

aforementioned studies find that a positive return shock has a larger impact on 

conditional volatility (i.e. inverse leverage effect) in their respectively studied 

commodities. More recently, Chiarella et al. (2016) and Bauer and Dimpfl (2018) find 

that a negative return shock has, in general, a larger impact on volatility for crude oil. 

Thus, the commodity return-volatility relation could be positive or negative depending 

on the specific commodity and sample period. 

A positive return-volatility relationship is often explained by the theory of storage 

(Working, 1949; Litzenberger and Rabinowitz, 1995; Routledge et al., 2000). When 

inventory is low, the risk of supply shortage is high, leading to an increase in prices and 

volatility. Conversely, when inventory is high, the risk of supply shortage is low, 

resulting in a fall in prices and volatility. However, it is difficult to explain the negative 

return-volatility relationship found in crude oil and some other commodities with the 

theory of storage2. Hence a new theoretical framework is needed to understand the 

differences in asymmetric volatility effect across commodities.  

We complement to the literature in several important ways. First, we develop a 

commodity pricing model where the demand is stochastically fluctuating and a 

representative firm maximizes its profit. Under fairly general assumptions, we show 

that the volatility of price changes can be positively or negatively related to demand 

                                                           
2 Chiarella et al. (2016) distinguish between investment commodities and consumption commodities. 

Based on an empirical analysis of gold and crude oil, they argue that normal consumption goods, such 

as crude oil, are characterized by negative return-volatility relationship (leverage effect) and investment 

goods, such as gold, are characterized by positive return-volatility relationship (inverse leverage effect) 

particularly during more volatile periods. However, this generalization is misleading. As we shall show 

below, the positive return-volatility relationship is found in a variety of commodities including soybean, 

wheat, energy products, and industrial metals, most of which can’t be classified as investment 

commodities.   
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shocks depending on the demand and supply elasticities. The variance of demand 

shocks is constant in our model, but the curvature of demand and supply relationship 

result in different association between the price volatility and the state of demand. 

When the cost curve of the representative firm is convex, as one would expect for most 

commodities in spot markets, the volatility of price is higher when the demand is high, 

leading to an “inverse leverage effect”. Conversely, if the cost curve is concave, the 

price volatility is negatively related to the state of the demand. In such cases, a “leverage 

effect” would emerge.3 In the literature, we are aware of only two theoretical studies 

that explored the differential effect of positive/negative shocks on price volatility in 

commodity markets. Under a rational expectations competitive storage framework, 

Deaton and Laroque (1992) show that the conditional variance of price is an increasing 

function of current price levels if the supply curve is convex, indicating a higher 

volatility following a positive demand shock. Carlson et al. (2007) develop a model of 

equilibrium prices for exhaustible resources and demonstrate that the stochastic 

volatility of prices could be negatively or positively related to demand shocks. In 

comparison, our model is more general in that it neither relies on inventory nor is 

limited to exhaustible resources.4 In fact, our model is also flexible to specifications of 

market structure.  

Second, we empirically examine the return-volatility relationship in 19 

commodities including three agricultural products, six energy products, six industrial 

metals and four precious metals, using both time-series models and monthly historical 

volatility measures. In time-series models, asymmetric volatility were found to be 

                                                           
3 Although the asymmetric return-volatility relationship in commodity markets does not arise from 

financial leverage, following the literature we continue to refer it as to leverage (or inverse leverage) 

effect.  
4 Indeed, as will be shown in the empirical section, asymmetric volatility presents for both exhaustible 

and non-exhaustible commodities such as agricultural products, and storable as well as non-storable 

goods (electricity).  
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statistically significant in 12 out of the 19 daily spot prices. The result is robust when 

discontinuities were accounted for. The majority of commodities show a significant 

positive relationship between prices and conditional volatility – the conditional 

volatility tends to be higher following a positive demand shock, i.e. “inverse leverage 

effect” – in the spot market. Crude oil is different and exhibit a negative relationship 

between price and volatility – the volatility tends to be higher after a negative demand 

shock, i.e. “leverage effect”.  Consistent with our model predictions, the positive 

relationship between prices and volatility is strongest in commodities that are hard to 

store (for example, electricity) or supplied from more geographically constrained 

markets, and is weaker in the price of third-month futures and monthly historical 

volatility measures.   

The somewhat surprising result for crude oil could be consistent with our model 

prediction in that the supply relationship for crude oil may actually appear concave 

because of the unique market and cost structures of crude oil. Crude oil is the only 

commodity whose price is strongly influenced by an organization with significant 

market power, i.e. OPEC.5 The combination of low marginal cost among major oil 

producers and the possibility of OPEC to limit production in times of negative demand 

shocks makes the supply relationship to appear concave. 

We are not the first to study the asymmetric volatility effect across commodities. 

In the literature, the paper that is closest to ours is Bauer and Dimpfl (2018) who study 

a similar set of commodities and compare those to equity markets. In comparison, we 

not only provide a theoretical framework, which is more general than the theory of 

storage, for understanding the differences in the return-volatility relationship in 

                                                           
5 Although there is a debate on which model best describes the role of OPEC in global oil market, there 

is a consensus in the literature that OPEC has market power to influence the oil price.  
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commodity markets, but also empirically focus on the comparison between 

commodities, and documenting how the asymmetric volatility effect change with time-

to-maturity.  

The rest of the paper is structured as follows. In the next section, we outline the 

theoretical framework. Section 3 provides a description of the data. The estimation 

results of the asymmetric GARCH models, using daily returns are reported in Section 

4.  Section 5 reports an OLS estimation for monthly historical volatility measures and 

Section 6 concludes.  

2. A Theoretical Framework of Commodity Price Volatility 

In this section we outline a commodity pricing framework in which the 

commodity price is assumed to be determined by market demand and supply forces and 

the volatility is driven by shocks in demand. We explore the relationship between price 

(return) and volatility in commodity markets. The model is in similar spirit to the work 

of Carlson et al (2007). However, our model is not constrained to exhaustible resources. 

Following the finance literature, we refer to the negative association between price 

(return) and volatility as the leverage effect; and the positive association, i.e., the 

volatility is higher when there are positive demand shocks, as the inverse leverage effect 

even though the asymmetries in commodity markets do not arise from financial 

leverage.  

We start from a representative firm’s profit maximisation decision when it faces 

an uncertain demand curve and an upward sloping supply curve.6 The inverse demand 

function is given by 

                                                           
6 An alternative strategy is to model the aggregate demand and supply of the market, which would require 

assumptions about market structure. In our model, the market structure can be incorporated in the demand 

function. 
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𝑝𝑡 = 𝑍𝑡𝑞𝑡

1−𝜓

𝜓
, 𝜓 ≥ 1,                                        (1) 

where 𝑝 denotes real prices faced by the firm, 𝑞  is the output of the firm, 𝜓  is an 

elasticity parameter and 𝜓 = 1 when the demand curve is flat. The larger the 𝜓, the 

steeper is the demand curve. 𝑍𝑡 follows a continuous stochastic process, to be specified 

later.  

The firm maximise its profits, 

max
𝑞

𝑍𝑡𝑞𝑡

1

𝜓 − 𝑐(𝑍𝑡)𝑞𝑡
𝛾
,                                      (2) 

where 𝑐(𝑍𝑡) is the adjustment cost function relating to demand shocks, parameter 𝛾 

denotes whether the cost function is convex or concave supply. The supply relationship 

is convex if 𝛾 > 1 and concave if 0 < 𝛾 < 1. To make it tractable, we further assume 

that 𝑐(𝑍𝑡) is linear in 𝑍𝑡: 𝑐(𝑍𝑡) = 𝑐0(1 + 𝜖𝑍𝑡), where 𝑐0 represents the fixed cost and 

𝜖 is the sensitivity coefficient related to demand shocks and 𝜖 ≥ 0. If the firm’s supply 

curve can accommodate demand shocks without incurring additional adjustment cost, 

then 𝜖 = 0. However, in most cases, we envisage some positive adjustment cost such 

that 𝜖 > 0.  The profit maximisation problem (2) can be rewritten as 

max
𝑞

𝑍𝑡𝑞𝑡

1

𝜓 − 𝑐0(1 + 𝜖𝑍𝑡)𝑞𝑡
𝛾
,                                                (2a) 

The optimal level of output requires 
1

𝜓
𝑍𝑡𝑞𝑡

1

𝜓
−1

= 𝛾𝑐0(1 + 𝜖𝑍𝑡)𝑞𝑡
𝛾−1

, and we then 

have the optimal output,  

𝑞𝑡 = (
𝑍𝑡

𝜓𝑐0(1+𝜖𝑍𝑡)𝛾
)

1

(𝛾−
1
𝜓

)
.                                       (3) 

Substituting equation (3) back into the isoelastic demand function equation (1) gives 

𝑝𝑡 = (𝜓𝑐0(1 + 𝜖𝑍𝑡)𝛾)
−

1−𝜓
𝜓

(𝛾−
1
𝜓

)
𝑍𝑡

1+

1−𝜓
𝜓

(𝛾−
1
𝜓

)

.                (4) 
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Assume the demand uncertainty parameter 𝑍𝑡  follows a standard geometrical 

Brownian motion, 

𝑑𝑍𝑡 = 𝜂𝑍𝑡𝑑𝑡 + 𝜎𝑍𝑡𝑑𝑊𝑡,                               (5) 

where 𝜂  is the demand drift parameter, 𝜎  is the volatility parameter and 𝑊  is the 

standard Wiener process. In the appendix, we show that the result holds if 𝑍𝑡 follows a 

mean-reverting process. By applying Ito’s Lemma to equation (4), we have 

𝑑𝑝𝑡 = ((1 +  
 𝛼

(1+𝜖𝑍𝑡)
) 𝜂 +

𝛼𝜖2𝜎2𝑍𝑡
2

2(1+𝜖𝑍𝑡)2
−

1

2
(1 + 𝛼)𝜎2) 𝑝𝑡𝑑𝑡  

+ (1 +
𝛼

(1+𝜖𝑍𝑡)
) 𝜎𝑝𝑡𝑑𝑊𝑡             (6) 

where 𝛼 =

1−𝜓

𝜓

(𝛾−
1

𝜓
)
.   

Thus, let 𝜎𝑝  denote the volatility of price change: 

 𝜎𝑝 = (1 +
𝛼

(1+𝜖𝑍𝑡)
) 𝜎.                (6a) 

Since 𝜓 > 1, the effect of Zt on 𝜎𝑝 is determined by 𝛾 −
1

𝜓
 and to a second degree, 

𝜖.  If 𝛾 >
1

𝜓
, then 𝛼 < 0 and 𝜎𝑝 is increasing in Zt; and if 𝛾 <

1

𝜓
 , then 𝛼 > 0 and 𝜎𝑝 is 

decreasing in Zt. The effect of 𝜖 is to amplify or dampen Z. If 𝜖 = 0, 𝜎𝑝 is not affected 

by Zt. The intuition follows if one realizes that 
1

𝜓
 and 𝛾 are respectively the elasticities 

of the firm’s revenue and cost with respect to output. When the cost curve is steeper 

than the revenue curve, constant volatility changes in demand results in high volatile 

equilibrium price at high demand state. Conversely, if the cost curve is flatter than the 

revenue curve, then high volatile equilibrium price could occur in low demand state. If 

the adjustment cost is zero, then the price volatility is not affected by demand shocks.  

Figure 1 presents the state dependence of the volatility under different 

parameterizations. When 𝜓 is large (as likely in the case for spot market), 𝛼 could be 
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positive and the price volatility decreases in Zt only if 𝛾 is extremely small →0 (i.e., the 

cost curve is extremely concave as shown in Figure 1b). In all other cases, 𝛼 is negative 

and hence the price (return) volatility increases in Zt, resulting an “inverse leverage” 

effect (Figure 1a). In fact, as long as 𝛾 > 1 (that is, when the supply relationship is 

convex), the price volatility is higher when there is a positive demand shock. We expect 

this to be the case for most commodities in spot markets.  

When 𝜓 is small (→1), the demand curve is nearly flat and 𝛼 approaches zero. 

Unless (𝛾 → 1) < 1, the effect of Zt on price volatility 𝜎𝑝 diminishes.  As shown in 

Figure 1c, although there is a degree of state dependence, the change in volatility  𝜎𝑝 is 

less than 1 percent as log(Z) changes from -1 to 1. When (𝛾 → 1) <
1

𝜓
< 1 (i.e., when 

the supply relationship is concave), 𝛼 is negative and the price volatility  𝜎𝑝 decreases 

in Zt, resulting a “leverage effect” as shown in Figure 1d. 

Since the state dependence of volatility is determined by demand and supply 

elasticities, we have the following general conjectures when comparing different 

commodities across temporally and spatially different markets.  

First, in spot markets where the demand parameter 𝜓 is likely to be large (that is, 

the demand curve is relatively steep), the “inverse leverage effect” is more pronounced 

for commodities whose supply are more geographically constrained and/or whose 

storage is more costly. The reason is simple; if the supply of the commodity is 

geographically constrained, or it cannot be easily stored, then the cost of adjusting 

supply is higher, implying a higher 𝛾. This is the case depicted in Figure 1a.  

Second, for the same commodity, the “inverse leverage effect” is more 

pronounced in spot markets than in longer term forward or futures markets. As the time 

horizon lengthens, both the inverse demand curve and supply relationship will flatten, 
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so that 𝛾 <
1

𝜓
  is more likely to hold in the forward or futures markets than in the spot 

markets.   

3. Data  

To empirically examine the possible asymmetries in commodity price volatilities, 

we obtain daily price data of 19 commodities including 3 agricultural products, 6 energy 

products, 6 industrial metals and 4 precious metals. Except the data on energy products 

that were downloaded from the Energy Information Administration (EIA) of the US, 

the data for all other commodities were obtained from DatastreamTM,7 which sourced 

data from the US Department of Agriculture and the London Metal Exchange, 

respectively. Except for electricity (NEPOOL and PJMW), the prices of other energy 

products are daily settlement prices at New York Mercantile Exchange. The electricity 

prices are day-ahead volume-weighted average prices from the New England Power 

Pool (NEPOOL) and Pennsylvania-New Jersey-Maryland West hub (PJMW). We have 

data on cash prices for agricultural products and precious metals, cash price and 3-

month futures prices for industrial metals, front-month and 3-month futures prices for 

crude oil, gasoline, heating oil and natural gas.8 The appendix gives a detailed data 

description. In what follows, we shall refer to all spot prices, cash prices, front-month 

futures prices and day-ahead prices for electricity as “spot prices”.   

Since the price series are generally non-stationary in levels, we calculate daily 

returns which are defined as changes of the logarithm of the daily prices: rt = ln(Pt/Pt−1). 

Table 1 presents the summary statistics of the 30 return series, including 19 calculated 

                                                           
7 The Datastream has prices for other commodities such as cotton, coffee, lard and orange juice but the 

trading of these commodities are not liquid even as 2010 and therefore were excluded from this study.  
8 The front-month futures prices for energy products are highly correlated with the spot prices as implied 

by the cash and carry model. The futures prices are preferred because these prices are recorded in central 

exchanges whereas the spot prices are reported by various news agencies.  
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on the basis of spot prices, 10 on 3-month futures prices for energy and industrial metals, 

along with the return of a stock market index, S&P 500, for comparison. Several 

patterns in this table are noteworthy. First, with the exception of the two electricity price 

series, the mean returns for all other commodities are positive, indicating an overall 

increasing trend in commodity prices for the respective sample periods. Second, the 

standard deviation and the range of returns indicate the commodity prices are highly 

volatile. The standard deviations of all commodities but gold exceed that of the S&P500 

index. It is not surprising that the electricity price has the highest volatility given the 

fact that it is non-storable and any shocks to demand and supply will be manifested in 

price. Third, comparing the standard deviations of the spot price returns with that of the 

3-month futures of energy products and industrial metals, it is clear that the return of 

the spot prices is more volatile than that of the 3-month futures, which is consistent 

with the “Samuelson effect” in that the price volatility of futures contracts declines as 

the contract horizon lengthens. Fourth, the majority of returns exhibit some degree of 

negative skewness, although generally not as skewed as the S&P500 index. This is in 

contrast to some of earlier findings in the literature (Gorton, Hayashi, and Rouwenhorst 

(2007) and Deaton and Laroque (1992)) which reports positive skewness in commodity 

price returns. The negative skewness could be consistent with a situation where the 

market is well supplied and negative demand shocks cause price to fall more than price 

spikes either in frequency or magnitude. 9  Fifth, perhaps not surprisingly, the 

commodity returns are leptokurtic, although the kurtosis is lower than that of the 

S&P500 index. Leptokurtosis suggests a student t-distribution is appropriate in 

empirical modelling.  

                                                           
9 According to Deaton and Laroque (1992), positive skewness in commodity prices can be explained by 

the theory of storage where the low level of inventory causes positive price spikes which exceed in 

magnitude the negative price spikes at times of high level of inventory. 
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4. Time-series Estimates of Daily Returns 

4.1 Model Specification 

We begin our empirical investigation by estimating two standard asymmetric 

conditional volatility GARCH models: the threshold GARCH (TGARCH, or GJR-

GARCH) model of Glosten et al. (1993) and the exponential GARCH (EGARCH) 

model of Nelson (1991).10 In the mean equation, we include the log return of S&P 500 

index (RSNP) to control the opportunity cost of investing in the commodity market. 

Since the commodity prices are all quoted in US dollars, changes in the US dollar 

exchange rate could affect the prices of commodities.  In particular, Chen, Rogoff and 

Rossi (2010) argue that the exchange rates of “commodity currencies" have remarkably 

robust power in predicting global commodity prices, but the reverse relationship is less 

robust. To control the exchange rate effect, we include a log return on the trade volume 

weighted US dollar index (RUSD) in the mean equation. Both the S&P500 index and 

the US dollar index were obtained from the Federal Reserve Bank of St Louis FREDTM 

database.  

The mean equation takes the following form11: 

𝑟𝑡 = 𝛼0 +  ∑ 𝛽𝑗𝑟𝑡−𝑗 +𝑘
𝑗=1 𝛼1𝜎𝑡 + 𝛼2𝑅𝑆𝑁𝑃𝑡 + 𝛼3𝑅𝑈𝑆𝐷𝑡 + 𝑒𝑡                (7) 

                                                           
10 In what follows, we only report the results from the TGARCH model. The results from the EGARCH 

model are similar to those obtained from the TGARCH model. To save space, the results are not reported, 

but available upon request from the authors. 
11 Despite the potential endogeneity between commodity returns and stock returns, we include RSNP in 

the mean equation to see the correlation between them. We have also estimated specifications which 

exclude RSNP, RUSD and the GARCH-in-mean terms. The results are little changed from those reported 

below and are available from the authors upon request.  



12 

 

where rt is the daily log return of a series and et is assumed to be normally distributed 

with mean zero and variance σt
2. The number of the lags in the mean equation is chosen 

on the basis of the Akaike information criterion (AIC).  

The variance equation for the TGARCH model is  

𝜎𝑡
2 = 𝛾0 +  𝛾1𝑒𝑡−1

2 + 𝛾2𝑒(−)𝑡−1
2 + 𝛾3𝜎𝑡−1

2      (8) 

where e(-)t = et  if et < 0 and 0 if et ≥ 0. Thus the contribution of a negative shock to the 

conditional variance is determined by the coefficient (γ1 + γ2) while the contribution of 

a positive shock depends solely on γ1. If γ2 is negative, then a positive return shock has 

a larger impact on the conditional variance than a negative shock. If γ2 = 0, then the 

TGARCH model collapse to the standard GARCH(1,1) model and the return-volatility 

relationship is symmetric.  

Recent research has highlighted the importance of accounting for jumps in 

modelling commodity prices. For example, Wilmot and Mason (2013) show that the 

combination of jumps with a time-varying volatility significantly improves the model 

fit for daily and weekly crude oil prices over other competing models (pure jump-

diffusion or pure GARCH) in explaining. The idea for jumps is that the arrival of new 

information often leads to unexpectedly large changes in the underlying asset prices 

over a short period of time.  Such events generate the relatively fat tails in distribution 

returns. Following this literature, we also estimate a jump-diffusion asymmetric 

GARCH model where the mean equation (7) is augmented by the jump process while 

the variance takes the form of equation (8). The jump-augmented mean equation is as 

follows: 

𝑟𝑡 = 𝛼0 +  ∑ 𝛽𝑗𝑟𝑡−𝑗 +𝑘
𝑗=1 𝛼1𝜎𝑡 + 𝛼2𝑅𝑆𝑁𝑃𝑡 + 𝛼3𝑅𝑈𝑆𝐷𝑡 + 𝐽𝑡 + 𝑒𝑡        (9) 
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where 𝐽𝑡 = ∑ 𝑌𝑡,𝑖
𝑛𝑡
𝑖=0 . The jump size, 𝑌𝑡,𝑖, is assumed to be independent and normally 

distributed with mean 𝜃 and variance 𝛿2. 𝑛𝑡 ∈ {0, 1, 2, ⋯ } is the number of jumps that 

occur over the interval (t-1, t) and is governed by a Poisson distribution: 

𝑃(𝑁𝑡=𝑗) =
exp (−𝜆)𝜆𝑗

𝑗!
        (10) 

λ is the jump intensity parameter which describes the mean number of jumps occurring 

per unit of time. The parameters are estimated using maximum likelihood with 

asymptotically normal distributions. 

4.2 Estimation Results 

Estimations of the TGARCH models using spot prices are reported in Table 2 and 

Table 3. The asymmetric GARCH parameter   γ2     in Table 2 is negative and statistically 

significant at the five percent level for 11 commodities (highlighted in bold), indicating 

a negative return shock has a smaller impact on conditional volatility than a positive 

shock. Take the estimated coefficients γ1 and γ2 for soybean as an example, the estimates 

suggest that the impact of a positive price shock on the next day’s volatility is,  on 

average, more than double the impact of a negative shock of the same magnitude.   

Looking at the results for each group of commodities, the pattern of the γ2 

parameter is broadly consistent with our first conjecture. For example, in the energy 

group, commodities that yield statistically significant and negative γ2 coefficients 

(gasoline, heating oil, NEPOOL and PJMW) generally have a more geographically 

constrained market or are more costly to store than those having insignificant or positive 

γ2 coefficients.  On the face, it may appear surprising that the estimated γ2 coefficients 

are negative and statistically significant for gasoline and heating oil, while positive and 

statistically significant for crude oil. In other words, while gasoline and heating oil 
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appear to have an “inverse leverage effect”, crude oil exhibits a “leverage effect” 

similar to that observed in financial markets. Notwithstanding, the positive γ2 

coefficient for crude oil could be consistent with the generally-held view that crude oil 

is a fungible product which is supplied from a broader market12 and there is large 

inventories in the United States, all of which make the demand curve for the 

representative firm and the supply relationship flatter. We defer a fuller account of the 

somewhat surprising result for crude oil in next session. In contrast, the markets for 

gasoline and heating oil are geographically constrained in the US and to some extent 

even fragmented within state boundaries due to varying product specifications.13  The 

prices are therefore more susceptible to shocks to local supply and demand conditions. 

It is therefore conceivable that both the supply and demand curves for refined products 

are more elastic than that of crude oil.14 The significant γ2 coefficients for PJMW and 

NEPOOL certainly reflect the non-storable nature of electricity. As it is impossible to 

supply electricity from storage, a positive demand shock in the electricity market would 

require additional sources of generation which usually have a higher marginal cost. As 

a result, the price could shoot disproportionally higher in case of a positive demand 

shock than it would fall in case of a negative demand shock. It is worth noting that the 

estimated γ2 coefficients for PJMW and NEPOOL are not only statistically significant 

                                                           
12 In the case of crude oil, although this study uses the benchmark WTI prices which is only traded in the 

US, for the majority of the time during the sample period, the crude oil market is believed to be part of 

the broader international market (see Yergin (1991), Ewing et al (2002) and Ghoshray and Trifonova, 

2014 among others).    
13 For example, reformulated regular gasoline, the price of which used in this study, is required only in 

cities with high smog levels and is optional elsewhere. 
14 While there is little empirical research on the supply elasticities of crude oil and refined oil products, 

there are some evidence that the crude oil demand elasticity is higher (i.e., the demand curve is flatter). 

For example, Kilian and Murphy (2014) find that the short-run price elasticity of demand for crude oil is 

-0.26 in the global market. Since the US oil consumption averaged about ¼ of the world consumption 

during the sample period, it is reasonable to assume the demand elasticity for US is close to unit (i.e. 

𝜓 → 1). In comparison, Hughes, Knittel and Sperling (2008) found the short-run price elasticity for 

gasoline in the US for 2001-2006 is -0.04. We are cautious in comparing elasticity estimates across 

studies, nonetheless, they provide some indications.  
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at conventional levels, but also have a large reconomic effect – their magnitudes are 

several times higher than the other estimated coefficients, indicating a very strong 

asymmetric volatility effect.  

The results for industrial and precious metals are also broadly consistent with 

findings from earlier studies in the literature and our model predictions. For example, 

Lucey and Tully (2006) found a statistically significant inverse leverage effect for gold 

and silver.  Similarly, Hammoudeh and Yuan (2008) found an inverse leverage effect 

for gold and silver and leverage effect for copper in an EGARCH framework.15 They 

attribute the difference to the fact that copper is widely used in industries and has 

broader sectoral linkages that are particularly prone to news impacting the world 

economy while gold and silver should be particularly impacted by news relating to the 

jewellery industry. Among industrial metals, aluminium, lead and zinc are found to 

have a statistically significant “inverse leverage effect”. The results are largely 

consistent with the empirical findings on demand elasticity of industrial metals. In a 

recent study, Stuermer (2017) reported the following estimates for the long-run price 

elasticities of demand for the post World War II period. Notably, copper has the highest 

demand elasticity (in absolute terms) while aluminium and lead have the lowest, which 

agrees with our model prediction that when the demand curve is more elastic (i.e., when 

𝜓 is small), the asymmetric effect will be less pronounced.  

Aluminium Copper Lead Tin  Zinc 

-0.160 

(0.106) 

-0.399*** 

(0.090) 

-0.142*** 

(0.033) 

-0.213*** 

(0.019) 

-0.278*** 

(0.090) 

Note: Reproduced from Table 6 of Stuermer (2017). Standard errors are in parenthesis. *** 

indicates significance at 1% level.  

 

                                                           
15 Hammoudeh and Yuan (2008) did not acknowledge the inverse leverage effect for gold and silver, 

although their estimates of the EGARCH parameters (𝛾1 and 𝛾2 in their paper) are positive and 

statistically significant.   
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There are several other interesting results in Table 2. First, while none of the 

estimated coefficients for the GARCH-in-mean parameter (α1) is significantly positive 

at conventional levels, it is negative and statistically significant at the five percent level 

for wheat, natural gas, NEPOOL, PJMW, and tin. The result is in contrast with the 

positive GARCH-in-mean effect typically found in stock prices. A positive GARCH-

in-mean is usually interpreted as the market demanding a risk premium when the 

expected volatility is higher. However, the negative GARCH-in-mean won’t be 

consistent with the risk premium argument, but could be an artefact of the positive 

association between price shocks and volatility. A positive price shock on day t-1, et-1, 

while raising the price on day t-1, is associated with a higher expected volatility. As the 

shock dissipates on day t, the price goes down and consequently the return falls, 

resulting in a negative GARCH-in-mean. Second, the estimated coefficient for the 

S&P500 index (α2) is positive and statistically significant, mostly at the one percent 

level, for all agricultural products, industrial metals, all energy products except 

electricity, and one of the precious metals – palladium. The result is consistent with the 

argument that investing in stock markets represents an opportunity cost of investing in 

commodity markets. It could also be driven by the same underlying demand force in 

that when the demand for commodities increases, the expected return in stock market 

is likely to rise. Notably, gold is the only commodity that exhibits a negative return 

relationship with the S&P500 index, probably reflecting gold as the “safe heaven” of 

investment and used for hedging. Third, as one would expect, the estimated coefficient 

for US dollar index (α3) is uniformly negative and significant at the one percent level 

for all commodities but electricity and gasoline, indicating the importance of the dollar 

exchange rate in commodity price fluctuations. Finally, the estimated coefficient for the 

GARCH term in the variance equation (γ3) is either higher than or close to 0.9 for the 
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vast majority of commodities, indicating a high degree of volatility persistence in the 

data.  

  The estimation results for TGARCH with jumps models are reported in Table 3. 

The results are similar to those reported in Table 2. The estimated γ2 coefficient for 

natural gas becomes significantly negative at the five percent level, indicating an 

“inverse leverage effect” when jumps are accounted for. The estimates for other 

commodities are largely consistent with those reported in Table 2. As for the parameters 

relating to the jump process, both 𝜆 and δ are statistically significant for all 

commodities. However, 𝜃  is statistically significant only for energy products, corn, 

soybean, and gold. Recall that 𝜃 is the mean for the distribution of jump size. The 

insignificant 𝜃 parameter for industrial metals, silver, palladium, platinum, and wheat 

perhaps explains why the results for these products are so similar in specifications with 

and without jumps. Although not reported, models with jumps also fit the data better as 

they generally have a lower AIC and SIC than their counterparts without jumps.  

Table 4 reports the TGARCH estimates using 3-month futures price data for 

energy products and industrial metals.16 The results with and without jumps are quite 

similar. Notably, the estimated γ2 coefficients for both gasoline and heating oil turned 

positive and statistically significant in the three-month futures data, and the coefficient 

of crude oil continues to be positive. In other words, as the time-to-maturity of the future 

contracts lengthens, the leverage effect becomes more pronounced. The result is 

consistent with our second conjecture that as the contract horizon lengthens, both the 

demand and supply relationship become more elastic and the return volatility is 

negatively associated with shocks as illustrated in Figure 1d. For industrial metals, in 

the model without jumps, the estimated γ2 becomes statistically insignificant for lead in 

                                                           
16 We don’t have futures data for agricultural products and precious metals. 
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the three-month futures data while it continues to be significant for aluminium and zinc. 

In the model with jumps, the estimated γ2 is statistically significant only for aluminium. 

Taken together, the results in Table 4 supports our second conjecture that the inverse-

leverage effect is weaker in futures market than it is in spot market.  

To give a clearer picture of the magnitude of asymmetries in volatility, in Table 

5 we report the implied log percentages in conditional volatility, ln(σt+1/ σt), following 

various return shocks, et, for the 12 commodities that were found to have a statistically 

significant (at 5 percent level) asymmetric volatility effect in the TGARCH model of 

Table 2. The conditional volatility on day t, σt, is assumed at their respective 

unconditional levels. Figure 2 plots these log price changes which are commonly 

referred to as news impact curves. The differences in the magnitudes of the impact 

curves partly reflect the differences in the estimated GARCH parameters, but more 

importantly are determined by the unconditional volatilities since, for example, a 5% 

shock corresponds to two standard deviations for gasoline but more than five standard 

deviations for gold. For this reason, we plot the electricity curves separately to make a 

visible comparison because the electricity price is considerably more volatile than other 

commodities. Clearly, with the exception of crude oil, the news impact curves for all 

other commodities in the spot markets, shown in the first panel of Figure 2, are J-shaped 

as opposed to the reverse J-shape reported by Ederington and Guan (2010) for stock 

market. Both large positive and negative shocks increase the conditional volatility on 

next day, but the impact of positive shocks is stronger. For instance, the conditional 

volatility for heating oil increases by 17% following a positive price shock of 5% 

whereas it increases by 10% following a 5% price drop. Perhaps not surprisingly, the 

conditional volatility decreases when the market is tranquil and achieves greatest 

reduction when the return surprise (et) is zero.  
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In spot markets only crude oil displays a reverse-J shaped news impact curve 

similar to those typically observed in stock markets (as shown in the last panel of Figure 

2). According to the estimates, the conditional volatility for crude oil would increase 

12% following a negative price shock of 5% compared with an increase of 7% 

following a 5% price spike. In next section, we provide a discussion of the crude oil 

result.  

Lastly, since some of the recent literature (see Bauer and Dimpfl, 2018 for 

example) reports that the positive return-volatility relationship in commodity markets 

has weakened since 2005 possibly due to the financialization of commodities as argued 

by Tang and Xiong (2010), we investigate whether it holds in our data as well. 

Following Bauer and Dimpfl (2018), we conduct the analysis by breaking down the full 

sample into two periods – before and after January 1, 2005. The estimated γ2 

coefficients are reported in Table 6. For ease of comparison, we reproduce the results 

of the full sample in the last column. Indeed, the estimated γ2 coefficient is negative and 

statistically significant in 12 out of 19 commodities before 2005 while remains so in 

only six of the commodities. It was insignificant for crude oil before 2005 and turns to 

positive and highly significant after 2005. Perhaps influenced by crude oil, the 

coefficient for gasoline changed from negative to positive, and was statistically 

significant at the one percent level in both periods. For heating oil, natural gas, lead, tin, 

zinc, and palladium, it was negative and statistically significant at the five percent level 

before 2005 but turns insignificant after 2005. Thus, our results also provide support to 

the idea that the financialization of commodities (particularly energy and industrial 

metals) may have played a role in the weakening of the positive return-volatility 

association and strengthening of the negative association similar to that in the equity 

markets.  
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4.3 Why is Crude Oil Different? 

The positive association of return shocks and volatility for crude oil is somewhat 

puzzling. Nonetheless, it could also be consistent with our model predictions 

considering the unique characteristics of the crude oil market. First, as argued earlier, 

the demand curve for crude oil in the context of US market is flatter (i.e. 𝜓 is smaller) 

than refined products such as gasoline or heating oil, hence the asymmetric relationship 

is less pronounced even if the supply relationship is convex (Figure 1C).  

Second, the market structure of crude oil is best described by a dominant firm 

model with a competitive fringe where OPEC (or Saudi Arabia) has the market power 

to influence the price by adjusting production17. As widely acknowledged, the industry 

cost structure is characterized by high capital cost and low variable cost. When there 

are spare production capacities, the marginal cost of crude oil production in many of 

the major oil producing countries, such as Saudi Arabia, is fairly low. 18 According to 

the US Energy Information Administration, the direct lifting cost (the operating cost) 

of producing one barrel of crude oil was $8-10 in the US and $4-5 in the Middle East 

during 2007-2009, which was far below the prevailing oil prices at same period. 19  

When there is a positive demand shock, OPEC has the capacity to increase production 

from its low cost fields to “stabilize” the price in order to maximize its long-term profit. 

So the price on the margin may not change much. Whereas in times of a negative 

demand shock (i.e. the price is relatively low), the possibility of OPEC reducing 

production or the high cost fringe firms shut-in production in response to the lower 

                                                           
17 See, for example, Alhajji and Huettner (2000) and Almoguera et al (2011). In this case, OPEC or 

Saudi Arabia can be considered the dominant firm and other producers the competitive fringe.  
18 For most of time during the sample period, there are significant spare production capacities held by 

OPEC countries, particularly by Saudi Arabia (See EIA short-term outlook data).  
19 EIA, “Performance profiles of major energy producers” financial tables. Also, see Anderson et al 

(2014) “Hotelling under pressure”. 
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price could lead to large price increases. Corroborating this conjecture, a recent paper 

by Plante (2018) provides empirical evidence of the connection between OPEC and oil 

price volatility. He documents a strong correlation between the number of news articles 

surrounding OPEC events and measures of oil price volatility. In sum, because of 

OPEC’s ability to withhold the low cost capacities from the market, the perceived 

supply relationship might be concave for crude oil in the sense that when the demand 

is relatively low a small quantity change might result in a larger price change whereas 

when the demand is high the same quantity change only leads to a smaller price change. 

As a counterfactual exercise, we estimated the TGARCH model for the period of 

6/1/2008—9/30/2008 during which the spare capacities were nearly running out, and 

the estimated γ2 coefficients were negative although not statistically significant for both 

the front-month and 3-month futures.  

Another seemingly plausible explanation is the spill-over effect from financial 

markets. Tang and Xiong (2010) argue that the daily price of crude oil is increasingly 

influenced by index investment and consequently the volatility has a stronger 

correlation with that of the stock market. However, our test for volatility spillover from 

the stock market to the crude oil market, using Hong’s (2001) methodology does not 

find strong evidence of volatility spillover from the stock market to crude oil during the 

sample period.      

In summary, the GARCH estimation of daily prices find statistically significant 

evidence of asymmetric volatility in more than half the commodity spot prices. The 

result is robust whether jumps are accounted for or not. Contrary to the “leverage effect” 

found in the stock market, the asymmetry in commodity markets shows an “inverse 

leverage effect” in which positive shocks have stronger impact on the conditional 

volatility than negative shocks of the same magnitude. Consistent with the theoretical 
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predictions in section 2, the “inverse leverage effect” is stronger for spot prices than for 

3-month forward prices and for those with a geographically constrained supply or more 

costly storage.   

5. Historical Volatility 

While the time-series models provide evidence of asymmetric relationship 

between the forecast daily volatility and return shocks, we are also interested in how 

the ex post historical volatility behaves in the presence of positive and negative return 

shocks. To this end, we calculate the historical return volatility using monthly standard 

deviations of the returns of spot prices and estimate the following model for each 

commodity: 

0 1 2 1m m m tr         ,           (12) 

where ωm is the standard deviation of the daily returns in month m and rm is the log 

monthly return calculated on the monthly average prices. We include the lagged 

variable ωm-1 so that λ1 measures the effect of the mean monthly returns on historical 

volatility after controlling last month’s volatility. A positive λ1 indicates a price increase 

(decrease) is associated with a higher (lower) volatility, and therefore providing 

evidence of the “inverse leverage effect”.   

The estimation results using spot prices are reported in Table 6. The p-values are 

based on the heteroscedasticity and autocorrelation consistent Newey-West standard 

errors. Overall, the evidence of “inverse leverage effect” is much weaker as most of the 

estimated coefficients of λ1 is not statistically significant. Nonetheless, it is positive and 

significant at least in the 10 percent level for wheat, natural gas, electricity (NEPOOL 
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and PJMW) and gold. Thus, for these commodities, the inverse leverage effect found 

in the GARCH models is also evident in the monthly historical volatility.  

The estimated λ1 for crude oil is negative and statistically significant at the five 

percent level. The volatility for crude oil tends to decrease (increase) when the price 

goes up (down), which is consistent with the asymmetric time-series models.  

6. Conclusion 

This paper examines how return volatility responds differently following positive 

and negative shocks in a range of commodities including agricultural products, energy, 

industrial metals and precious metals. There are two major contributions contained in 

this paper. First, we develop a commodity price volatility model in which the 

equilibrium price is determined by a stochastic demand and an upward sloping cost 

curve. We show that the volatility of price changes can be positively or negatively 

related to demand shocks depending on the demand and supply elasticities. This model 

of volatility is more general compared to earlier models of commodity volatility which 

are often limited to a particular sector.  

Second, we empirically document the pattern of asymmetric volatility using both 

time-series techniques and monthly historical volatility measures. Employing 

asymmetric GARCH models, we find a statistically significant “inverse leverage effect” 

– the volatility is higher following a positive return shock – in more than half of the 

spot price series. The results hold when jumps were accounted for. Only crude oil is 

found to have a “leverage effect” – the volatility is higher following a negative return 

shock. The inverse leverage effect is weaker in the price of 3-month futures and 

historical volatility measures based on monthly standard deviations of daily returns. 

Both results are consistent with our theoretical predictions.  



24 

 

Acknowledgement 

We are grateful to Haichun Ye, David Power, Charles Mason and seminar participants at the 

ASSA/IAEE, Universities of Aberdeen, Durham, Texas Tech, and Federal Reserve Bank at 

Kansas City for helpful comments and suggestions. All errors remain our own.  

 



25 

 

References 

Anderson, Soren T., Ryan Kellogg, and Stephen W. Salant (2014), "Hotelling Under 

Pressure," NBER working paper #20280 

Baur, D.G., (2012). “Asymmetric volatility in the gold market.” Journal of Alternative 

Investments, 14, 26–38. 

Baur, Dirk G. & Dimpfl, Thomas (2018). "The asymmetric return-volatility 

relationship of commodity prices," Energy Economics, vol. 76(C), pages 378-387. 

Bekaert, Geert and Guojun Wu (2000) “Asymmetric volatility and risk in equity 

markets” Review of Financial Studies, 13: 1-42. 

Black, F., (1976), "Studies of stock price volatility Changes," Proceedings of the 1976 

Meetings of the Anerican Statistical Association, Business and Economical Statistics 

Section, 177-181. 

Brown, Stephen and Hillard Huntington, (2010), “Reassessing the oil security 

premium” Resources for the Future discussion paper RF DP10-05. 

Campbell, J., Hentschel, L., (1992). “No news is good news: an asymmetric model of 

changing volatility in stock returns”. Journal of Financial Economics 31, 281–318. 

Carlson, M., Z. Khokher and S. Titman (2007), “Equilibrium exhaustible resource 

price dynamics”. Journal of Finance, Vol 62, No. 4, 1663-1703. 

 

Chen, Yu-chin, Rogoff Kenneth and Barbara Rossi, (2010), “Can Exchange Rates 

Forecast Commodity Prices?” Quarterly Journal of Economics, Vol. 125, No. 3, 

pp.1145–1194. 

 

Chiarella, C., Kang, B., Nikitopoulos, C.S., Tô, T.-D. (2016). “The return-volatility 

relation in commodity futures markets”. Journal of Futures Market. 36, 127–152. 

 

Christie, A. A., (1982), "The Stochastic Behavior of Common Stock Variances-Value, 

Leverage and Interest Rate Effects," Journal of Financial Economics, 10, 407-432. 

 

Deaton, Angus and Guy Laroque (1992), “On the Behavior of Commodity Prices,” 

Review of Economic Studies 59: 1-23. 

 

Ederington, Louis H. and Wei Guan, (2010), “How asymmetric is U.S. stock market 

volatility?” Journal of Financial Markets, 13: 225-248. 

 

Ewing, B.T., F. Malik, O. Ozfidan (2002). “Volatility transmission in the oil and 

natural gas markets”, Energy Economics, 24 (6), pp. 525-538. 

 

Geman, Hélyette and Vu-Nhat Nguyen (2005) “Soybean inventory and forward curve 

dynamics” Management Science, Vol. 51, No. 7, pp. 1076–1091 

 

http://refhub.elsevier.com/S0140-9883(18)30424-9/rf0010
http://refhub.elsevier.com/S0140-9883(18)30424-9/rf0010
http://refhub.elsevier.com/S0140-9883(18)30424-9/rf0045
http://refhub.elsevier.com/S0140-9883(18)30424-9/rf0045
http://refhub.elsevier.com/S0140-9883(18)30424-9/rf0045


26 

 

Ghoshray A, Trifonova T. Dynamic Adjustment of Crude Oil Price Spreads. Energy 

Journal 2014,35(1), 119-136. 

 

Glosten, L., Jagannathan, R., and Runkle, D., (1993), “On the relation between the 

expected value and volatility of the nominal excess return on stocks,” Journal of 

Finance, 48:1779-1801. 

 

Gorton, G. B., F. Hayashi, and K. G. Rouwenhorst (2007), “The Fundamentals of 

Commodity Futures Returns,” NBERWorking Papers 13249. 

 

Hadsell, Lester; Achla Marathe and Hany A. Shawky. 2004, “Estimating the volatility 

of wholesale electricity spot prices in the US” The Energy Journal, 25 (4): 23-40. 

 

Hammoudeh, Shawkat and Yuan Yuan (2008) “Metal volatility in presence of oil and 

interest rate shocks,” Energy Economics, 30 606–620. 

 

Hong, Yongmiao (2001), “A test for volatility spillover with application to exchange 

rates,” Journal of Econometrics, 103: 183-224. 

 

Hughes JE, Knittel CR, Sperling D. (2008). “Evidence of a shift in the short-run price 

elasticity of gasoline demand”. Energy Journal 29: 113–134. 

 

Lee, Thomas and John Zyren (2007), “Volatility Relationship between Crude Oil and 

Petroleum Products,” Atlantic Economic Journal, 35: 97–112. 

 

Litzenberger, R.H., Rabinowitz, N. (1995). “Backwardation in oil futures markets: 

theory and empirical evidence.” Journal of Finance. 50, 1517–1545. 

 

Lucey, Brian and Edel Tully (2006), “Seasonality, risk and return in daily COMEX 

gold and silver data 1982–2002” Applied Financial Economics, 16, 319–333 

 

Kanamura, Takashi (2009), “A supply and demand based volatility model for energy 

prices” Energy Economics, 31:736-747. 
 

Killian, Lutz and Daniel P. Murphy (2014), “The Role of Inventories and Speculative 

Trading in the Global Market for Crude Oil”, Journal of Applied Econometrics, 29(3), April 

2014, 454-478 

 

Knittel, Christopher and Michael R. Roberts, (2005), “An empirical examination of 

restructured electricity prices,” Energy Economics 27:791– 817 

 

Nelson, D. (1991) “Conditional heteroskedasticity in asset returns: a new approach” 

Econometrica, 59: 347-370. 

 

Pindyck, Robert (1994) “Inventories and the short-run dynamics of commodity 

prices,” Rand Journal of Economics 25 (1): 141–159. 

 

Routledge, B.R., Seppi, D.J., Spatt, C.S., (2000). “Equilibrium forward curves for 

commodities.” Journal of Finance. 55, 1297–1338. 

 



27 

 

 

Schwert, G.W., (1989) “Why does stock market volatility change over time?”. 

Journal of Finance 44, 1115–1153. 

 

Shawky, Hany; Achla Marathe and Christopher Barrett, (2003), “A first look at the 

empirical relation between spot and futures electricity prices in the US,” Journal of 

Futures Market, Volume 23 (10), pp. 931-955.  

 

Stuermer, Martin. (2017) “Industrialization and the Demand for Mineral 

Commodities” Federal Reserve Bank of Dallas Working Paper 1413.  

 

Tang, Ke and Wei Xiong, 2010, “Index investment and financialization of 

commodities”, NBER working paper 16385 

 

Working, H., 1949. “The theory of price of storage”. American Economic Review, 39, 

1254–1262. 

 

Wilmot, N. and C. Mason, (2013), “Jump process in the market for crude oil,” Energy 

Journal, Vol 34, No. 1: 33-48. 

 

Wu, Guojun, (2001), “The determinants of asymmetric volatiity” Review of Financial 

Studies, 14: 837-859. 

 

Yergin, Daniel (1991). “The Prize: The Epic Quest for Oil, Money, and Power”. New 

York: Simon & Schuster.  

 

 

 



28 

 

Table 1  Descriptive Statistics of Daily Commodity Returns 

  Commodity 
Mean Std. deviation Maximum Minimum 

Skewness Kurtosis Sample Period No. Obs 
(%) (%) (%) (%) 

 Corn 0.0031 1.6815 10.9071 -12.306 -0.2792 7.4317 1/2/1980-2/28/2018 9730 

Agriculture Soybean 0.0051 1.5082 7.5730 -16.7413 -0.6477 8.9960 1/2/1980-2/28/2018 9730 

  Wheat 0.0033 1.6693 28.0302 -26.1953 0.1128 22.7020 1/2/1980-2/28/2028 9730 

 Front month                  

 Crude oil  0.0084 2.3756 16.4097 -40.0478 -0.7156 17.4119 4/4/1983-2/28/2018 8755 

 Gasoline  0.0115 2.4843 21.6646 -30.9823 -0.4625 12.6134 1/2/1985-2/28/2018 8315 

 Heating oil  0.0089 2.2507 13.965 -39.0297 -1.3777 22.0822 1/2/1980-2/28/2018 9569 

Energy Products 

Natural gas  0.0002 3.5392 32.4354 -37.5749 0.2262 9.9792 2/1/1994-2/28/2018 6032 

3-month contract         

Crude oil  0.0085 1.9826 12.115 -32.8206 -0.6481 14.7192 4/4/1983-2/28/2018 8755 

 Gasoline  0.0122 2.0197 16.3135 -26.0803 -0.2394 10.3273 1/2/1985-2/28/2018 8315 

 Heating oil  0.0080 1.8672 9.6584 -30.8516 -0.6205 13.2420 1/2/1980-2/28/2018 9569 

 Natural gas  0.0032 2.7688 21.5196 -31.1209 -0.1227 10.4230 2/1/1994-2/28/2018 6032 

 Electricity day-ahead        

 NEPOOL day-ahead -0.0217 17.9123 126.6667 -109.5600 0.3385 9.0938 1/1/2004-2/28/2018 3406 

  PJMW day-ahead -0.0199 17.7414 107.7794 -153.0240 -0.2553 11.8866 1/2/2001-2/28/2018 4366 

 Cash         

 Aluminum  0.0092 1.3013 6.0679 -8.2551 -0.2104 5.3665 8/3/1993-2/28/2018 6207 

Industrial Metals 

Copper 0.0202 1.6324 11.7259 -10.4755 -0.1888 7.8252 8/3/1993-2/28/2018 6207 

Lead 0.0298 1.9390 13.0072 -13.1992 -0.1562 6.6057 8/3/1993-2/28/2018 6207 

Nickel 0.0162 2.2035 13.3096 -18.3586 -0.1360 6.7808 8/3/1993-2/28/2018 6207 
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 Tin 0.0241 1.5786 15.3854 -11.4532 -0.1981 10.0674 8/3/1993-2/28/2018 6207 

 Zinc 0.0214 1.7502 9.9490 -12.6185 -0.2718 6.9038 8/3/1993-2/28/2018 6207 

Industrial Metals 
3-month contract         

Aluminum 0.0088 1.2347 5.9131 -8.2472 -0.2286 5.5708 8/3/1993-2/28/2018 6216 

 Copper  0.0203 1.5523 11.8805 -10.4003 -0.1787 7.8741 8/3/1993-2/28/2018 6216 

 Lead  0.0293 1.8174 12.6752 -12.8495 -0.2107 7.1980 8/3/1993-2/28/2018 6216 

 Nickel  0.0164 2.1405 13.0603 -18.1061 -0.1567 6.8363 8/3/1993-2/28/2018 6216 

 Tin  0.0238 1.5360 14.2533 -11.4346 -0.1852 10.2592 8/3/1993-2/28/2018 6216 

  zinc  0.021 1.6794 9.6564 -11.0098 -0.2247 6.6909 8/3/1993-2/28/2018 6216 

 Gold 0.0164 0.9904 7.3820 -10.1624 -0.3799 10.7741 1/3/1990-2/28/2018 7186 

Precious Metals 
Palladium 0.0288 1.9966 15.8406 -17.8590 -0.1667 9.6283 1/3/1990-2/28/2018 7186 

Platinum 0.0093 1.3576 13.0620 -16.7723 -0.3969 12.2926 1/3/1990-2/28/2018 7186 

  Silver 0.0163 1.8672 18.2786 -18.6926 -0.4067 12.9917 1/3/1990-2/28/2018 7186 

Stocks S&P 500 index 0.0333 1.1004 10.9572 -22.8997 -1.1709 30.2671 1/2/1980-2/28/2018 9730 
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Table 2  TGARCH estimates of spot price returns 

 α1 α2 α3 γ1 γ2 γ3 

Agricultural products      

Corn 
-0.0404 

(0.1795) 

0.0828 

(0.0000) 

-0.2004 

(0.0000) 

0.0832 

(0.0000) 

-0.0005 

(0.9594) 

0.9108 

(0.0000) 

Soybean 
-0.0169 

(0.6067) 

0.0772 

(0.0000) 

-0.2999 

(0.0000) 

0.0842 

(0.0000) 
-0.0467 

(0.0000) 

0.9339 

(0.0000) 

Wheat 
-0.0530 

(0.0506) 

0.0566 

(0.0000) 

-0.1438 

(0.0000) 

0.0944 

(0.0000) 
-0.0211 

(0.0427) 

0.9140 

(0.0000) 

Energy products      

Crude oil 0.0435 

(0.0539) 

0.1578 

(0.0000) 

-0.3711 

(0.0000) 

0.0494 

(0.0000) 
0.0258 

(0.0000) 

0.9402 

(0.0000) 

Gasoline 0.0368 

(0.3319) 

0.1803 

(0.0000) 

-0.4073 

(0.0000) 

0.0503 

(0.0000) 

0.0005 

(0.9503) 

0.9407 

(0.0000) 

Heating oil 0.0267 

(0.2608) 

0.1401 

(0.0000) 

-0.2770 

(0.0000) 

0.0854 

(0.000) 
-0.0273 

(0.0008) 

0.9316 

(0.0000) 

Natural gas -0.1311 

(0.0081) 

0.0716 

(0.0245) 

-0.2767 

(0.0005) 

0.0834 

(0.0000) 

-0.0209 

(0.0685) 

0.9055 

(0.0000) 

PJMW -0.3501 

(0.0000) 

-0.0231 

(0.8769) 

-0.5124 

(0.1485) 

0.3025 

(0.0000) 
-0.2514 

(0.0000) 

0.7406 

(0.0000) 

NEPOOL -0.2033 

(0.0000) 

-0.0778 

(0.4534) 

-0.5224 

(0.0572) 

0.4120 

(0.0000) 
-0.2966 

(0.0000) 

0.7568 

(0.0000) 

Industrial Metals      

Aluminium 0.0290 

(0.6427) 

0.1738 

(0.0000) 

-0.6067 

(0.0000) 

0.0572 

(0.0000) 
-0.0230 

(0.0074) 

0.9385 

(0.0000) 

Copper 0.0707 

(0.1360) 

0.2396 

(0.0000) 

-0.7019 

(0.0000) 

0.0524 

(0.0000) 

0.0013 

(0.8791) 

0.9360 

(0.0000) 

Lead 0.0491 

(0.2494) 

0.1676 

(0.0000) 

-0.6456 

(0.0000) 

0.0488 

(0.0000) 
-0.0172 

(0.0217) 

0.9564 

(0.0000) 

Nickel 0.0342 

(0.5407) 

0.2589 

(0.0000) 

-0.7808 

(0.0000) 

0.0467 

(0.0000) 

-0.0057 

(0.4649) 

0.9433 

(0.0000) 

Tin 0.0876 

(0.0078) 

0.0944 

(0.0000) 

-0.4018 

(0.0000) 

0.0871 

(0.0000) 

-0.0047 

(0.6970) 

0.9138 

(0.0000) 

Zinc 0.0012 

(0.9736) 

0.1716 

(0.0000) 

-0.5474 

(0.0000) 

0.0418 

(0.0000) 
-0.0161 

(0.0091) 

0.9651 

(0.0000) 

Precious Metals      

Gold 0.0509 

(0.0918) 

-0.0363 

(0.0000) 

-0.6178 

(0.0000) 

0.0798 

(0.0000) 
-0.0488 

(0.0000) 

0.9454 

(0.0000) 

Silver 0.0662 

(0.0341) 

-0.0027 

(0.8462) 

-0.5449 

(0.0000) 

0.0634 

(0.0000) 
-0.0425 

(0.0000) 

0.9577 

(0.0000) 

Platinum 0.0446 

(0.2239) 

0.0209 

(0.0702) 

-0.5603 

(0.0000) 

0.0714 

(0.0000) 

-0.0161 

(0.0730) 

0.9334 

(0.0000) 

Palladium 
0.0285 

(0.3159) 

0.0735 

(0.0000) 

-0.5084 

(0.0000) 

0.1451 

(0.0000) 
-0.0385 

(0.0095) 

0.8771 

(0.0000) 

Note: The table reports the estimation results of log returns calculated from spot prices. The numbers in 

parenthesis are P-values based on Student’s t distribution.  
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Table 3 Spot Returns TGARCH with Jumps 

 α2 α3 γ1 γ 2 γ 3 δ  θ λ 

Agriculture 
       

Corn  0.0862 

(0.0000) 

-0.2038 

(0.0000) 

0.0697 

(0.0000) 

-0.0049 

(0.5310) 

0.9060 

(0.0000) 

2.5868 

(0.0000) 

-0.4654 

(0.0015) 

0.0831 

(0.0000) 

Soybean 0.0778 

(0.0000) 

-0.3064 

(0.0000) 

0.0657 

(0.0000) 
-0.0348 

(0.0000) 

0.9322 

(0.0000) 

2.1262 

(0.0000) 

-0.3949 

(0.0002) 

0.1019 

(0.0000) 

Wheat 0.0619 

(0.0000) 

-0.1477 

(0.0000) 

0.0721 

(0.0000) 
-0.0189 

(0.0098) 

0.8902 

(0.0000) 

2.2426 

(0.0000) 

0.1231 

(0.0929) 

0.1814 

(0.0000) 

Energy         

Crude oil 0.1502 

(0.0000) 

-0.3718 

(0.0000) 

0.0451 

(0.0000) 
0.0231 

(0.0012) 

0.9325 

(0.0000) 

3.6098 

(0.0000) 

-0.6790 

(0.0047) 

0.0611 

(0.0000) 

Gasoline 0.1625 

(0.0000) 

-0.4053 

(0.0000) 

0.0278 

(0.0000) 

0.0062 

(0.2239) 

0.9508 

(0.0000) 

4.7806 

(0.0000) 

-0.8502 

(0.0020) 

0.0690 

(0.0000) 

Heating 

oil 
0.1459 

(0.0000) 

-0.2819 

(0.0000) 

0.0633 

(0.0000) 
-0.0208 

(0.0015) 

0.9319 

(0.0000) 

3.6059 

(0.0000) 

-0.5946 

(0.0044) 

0.0754 

(0.0000) 

Natural 

gas 
0.0732 

(0.0262) 

-0.2817 

(0.0007) 

0.0704 

(0.0000) 
-0.0252 

(0.0095) 

0.9079 

(0.0000) 

6.6183 

(0.0000) 

2.2000 

(0.0003) 

0.0481 

(0.0001) 

PJMW -0.0282 

(0.8408) 

-0.6729 

(0.0608) 

0.2139 

(0.0000) 
-0.1975 

(0.0000) 

0.7960 

(0.0000) 

16.7878 

(0.0000) 

13.9674 

(0.0000) 

0.1208 

(0.0000) 

NE Pool -0.0420 

(0.6458) 

-0.6838 

(0.006) 

0.2461 

(0.0000) 
-0.1695 

(0.0000) 

0.7575 

(0.0000) 

19.964 

(0.0000) 

17.3105 

(0.0000) 

0.0947 

(0.0000) 

Industrial Metals 
      

Aluminiu

m 
0.1707 

(0.0000) 

-0.6054 

(0.0000) 

0.0509 

(0.0000) 
-0.0206 

(0.0051) 

0.9358 

(0.0000) 

1.5189 

(0.0000) 

0.0464 

(0.6551) 

0.1392 

(0.0056) 

Copper 0.2442 

(0.0000) 

-0.7054 

(0.0000) 

0.0498 

(0.0000) 

0.0000 

(0.9985) 

0.9268 

(0.0000) 

1.8340 

(0.0000) 

-0.1860 

(0.1056) 

0.1476 

(0.0001) 

Lead 
0.1635 

(0.0000) 

-0.6532 

(0.0000) 

0.0455 

(0.0000) 
-0.0132 

(0.0441) 

0.9481 

(0.0000) 

2.3142 

(0.0000) 

0.1220 

(0.3815) 

0.1213 

(0.0001) 

Nickel 0.2547 

(0.0000) 

-0.8000 

(0.0000) 

0.0421 

(0.0000) 

-0.0063 

(0.3460) 

0.9373 

(0.0000) 

2.7329 

(0.0000) 

0.0600 

(0.6847) 

0.1534 

(0.0008) 

Tin 
0.0960 

(0.0000) 

-0.4163 

(0.0000) 

0.0684 

(0.0000) 

0.0054 

(0.5716) 

0.8752 

(0.0000) 

2.1688 

(0.0000) 

-0.1387 

(0.1506) 

0.1612 

(0.0000) 

Zinc 0.1697 

(0.0000) 

-0.5422 

(0.0000) 

0.0307 

(0.0000) 

-0.0090 

(0.0785) 

0.9673 

(0.0000) 

2.3330 

(0.0000) 

-0.2184 

(0.2361) 

0.0810 

(0.0001) 

Precious Metals        

Gold 
-0.0385 

(0.0000) 

-0.6408 

(0.0000) 

0.0598 

(0.0000) 
-0.0392 

(0.0000) 

0.9375 

(0.0000) 

1.4268 

(0.0000) 

-0.1740 

(0.0186) 

0.1148 

(0.0000) 

Silver 0.0077 

(0.5932) 

-0.6207 

(0.0000) 

0.0545 

(0.0000) 
-0.0323 

(0.0000) 

0.9424 

(0.0000) 

2.6887 

(0.0000) 

-0.0549 

(0.6878) 

0.1144 

(0.0000) 

Palladium 0.0757 

(0.0000) 

-0.5096 

(0.0000) 

0.0983 

(0.0000) 
-0.0316 

(0.0001) 

0.8657 

(0.0000) 

2.7416 

(0.0000) 

-0.1275 

(0.2012) 

0.1563 

(0.0000) 

Platinum 0.0231 

(0.059) 

-0.5642 

(0.0000) 

0.0608 

(0.0000) 
-0.0179 

(0.0085) 

0.9272 

(0.0000) 

1.6762 

(0.0000) 

-0.0720 

(0.4271) 

0.1434 

(0.0000) 

 p-values based on Student’s t distribution are in parenthesis. λ, θ and δ are respectively the jump 

intensity, the mean and variance of jump size parameters.   
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Table 4  TGARCH estimates of 3-month futures 

 α2 α3 γ1 γ2 γ3 

Energy (without jumps) 

Crude oil 0.1385 

(0.0000) 

-0.3263 

(0.0000) 

0.0423 

(0.0000) 
0.0358 

(0.0000) 

0.9402 

(0.0000) 

Gasoline 0.1462 

(0.0000) 

-0.3303 

(0.0000) 

0.0293 

(0.0000) 
0.0209 

(0.0006) 

0.9554 

(0.0000) 

Heating oil 0.1351 

(0.0000) 

-0.3043 

(0.0000) 

0.0457 

(0.0000) 
0.0183 

(0.0066) 

0.9434 

(0.0000) 

Natural gas 0.0525 

(0.0458) 

-0.2064 

(0.0018) 

0.0510 

(0.0000) 

0.0049 

(0.6026) 

0.9319 

(0.0000) 

Energy (with jumps) 

Crude oil 0.1364  

(0.0000) 

-0.3237 

(0.0000) 

0.0393 

(0.0000) 
0.0320 

(0.0000) 

0.9314 

(0.0000) 

Gasoline 0.1425  

(0.0000) 

-0.3357 

(0.0000) 

0.0249 

(0.0000) 
0.0149 

(0.0019) 

0.9527 

(0.0000) 

Heating oil 0.1340  

(0.0000) 

-0.2989 

(0.0000) 

0.0386 

(0.0000) 
0.0129 

(0.0102) 

0.9449 

(0.0000) 

Natural gas 0.0569  

(0.035) 

-0.2323 

(0.0011) 

0.0397 

(0.0000) 

0.0052 

(0.4994) 

0.9311 

(0.0000) 

Industrial Metals (without jumps) 

Aluminium 0.1622 

(0.0000) 

-0.5746 

(0.0000) 

0.0505 

(0.0000) 
-0.0171 

(0.0313) 

0.9455 

(0.0000) 

Copper 0.2249 

(0.0000) 

-0.6516 

(0.0000) 

0.0449 

(0.0000) 

0.0067 

(0.3696) 

0.9437 

(0.0000) 

Lead 0.1445 

(0.0000) 

-0.5771 

(0.0000) 

0.0392 

(0.0000) 

-0.0053 

(0.4419) 

0.9613 

(0.0000) 

Nickel 0.2520 

(0.0000) 

-0.7677 

(0.0000) 

0.0443 

(0.0000) 

-0.0030 

(0.7092) 

0.9447 

(0.0000) 

Tin 0.0721 

(0.0000) 

-0.3589 

(0.0000) 

0.0851 

(0.0000) 

0.0016 

(0.8917) 

0.9153 

(0.0000) 

Zinc 0.1602 

(0.0000) 

-0.5053 

(0.0000) 

0.0391 

(0.0000) 
-0.0131 

(0.0288) 

0.9672 

(0.0000) 

Industrial Metals (with jumps) 

Aluminium 0.1597 

(0.0000) 

-0.5732 

(0.0000) 

0.0446 

(0.0000) 
-0.0150 

(0.0499) 

0.9439 

(0.0000) 

Copper 0.2315 

(0.0000) 

-0.6550 

(0.0000) 

0.0425 

(0.0000) 

0.0041 

(0.5628) 

0.9366 

(0.0000) 

Lead 0.1392 

(0.0000) 

-0.5754 

(0.0000) 

0.0362 

(0.0000) 

-0.0024 

(0.7089) 

0.9551 

(0.0000) 

Nickel 0.2444 

(0.0000) 

-0.778 

(0.0000) 

0.0396 

(0.0000) 

-0.0050 

(0.483) 

0.9410 

(0.0000) 

Tin 0.0722 

(0.0000) 

-0.3745 

(0.0000) 

0.0674 

(0.0000) 

0.0091 

(0.2502) 

0.8787 

(0.0000) 

Zinc 0.1559 

(0.0000) 

-0.5060 

(0.0000) 

0.0301 

(0.0000) 

-0.0062 

(0.2060) 

0.9669 

(0.0000) 

Note: The numbers in parenthesis are P-values based on Student’s t distribution.
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Table 5  Percentage change in conditional volatility following a return shock based on TGARCH estimation 

Surprise market return on day t, et 

 -6% -5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% 6% 

Soybean 21.18 14.86 9.02 3.95 -0.01 -2.55 -3.42 -1.48 3.94 11.83 21.13 31.00 40.90 

Wheat 31.07 22.62 14.45 7.03 0.96 -3.07 -4.49 -2.67 2.42 9.90 18.79 28.30 37.90 

Heating oil 14.80 9.88 5.45 1.71 -1.14 -2.93 -3.54 -2.65 -0.05 4.00 9.17 15.11 21.54 

Aluminium 25.54 18.37 11.64 5.69 0.96 -2.11 -3.18 -1.41 3.55 10.86 19.57 28.92 38.38 

Lead 11.07 7.40 4.17 1.51 -0.48 -1.71 -2.13 -1.48 0.43 3.46 7.42 12.09 17.25 

Zinc 11.84 8.06 4.74 1.99 -0.07 -1.35 -1.78 -1.08 0.97 4.21 8.42 13.36 18.80 

Gold 36.77 27.63 18.67 10.39 3.50 -1.14 -2.78 1.34 12.01 25.90 40.51 54.61 67.75 

Silver 7.98 5.09 2.59 0.56 -0.94 -1.86 -2.17 -1.23 1.51 5.76 11.16 17.34 23.99 

Palladium 30.57 21.85 13.36 5.60 -0.78 -5.05 -6.56 -4.52 1.13 9.33 18.94 29.07 39.19 

Crude oil 17.53 12.08 7.13 2.92 -0.33 -2.38 -3.09 -2.62 -1.26 0.94 3.85 7.37 11.36 

              

Surprise market return on day t, et 

 -24% -20% -16% -12% -8% -4% 0% 4% 8% 12% 16% 20% 24% 

PJMW -9.07 -10.81 -12.29 -13.46 -14.32 -14.84 -15.02 -13.99 -11.03 -6.45 -0.67 5.89 12.89 

NEPOOL -1.83 -5.23 -8.19 -10.62 -12.43 -13.55 -13.93 -12.59 -8.78 -3.00 4.11 11.97 20.16 

Notes: This table illustrates the log percentage changes (lnσt+1/σt) following a surprise market return on day t based on the TGARCH estimation reported in 

Table 2. The volatility before the shock was assumed at its unconditional mean level.  
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Table 6 TGARCH estimates of spot price returns before and after 2005 

 

 Pre-2005 Post-2005 Full Sample 

Agriculture    

Corn 
0.0018 

(0.8905) 

-0.0061 

(0.6258) 

-0.0005 

(0.9594) 

Soybean 
-0.0507 

(0.0000) 

-0.0368 

(0.0019) 

-0.0467 

(0.0000) 

Wheat 
-0.0221 

(0.1302) 

-0.0243 

(0.1703) 
-0.0211 

(0.0427) 

Energy   
 

Crude oil 
0.0102 

(0.3503) 
0.0582 

(0.0000) 
0.0258 

(0.0000) 

Gasoline 
-0.0311 

(0.0041) 

0.0361 

(0.0004) 
0.0005 

(0.9503) 

Heating oil 
-0.0521 

(0.0000) 

0.0099 

(0.3685) 
-0.0273 

(0.0008) 

Natural Gas 
-0.0395 

(0.0461) 

0.0012 

(0.9280) 
-0.0209 

(0.0685) 

PJMW 
-0.0830 

(0.0459) 

-0.3147 

(0.0000) 
-0.2514 

(0.0000) 

NEPool 
-0.4400 

(0.0057) 

-0.2798 

(0.0000) 
-0.2966 

(0.0000) 

Industrial Metals   
 

Aluminium 
-0.0206 

(0.1414) 
-0.0306 

(0.0394) 
-0.0230 

(0.0074) 

Copper 
-0.0217 

(0.1244) 

0.0192 

(0.1458) 
0.0013 

(0.8791) 

Lead 
-0.0399 

(0.0088) 

-0.0097 

(0.4094) 
-0.0172 

(0.0217) 

Nickel 
0.0026 

(0.8166) 

-0.0180 

(0.1473) 
-0.0057 

(0.4649) 

Tin 
-0.0447 

(0.0288) 

0.0271 

(0.1150) 
-0.0047 

(0.6970) 

Zinc 
-0.0378 

(0.0012) 

-0.0005 

(0.9609) 
-0.0161 

(0.0091) 

Precious Metals   
 

Gold 
-0.0593 

(0.0001) 

-0.0460 

(0.0000) 
-0.0488 

(0.0000) 

Silver 
-0.0607 

(0.0000) 

-0.0329 

(0.0013) 
-0.0425 

(0.0000) 

Platinum 
-0.0128 

(0.2872) 

-0.0171 

(0.1978) 
-0.0161 

(0.0730) 

Palladium 
-0.1168 

(0.0019) 

-0.0076 

(0.5831) 
-0.0385 

(0.0095) 

Note: The table reports the estimation results of log returns calculated from spot prices before and after 

January 1, 2005. The numbers in parenthesis are P-values based on Student’s t distribution. The last 

column is reproduced from column 5 (γ2) of Table 2.  
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Table 7 Estimates of Monthly Historical Volatility 

 λ1 λ 2  Adj. R_sq N 

Agricultural products 

Corn 0.0004 

(0.9521) 

0.6164 

(0.0000) 
0.376 457 

Soybean 0.0052 

(0.5073) 

0.6087 

(0.0000) 
0.358 457 

Wheat 0.0222 

(0.0045) 

0.449- 

(0.0000) 
0.214 457 

Energy products 

Crude oil -0.0295 

(0.0005) 

0.6455 

(0.0000) 
0.476 418 

Gasoline -0.0103 

(0.1318) 

0.5313 

(0.0000) 
0.293 397 

Heating oil -0.0117 

(0.1953) 

0.5955 

(0.0000) 
0.373 457 

Natural gas 0.0172 

(0.0657) 

0.5512 

(0.0000) 
0.308 288 

NEPOOL 0.1443 

(0.0000) 

0.5737 

(0.0000) 
0.391 205 

PJMW 0.2578 

(0.0000) 

0.6631 

(0.0000) 
0.533 205 

Industrial metals 

Aluminium 
0.0020 

(0.8138) 

0.5599 

(0.0000) 
0.309 294 

Copper 
-0.0157 

(0.2550) 

0.6107 

(0.0000) 
0.407 294 

Lead 
0.0004 

(0.9627) 

0.6820 

(0.0000) 
0.463 294 

Nickel 
-0.0053 

(0.5895) 

0.5220 

(0.0000) 
0.276 294 

Tin  
-0.0081 

(0.1744) 

0.5948 

(0.0000) 
0.361 294 

Zinc 
-0.0037 

(0.7100) 

0.7040 

(0.0000) 
0.498 294 

Precious metals 

Gold 
0.0166 

(0.0246) 

0.6614 

(0.0000) 
0.446 337 

Silver 
0.0117 

(0.2921) 

0.6297 

(0.0000) 
0.389 337 

Platinum 
0.0000 

(0.9981) 

0.5286 

(0.0000) 
0.275 337 

Palladium 
0.0146 

(0.1786) 

0.5714 

(0.0000) 
0.324 337 

Note: The table reports estimation results of equation (12) using spot prices. p-values based on Newey-

West robust standard errors are in parenthesis. 
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Figure 1  Relationship between volatility and demand shocks 

            

 (Figure 1a:  𝜓 = 5, 𝛾 = 1.5, 𝜎 = 20%, 𝐶0 = 1, and 𝜖 = 1)        (Figure 1b:   𝜓 = 5, 𝛾 = 0.1, 𝜎 = 20%, 𝐶0 = 1, and 𝜖 = 1) 

 

            

(Figure 1c:   𝜓 = 1.05, 𝛾 = 1.5, 𝜎 = 20%, 𝐶0 = 1, and 𝜖 = 1)     (Figure 1d:   𝜓 = 1.05, 𝛾 = 0.9, 𝜎 = 20%, 𝐶0 = 1, and 𝜖 = 1) 
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Figure 2 Change in conditional volatility following a return surprise 
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Notes: This figure depicts the log percentage changes (lnσt+1/σt) following a surprise market 

return on day t based on the TGARCH estimation reported in Table 2. The volatility before 

the shock was assumed at its unconditional mean level.  
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Appendix 1  Price dynamics under mean-reversion 

 

If 𝑍𝑡 follows a mean-reverting process 

𝑑𝑍𝑡 = 𝜆(𝑍̅ − 𝑍𝑡)𝑑𝑡 + 𝜎𝑍𝑡𝑑𝑊𝑡,                              (A.1) 

where 𝑍̅ is the long-run mean the demand would return to, and 𝜆  denotes the 

parameter related to adjustment speed. Apply Ito’s Lemma to equation (4), we obtain 

similar result as in equation (6) 

𝑑𝑝𝑡 = (
𝛼𝜖2𝜎2𝑍𝑡

2

2(1 + 𝜖𝑍𝑡)2
−

𝛼𝜖𝜆(𝑍̅ − 𝑍𝑡)

(1 + 𝜖𝑍𝑡)
+

(1 + 𝛼)𝜆(𝑍̅ − 𝑍𝑡)

𝑍𝑡
−

1

2
(1 + 𝛼)𝜎2) 𝑝𝑡𝑑𝑡 

+ (1 +
𝛼

(1+𝜖𝑍𝑡)
) 𝜎𝑝𝑡𝑑𝑊𝑡             (A.2) 

where 𝛼 =

1−𝜓

𝜓

(𝛾−
1

𝜓
)
.   
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Appendix 2 Data Description 

Commodity Description Pricing unit 

 Agricultural products  

Corn Corn No.2 Yellow  ¢/bushel 

Soybean Soybeans, No.1 Yellow  ¢/bushel 

Wheat Wheat, No.2 Hard (Kansas) ¢/bushel 

 Energy products  

Crude oil Light-Sweet crude futures, Cushing, Oklahoma $/barrel 

Gasoline New York Harbor Reformulated Regular Gasoline futures $/gallon 

Heating oil New York Harbor No. 2 Heating Oil futures $/gallon 

Natural gas Natural Gas Futures, Henry Hub $/MMBtu 

Electricity 

(NEPOOL) 
NEPOOL (New England power pool) day-ahead price $/MWh 

Electricity 

(PJMW) 

PJM West hub peak price (Pennsylvania-New Jersey-

Maryland power pool)  
$/MWh 

 Industrial metals  

Aluminium LME-Aluminium 99.7% Cash & 3-month futures $/metric ton 

Copper LME-Copper, Grade A Cash & 3-month futures $/metric ton 

Lead LME-Lead Cash & 3-month futures $/metric ton 

Nickel LME-Nickel Cash & 3-month futures $/metric ton 

Tin LME-SHG Zinc 99.995% Cash & 3-month futures $/metric ton 

Zinc LME-Tin 99.85% Cash & 3-month futures $/metric ton 

 Precious metals  

Gold Gold Bullion LBM $/Troy Ounce 

Silver Silver Fix LBM Cash ¢/Troy Ounce 

Platinum Platinum,Industrial (Engelhard) $/Troy Ounce 

Palladium Palladium  $/Troy Ounce 

Note: The electricity price for NEPOOL was the Mass hub day-ahead locational marginal 

price. 


