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Abstract

Electricity tariffs typically charge residential users a volumetric rate that covers the
bulk of energy, transmission, and distribution costs. The resulting prices, charged per
unit of electricity consumed, do not reflect marginal costs and vary little across time
and space. The emergence of distributed energy resources—such as solar photovoltaics
and energy storage—has sparked interest among regulators and utilities in reforming
electricity tariffs to enable more efficient utilization of these resources. The economic
pressure to redesign electricity rates is countered by concerns of how more efficient rate
structures might impact different socioeconomic groups. We analyze the bill impacts
of alternative rate plans using interval metering data for more than 100,000 customers
in the Chicago, Illinois area. We combine these data with granular Census data to
assess the incidence of bill changes across different socioeconomic groups. We find
that low-income customers would face bill increases on average in a transition to more
economically efficient electricity tariffs. However, we demonstrate that simple changes
to fixed charges in two-part tariffs can mitigate these disparities while preserving all, or
the vast majority, of the efficiency gains. These designs rely exclusively on observable
information and could be replicated by utilities in many geographies across the U.S.

Keywords: Tariff design, socioeconomic status, pricing, non-convex costs.

JEL codes: L1, L5, L9, Q4, Q5.

∗Burger: Institute for Data, Systems, and Society, MIT sburger@mit.edu. Knittel: Shultz Professor
of Applied Economics, Sloan School of Management, Director of the Center for Energy and Environmen-
tal Policy Research, Co-Director, Electric Power Systems Low Carbon Energy Center, MIT and NBER,
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1 Introduction

Residential electricity tariffs typically distort—and thus do not allow consumers to respond

to—the marginal cost of energy consumption. Rates are typically constant across time and

location, despite the fact that short-run marginal costs can vary dramatically. As of the

end of 2016, less than one quarter of one percent of residential customers in the U.S. faced

electricity prices that reflected the real-time marginal cost of energy production (U.S. Energy

Information Administration, 2017). Furthermore, the bulk of system costs1 are recovered

through volumetric charges—that is, charges per-unit of energy consumed—despite the fact

that a substantial fraction of these costs are fixed2 in the short term. More economically

efficient rate designs—enabled in part by the proliferation of smart metering infrastructure—

could substantially improve market efficiency (Borenstein, 2005a). However, the potential

distributional impacts across customer types and incomes of transitioning from today’s tariffs

to more efficient designs have historically impeded progress (Joskow and Wolfram, 2012).

This paper examines the distributional and economic efficiency implications of residential

electricity tariffs. Using interval metering data—measuring electricity consumption every

30 minutes—for more than 100,000 customers in the Chicago, Illinois area, we assess the

economic benefits of efficient tariffs relative to alternative tariff designs. We then use census

data to understand the demographics—i.e. income levels—of the customers in our sample.

A regulator might seek to shift from the current tariff structure to a two-part tariff, because

the two-part tariff has higher economic efficiency. If this two-part tariff has an equal fixed

charge for all customers, we demonstrate that this shift is regressive; the change in monthly

bills is larger, as a share of income, for lower income consumers. However, we show that

a two-part tariff that bases the fixed charge on income or other measures that correlate

strongly with income can improve distributional outcomes without substantially sacrificing

economic efficiency.

The issues addressed in this paper are likely to increase in importance as distributed energy

resources (DERs), such as rooftop solar, become more prevalent. When located and oper-

ated appropriately, DERs can deliver substantial benefits (Cohen et al., 2016). However, if

1Tariffs are designed to recover all energy costs, transmission and distribution network costs, as well as
the costs of taxes, and additional regulatory and policy costs. In locations where payments are made to
support generation capacity, tariffs recover these costs as well. A large portion of non-energy costs cannot
be recovered through marginal cost pricing, and can therefore be considered residual costs. The structure
of the tariff —that is, the mix of per-kilowatt-hour, per-kilowatt, and per-customer charges— varies widely
and is typically determined by a mix of regulatory and market-based decisions.

2As we will detail in Section 2, the challenge of network cost recovery is not solely that network costs are
fixed. Non-convexities in the cost function and policy and regulatory intervention also present challenges.
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investment and operation decisions are not aligned with system objectives, DERs can sub-

stantially increase system costs (Schmalensee et al., 2015). The lack of spatial variation in

retail prices distorts where DERs are placed within a network and how they are operated.

In addition, remunerating transmission and distribution costs through volumetric charges

over-incentivizes solar adoption by driving a wedge between the private and social returns

to solar adoption. Adopters of some DERs, for example, rooftop solar, are able to reduce,

or eliminate, their payments for transmission, distribution, and other regulated costs, de-

spite the fact that these DER owners remain connected to and continue to use the network.

Given utility revenue sufficiency constraints, this leads to increases in the transmission and

distribution volumetric charges faced by other customers (Pérez-Arriaga et al., 2016).

This can also have large distributional consequences. Because solar adoption tends to be

positively correlated with income, high-income consumers are effectively passing on their

contributions to transmission and distribution costs to lower-income consumers. Finally,

widespread adoption of renewables can lead to larger diurnal price swings (Seel et al., 2018),

exacerbating the difference between time invariant rates and the social marginal cost of

consumption.

These converging challenges have led many regulators, policy makers, consumer advocates,

and utilities to call for improved tariff designs. For example, the New York Department of

Public Service recently called for “more precise price signals...that will, over time, convey

increasingly granular system value” (New York Department of Public Service, 2016b). New

York is not an anomaly. In 2017, regulators in 45 of 50 U.S. states and the District of

Columbia opened dockets related to tariff design or made changes to tariff design (Proudlove

et al., 2018). Similarly, in November 2016, the European Commission issued a sweeping set

of rulings, with tariff design as a centerpiece (European Commission, 2016).

The economic pressure to redesign electricity rates is countered in part by concerns among

policy makers and regulators of how more efficient rate structures might impact different

socio-economic groups in terms of both average bills and bill volatility (Burger et al., 2018).

For example, the Massachusetts Department of Public Utilities (MADPU), the New York

Department of Public Service (NYDPS), and the California Public Utilities Commission

(CPUC) all list concerns about the distributional impacts of rates in their principles for rate

design (Massachusetts Department of Public Utilities, 2016; New York Department of Public

Service, 2016a; California Public Utilities Commission, 2018). Distributional concerns are

not unfounded. For example, the U.S. Energy Information Administration recently found

that 31% of U.S. households struggled to pay the costs of meeting energy needs (Berry et al.,

2018). In practice, regulatory decisions highlight these concerns: in the U.S. in the second

3



quarter of 2018, state electricity regulators rejected over 80% of utility requests to increase

fixed charges, frequently citing the potential impacts on low-income customers (Trabish,

2018; Proudlove et al., 2018).

Our work leads us to a number of novel findings. First, we find that, holding the proportion

of fixed and volumetric charges in the tariff constant, movements towards more time-varying

rates tend to decrease annual electricity expenditures for low-income customers. However,

increases in customer fixed charges tend to increase expenditures for low-income customers

who, on average, consume less electricity than their more affluent counterparts. The net

effect of instituting a rate design with real-time energy prices and uniform fixed charges for

residual cost recovery is a monotonic negative relationship between income and changes in

expenditures (that is, as income increases, changes in expenditures decrease). Second, in

our sample, the economic distortions of recovering residual network and policy costs through

volumetric tariffs likely outweigh the distortions that emerge from charging an energy price

that does not reflect the underlying time- and location-varying cost of energy.3 Finally, we

find that changes to fixed charge designs can preserve the efficiency gains of transitioning

to efficient residual cost recovery while mitigating undesirable distributional impacts. We

highlight three methods for designing fixed-charges for residual cost recovery —based on

customer demand characteristics, income, or geography— that mitigate the regressiveness

of fixed charges.

The paper proceeds as follows. Section 2 provides an overview of the literature on equity

and efficient retail tariffs, as well as a summary of the data and methods used in this study.

Section 3 assesses the surplus gains and distributional impacts of moving to alternative

rate designs. This section motivates the benefits of efficient pricing, as well as the need

for efficient two-part tariff designs that avoid the distributional challenges of uniform fixed

charges. Section 4 demonstrates that simple mechanisms for designing fixed charges in

two-part tariffs can improve distributional outcomes—in particular, distributional outcomes

related to low-income customers. Section 5 summarizes and concludes.

3Borenstein and Bushnell (2018) compares the distortion created by inefficient residual cost allocation
with the the inefficiency created by the lack of meaningful prices on externalities such as greenhouse gas
emissions across the U.S. They find that these two countervailing distortions cancel in some locations, while
one dominates the other in other locations.
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2 Background, Data, and Methods

The literature on efficient electricity tariff design is vast. The theoretical benefits of efficient

price signals are well established, with economic literature dating back to the early-20th

century.4 The benefits of real-time pricing have been empirically demonstrated as well (Jessoe

and Rapson, 2014; Wolak, 2011; Allcott, 2011; Savolainen and Svento, 2012). This paper

touches primarily on two strands of this literature: recovery of non-convex costs in the

monopoly setting and the equity or distributional impacts of rate design.

Energy costs vary, often by orders of magnitude, over time and space due to the changing

marginal cost of power generation, the physical laws that govern the flow of power over

transmission and distribution networks, and the need to constantly balance electricity sup-

ply and demand (Schweppe et al., 1988). At any given point in time and location in the

power system, the efficient energy price is the short-run social marginal cost of delivering

power to that point, adjusted for losses, congestions, externalities, and the potential for

scarcity.5 Under a restrictive set of assumptions, short-run social marginal cost-based pric-

ing (with appropriate scarcity pricing) can recover all fixed and variable energy generation

costs (Schweppe et al., 1988). The same theoretical logic holds for network costs. However,

the necessary assumptions typically do not hold in practice for networks (Pérez-Arriaga

et al., 1995) or generation capacity (Vázquez et al., 2002; Joskow, 2008). Pricing based on

marginal costs leaves a set of residual costs—network, capacity, and policy and regulatory

costs that cannot be recovered through marginal rates. Residual costs emerge either because

of non-convex cost curves—energy production for network capacity, for example—or from

policy and regulatory intervention.

A central challenge in utility pricing is recovery of residual costs in a manner that mini-

mally impacts welfare (Joskow, 2007; Schweppe et al., 1988). Because residual costs arise

from non-convexities in the long-run cost function of supplying power, it is impossible to

attribute these fixed costs to any one individual on the basis of cost-causation (i.e. marginal

cost) pricing. The optimal method for residual cost recovery depends on a variety of as-

sumptions. In general, two-part (i.e. containing both a fixed, per-customer charge and a

4Coase (1946) contains early discussion of two-part tariffs, designed to distinguish between marginal and
residual cost recovery. Houthakker (1951) expanded upon earlier calls for two-part tariffs by distinguishing
between the impacts of peak- and non-peak-coincident demand. Vickrey (1971) presented one of the first
descriptions of the benefits of real-time pricing based on short-run marginal costs. This theory has been
expanded upon in more recent work (see, for example, Borenstein (2005a)).

5Note that while the nature of efficient energy prices is well understood, the optimal strategies for eliciting
efficient customer response are less clear. Schneider and Sunstein (2017) highlight how transaction costs and
behavioral biases impact the optimal type and frequency of price notifications.
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volumetric charge) tariffs will generally be substantially more efficient than optimal linear

(i.e. purely volumetric) tariffs6 (Brown and Sibley, 1986). We therefore focus our atten-

tion on two-part tariffs.7 Two-part tariffs with volumetric charge set to the marginal social

cost of consumption and a fixed charge to recover residual costs are optimal so long as the

fixed charge does not change any customer’s marginal consumption or production decisions

(Feldstein, 1972b).8

The challenge of balancing efficiency and equity in the recovery of shared costs is core to the

literature on public economics (Newbery, 2018; Atkinson and Stiglitz, 2015). Transmission

and distribution networks resemble “excludable public goods.” The costs of such goods

cannot be recovered from efficient marginal prices, and must be recovered through access

fees. If every member negotiated access through a fee commensurate with their surplus from

accessing the good (in this case, the network), society would achieve an efficient distribution

of the good (Samuelson, 1954). However, reality deviates from this theory substantially, as

residential and commercial electricity consumers rarely negotiate access to networks, and are

instead guaranteed access through the regulatory compact between regulators and monopoly

utilities.

In this analysis, we assume that customers respond to marginal prices as opposed to average

prices9 or any other function of fixed and variable prices.10 Ito and Zhang (2018) find that

6The optimal linear (i.e purely volumetric) tariff—the “Ramsey-Boiteux” tariff—recovers residual costs
through mark-ups on the marginal cost that vary in inverse proportion to the elasticity of demand (Ramsey,
1927; Boiteux, 1956). Feldstein (1972a) expands on this work by considering optimal linear prices while
accounting for a measure of distributional impacts. Declining block tariffs — that is, tariffs in which the
marginal price decreases as consumption increases — are one implementation of Ramsey-Boiteux pricing.

7In areas of growing peak-demand and tight network capacity margins over peak net demand, the marginal
energy cost may not reflect the long-run marginal cost of consuming energy during times of peak network
utilization. Such conditions may warrant the use of peak-coincident charges that reflect a customer’s con-
tribution to future network capacity costs (Pérez-Arriaga et al., 2016). This would be a component of the
variable cost in a two-part tariff. Given the lack of network topology and network loading data, we ignore
these conditions and assume all network costs are residual. This likely slightly overstates the quantity of
residual costs that we recover through fixed charges in our study.

8If: 1) resale of power is restricted, 2) customers have the potential to grid defect, and 3) the value of grid
connection for any given customer is unknown, then the optimal residual cost recovery method involves a
menu of contracts designed to elicit customers to express their value of connecting to the grid (Braeutigam,
1989). These menus contain a set of tariffs with inversely varying fixed and variable charges. Such designs
are unlikely to be optimal at the residential level for two primary reasons. First, resale is possible through the
ownership of distributed generation, opening the possibility for inefficient bypass of grid-supplied electricity.
Second, the costs of grid defection at a high-level of reliability are likely substantial for the vast majority of
residential customers (Khalilpour and Vassallo, 2015; Hittinger and Siddiqui, 2017). Thus, the benefits of
grid connection for residential customers will likely be greater than the costs under a relatively wide range
of fixed charges. This range will change as alternatives to grid-supplied energy proliferate and increase in
economic competitiveness.

9That is, the average of all fixed and variable costs over a given time period.
10Ito (2014) demonstrates that, in certain contexts, electricity consumers respond to average prices, not
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consumers can differentiate between marginal and fixed charges (and, therefore, between

marginal and average prices) in their short-term response (in the context of Chinese heating

bills). In designing efficient fixed charges, two factors must be kept in mind.

1. If the sum of fixed and variable charges that any given customer faces exceed his or her

total consumer surplus, this customer may “defect” from the grid—either by investing

in self-generation or simply ceasing consumption.

2. Should customers—for example, due to wealth effects or budget constraints—adjust

their marginal behavior in response to the magnitude of the fixed charges they face,

optimal fixed charges would account for these behaviors.

In our dataset, more than 99% of customers have positive consumer surplus at the magni-

tudes of fixed charges explored in this paper, even with relatively modest assumptions about

customer own price elasticity.11 We therefore do not consider grid defection to be a substan-

tial issue. In practice, wealth effects are very challenging to measure. In this paper we do

not explicitly incorporate wealth effects on customer marginal responses. In Section 4, we

demonstrate several mechanisms for charging lower fixed charges to low-income customers

that may increase efficiency relative to a uniform fixed charge in the presence of wealth

effects.

Economic efficiency is not, of course, the only consideration in residential rate design. Eq-

uity is a central consideration in Bonbright (1961)’s widely used guiding principles for rate

making. Indeed, regulation has long been used as a means of distributing benefits—a task

typically associated with the government (Posner, 1971). Recently, Levinson and Silva (2019)

found that utilities in regions with higher levels of income inequality and higher percentages

of Democratic voters had more income redistributive electricity rates. This implies that

income redistribution is an explicit regulatory goal, and that this goal is expressed in rate

design.

There is relatively limited literature on how different tariff designs (and the transitions from

today’s designs) impact customers of different socioeconomic groups. This paper assesses

the distributional impacts of two salient tariff design distortions: (1) the distortions that

marginal prices. However, Ito (2014) focuses on consumer response to increasing-block prices, a fairly
complicated pricing structure in which the volumetric charge increases as the total volume of consumption
increases. Furthermore, the customers in Ito (2014) face predominately volumetric charges, and the study
does not shed light on the issue of whether customers would distinguish between marginal and average prices
in the presence of fixed charges.

11See Appendix 6.5 for detailed calculations.
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arise from recovering residual costs in volumetric charges, and (2) the distortions that arise

from price signals that do not pass on the temporal volatility in the price of energy.12

The literature on the distributional impacts of increasing fixed charges and decreasing vol-

umetric charges for residual cost recovery consistently points to the regressive nature of

such transitions. Feldstein (1972b) derives optimal two-part electricity tariffs under the con-

straint that all customers must face the same fixed charge. Borenstein (2011) finds that such

charges are regressive in California. Similarly, Borenstein and Davis (2012) explore the effi-

ciency and distributional impacts of increasing fixed charges and improved two-part tariffs for

natural gas consumption using a nationally representative sample of customers. Historically,

increasing-block tariffs have been used to attempt to redistribute costs between low-income

and high-income consumers. However, Borenstein (2012) finds that California’s increasing-

block tariffs have a moderate redistributional impact relative to a pricing structure with

lower volumetric charges for high-consuming customers, a finding that underscores the re-

gressive nature of a transition to a tariff with higher fixed charges and lower variable charges.

Increasing-block tariffs — and other tariffs that distort marginal price signals — redistribute

at substantial cost to economic efficiency. Voulis et al. (2019) explores alternative methods

of taxation in European electricity markets, arguing that removing per-kilowatt-hour elec-

tricity taxes in the European Union would dramatically increase demand side participation

in markets.

We expand upon this literature by relaxing the requirement that all customers must face

identical fixed charges. We then outline economically efficient mechanisms for mitigating the

distributional impacts of transitioning to tariffs with higher fixed charges for residual cost

recovery.

The literature on the distributional impacts of transitioning to more time granular pricing

shows mixed results. Many scholars have noted that today’s flat tariffs are inequitable, as

they embed cross subsidies between customers that consume more power during high price

hours and those that consume less (Simshauser and Downer, 2016; Faruqui, 2012; Faruqui

et al., 2010b,a). In particular, Faruqui et al. (2010b) finds that low-income customers in

many regions stand to benefit from transitions to time varying electricity prices. Borenstein

(2013) explores the impacts of opt-in dynamic pricing programs on those that do not opt-in,

finding the impacts to be relatively minor. Hledik and Greenstein (2016) find that charges

based on peak demand do not harm low-income customers on average, and present these

12These are not the only distortions present in electricity tariffs. Specifically, in most markets across the
U.S., the full social cost of pollution is not included in the tariff. Borenstein and Bushnell (2018) suggests
that the net impact of the failure to price externalities into tariffs differs across markets.
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customers with large opportunities to save with peak-shaving. Horowitz and Lave (2014)

argue that real-time pricing may negatively impact low-income customers on average, and

that, as a result, real-time pricing programs should only be offered on an opt-in basis. On

the contrary, Simshauser and Downer (2016) find that today’s flat rates negatively impact

vulnerable customers on average, and that default dynamic pricing could improve efficiency

and equity. In recent years, scholars have begun to assess the extent to which DER adoption

is equitable under existing rate structures. For example, Nelson et al. (2011) argue that

the mechanism for supporting rooftop solar PV in Australia is regressive, benefiting high-

income customers at the expense of lower income customers. The results surrounding the

distributional impacts of residential electricity rates tend to vary widely based on system

characteristics, customer demographics, and energy usage patterns. We expand on this

literature by exploring the design of mechanisms for maintaining desired protections for

vulnerable customers in the transition to more efficient rate designs.

2.1 Data

The residential electricity consumption data used in this work come from Commonwealth

Edison (hereafter: ComEd). ComEd —a subsidiary of Exelon Corporation— is one of the

largest electric utilities in the U.S., serving over four million customers in the state of Illinois

(Exelon, 2018). The data contain anonymous electricity consumption data for 100,170 resi-

dential customers for 2016. Electricity consumption is reported in 30-minute intervals. All

customers in the data contain complete and clean consumption information for the entire

2016 calendar year. The data set states each customer’s Delivery Service Class, which differ-

entiates between Single Family Homes and Multi Family Homes as well as between customers

with Electric Space Heat and those without. In addition, the data specify each customer’s

U.S. 9-digit zip code (“Zip+4 Code”), indicating the city block or apartment group of the

respective household. For confidentiality reasons, ComEd applied a “15/15-rule” to the data.

This rule removes any customers or Zip+4 areas that:

1. contain fewer than 15 customers per Customer Service Class, or

2. contain one customer that represents more than 15% of the total consumption of the

corresponding Customer Service Class (Illinois Commerce Commission, 2014).

As the data used in this study predominately cover the densely populated regions of Chicago,

we expect that few areas will be affected by this rule. Nonetheless, this may bias our sample

towards containing relatively few areas with very large consumers.

9



Table 1 summarizes the breakdown of customer service classes represented in the sample.

The breakdown of single family versus multi family homes in our data is roughly represen-

tative of the broader ComEd service territory. 61.2% of the customers in our sample live

in single family homes and 38.7% in multi family homes, compared to roughly 58.7% and

40.2% respectively for the total ComEd service territory (Commonwealth Edison, 2011).13

Customers without electric space heat make up the majority of the customers in the data.

Table 1: Breakdown of customer service classes

Heating Type
Single Family Multi Family

Number Percent Number Percent

Electric Space Heat 96 0.01% 3,987 4.1%
No Electric Space Heat 60,095 61.2% 34,017 34.6%

Electricity consumption is strongly correlated with housing type. Table 2 highlights the

annual consumption in kilowatt-hours of the different customer service classes in our sample.

Customers in single family homes consume nearly twice as much electricity as customers in

the multi-family homes. As one would expect, electric space heat is also a significant driver

of energy consumption. The average customer living in a multi family home with electric

space heat consumes nearly twice as much electricity as the average customer living in a

multi family home without.

Table 2: Breakdown of annual electricity consumption by customer service classes (kWh)

Single Family Multi Family Multi Family-ESH Single Family-ESH
Minimum 26.56 38.61 121.92 1142.15

1st Quartile 4927.43 2236.50 5184.78 15761.78
Median 6993.93 3437.01 7657.55 18084.09
Mean 7436.61 3956.70 8536.50 19076.21

3rd Quartile 9451.34 5129.14 10804.36 22826.22
Maximum 44238.23 84726.89 37992.99 31068.12

We enrich the consumption data with corresponding 2016 socioeconomic data from the

American Community Survey (ACS) (U.S. Census Bureau, 2018a). The smallest, most

detailed geography for which ACS publishes public data is a Census Block Group (CBG).

CBGs contain 600 to 3,000 people (U.S. Census Bureau, 2018b). In total, our sample contains

13Note that ComEd does not publish data on the breakdown of electric versus non electric space heat
customers in its service territory.
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customers in 2,315 CBGs, meaning each CBG contains an average of 43 customers. While

the primary focus of our analysis is the impacts on customers of different income levels, we

gather and assess data related to the distribution of age, education, race, unemployment,

the frequency of individuals on social security (as a measure of customers on a fixed-income

stream). Note that, in 2016, the federal poverty limit for a 4-person household was $24,300

(U.S. Department of Health & Human Services, 2018). Throughout this study, we refer to

low-income customers as those making below $25,000 per year. We estimate that roughly

24% of the customers in our sample meet this definition of low-income.

The geographic boundaries of CBGs do not match directly with those of 9-digit zip-code

areas. We use a commercial data set—provided by Melissa Data—to match 9-digit zip areas

to CBGs.14 In the course of the data merging 1,975 customers (2%) are dropped from the

set because they are lacking corresponding data in the census.

Table 7 in the appendices compares the demographic characteristics of the customers in

our sample with the characteristics of the broader ComEd service territory. Note that, due

to the hierarchical design of our sample—with demographic data represented at the CBG

geography—the demographic data for our customer sample are actually the demographic

data for the CBGs contained in our sample. The sample in our analysis over represents

low-income and high-income customers, and under represents middle-income customers rel-

ative to the ComEd service territory more broadly. Additionally, our sample over represents

black and African American customers and under represents white customers relative to the

ComEd service territory. This is consistent with our sample being predominately an urban

population. Our sample is broadly representative across all other demographic characteris-

tics.

A common method in analyzing distributional impacts is to analyze household budget data

rather than income data (Baker et al., 1989; Baker and Blundell, 1991; Chawla and Pollitt,

2013). In many cases, low-income households may have high wealth or temporary lapses in

income.15 Budget or expenditure data often captures these facts with more fidelity. While

we focus on income data, incorporating expenditure or budget data is a promising direction

for future research.

14https://www.melissa.com/
15For example, high earners may spend time in graduate school.
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2.2 Methods

In our analysis we are interested in the average and sorted bill changes for customers in spe-

cific income groups. We can model a bill change (∆) for a given customer i ∈ {1, ..., 100170}
and tariff r according to ∆i,r = Y

′
i βr + εi,r, where Yi = ej is a one-shot vector representing

the income level, j ∈ {1, ..., 9}, and εi,r represents the residual. For example, if Xi = ej then

Xi is a vector of zeros with a single 1 at location j, representing that customer i is in income

quantile j. With customer-level data on Yi, we could calculate the average bill change from

tariff r by regressing ∆i,r on Yi.

However, in our hierarchical design, we do not know the income of any individual customer;

we only know their Census Block Group. We have a frequency distribution over income

levels for each customer i’s CBG, pi = P(Yi = ej), where pi ∈ R9 describes the probability

that a random customer in customer i’s Census Block Group has income level j, for each

income j ∈ 1, ..., 9. We assume that each customer is randomly chosen given their CBG, so

pi provides a probability distribution of incomes for customer i.

Our assumption, that all customers within a given CBG face the same probability of being

in any income level j, implies that factors like housing stock or consumption profiles do

not affect pi. Borenstein (2012) highlights the fact that, for example, income and annual

electricity consumption are correlated, and that using this information can provide a more

accurate estimate of pi. Of course, in practice, we may wish to use the distribution of incomes

in a CBG as a prior and update this distribution using additional consumption, housing, or

demographic data. Additionally, many utilities or regulators may have much more granular

data on the demographics of their customers.

We are interested in the average bill change for customers in each income level j, represented

by βr, as well as the distribution of individual effects, given by βr + εi,r. The formula for

average bill change for a hypothetical customer of a given income level is given by Equation 1,

where βr ∈ R9 is a vector containing the average impact for each income level j, and the

matrix P ∈ R100170×9 contains the vector of probabilities that customer i has income level j

(that is, pi,j). The derivation for Equation 1 is provided in Appendix 6.2.

βr =
(∑

i

diag(pi)
)−1

P
′
∆r (1)

In order to obtain standard errors and sorted expenditure effects, we bootstrap the data.

We stratify by CBG and randomly select M income levels according to the distributions of

incomes in the respective CBGs. We then randomly assign a customer from the population
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within the relevant CBG to this income. Customer i’s income level during run m is ymi , and

the bootstrap income matrix is Y m.

We obtain the bootstrap estimate βmr by regressing the variable of interest (in most cases,

∆r) on Y m, and note that βr u Em[βmr ]. The distribution of βr across m provides our

confidence intervals for the average impacts. Additionally, by sorting the ∆m
i,r within each

bootstrap run, we can obtain the sorted effects. The distribution of ∆i,r across bootstrap

runs within each sorted quantile provides the confidence intervals for the sorted impacts.

We use this method to estimate expenditure impacts across socioeconomic variables beyond

income, as well as to measure other variables of interest beyond changes in expenditures.

2.3 Rate Designs

In Section 3, we analyze the efficiency and distributional impacts of various rate designs

relative to the default tariff in the ComEd geography. The primary purpose is to compare

the efficient benchmark tariff (described below) to other commonly proposed designs, and

to motivate our discussion of equitable residual cost allocation methods. This section briefly

describes the various tariffs involved, and more detail is provided in Appendix 6.3.

In our model, total utility revenue R is equal to the sum of revenues from fixed charges (Fi)

and variable charges for energy (pei,t) and residual costs (pri,t) across all customers i and times

t: R =
∑

i,t

(
Fi + xi,t(p

e
i,t + pri,t)

)
. Where xi,t is again the demand of customer i in time t.

We design all tariffs to be revenue neutral in residual (network and policy) costs compared

to the default tariff. We allow the total quantity of energy costs recovered to vary in the

scenarios in which customers respond to prices (described more in Section 3), as a reduction

in consumption leads to a reduction in the total cost of producing energy. Revenue neutrality

in network and policy costs is critical, as these costs must be recovered, regardless of the

total quantity of energy purchased.16 In practice, if any network or policy costs were under

recovered in a given year, these costs would most likely be recovered in a future year. Thus,

any apparent cost savings resulting from lower overall network or policy cost recovery would

simply be an inter-temporal shift, and not a true cost saving. We focus on tariff designs that

have garnered significant attention by utilities, regulators, and academics.

First a note on externalities. In this paper our primary focus is on the impacts of alternative

16The ”regulatory compact” between the regulator and the regulated utility has historically lead to con-
ditions in which utilities recover all costs, even in circumstances of “stranded” costs (Sidak and Spulber,
1996). While there is legal precedence for not allowing the recovery of “stranded” costs, in the majority of
cases, all network and policy costs are ultimately recovered by utilities.
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mechanisms of residual and energy cost allocation on certain socioeconomic groups. While

externalities are clearly important in the electricity sector, given the lack of momentum

for pricing those externalities, we ignore the impacts of externalities in each of our tariff

specifications. Certain tariff designs may lead to an increase in emissions (see, for example,

Holland and Mansur (2008)’s analysis of the emissions impact of real-time pricing). Inclusion

of externalities might slightly exacerbate or mitigate the impacts modeled in our paper.

2.3.1 Default-Flat

The default tariff in the ComEd territory serves 95.8% of ComEd’s residential customers as

of the end of 2016 (U.S. Energy Information Administration, 2017).17 This default tariff is

comprised of a flat, time- and location-invariant volumetric charge of roughly $0.10/kilowatt-

hour (kWh) and a small fixed, per-customer charge of roughly $10 to $14 per month. The

default tariff differentiates between customers of different Delivery Service Classes (e.g.,

residential or industrial customers); prices change slightly throughout the year to reflect

changes in the total sum of energy, network, and policy costs to be recovered.18 Throughout

this paper we refer interchangeably to this tariff as the flat or default tariff.

The default tariff distinguishes between energy charges, transmission services charges, distri-

bution facilities charges, metering and customer charges, and policy charges related to taxes,

energy efficiency programs, and other environmental programs. Using the customer load

profiles and the tariff data retrieved from the Illinois Commerce Commission, we compute

the total costs to be recovered in three categories: energy (containing the energy charges),

network (containing transmission services, distribution facilities, metering, and customer

charges), and policy and regulatory costs (containing all other charges). The structure and

magnitude of the charges for each customer class under the default tariff are presented in

Table 3. Note that the various charges change a very small amount (on the order of $0.001-

$0.005) throughout the year, so the numbers in Table 3 represent the average value for the

year. We compute the costs in Table 4 by multiplying customer consumption profiles by the

corresponding volumetric charges (that is, the energy, transmission services, distribution fa-

cilities, and policy and regulatory charges), and adding in the corresponding customer fixed

charges (that is, the customer and metering charges).19 This total cost data is presented in

17In 2016, 35% of ComEd customers were served by competitive retail electricity providers (Illinois Com-
merce Commission, 2017). These retailers must charge the regulated rate for transmission, distribution, and
policy and taxes costs. However, they are free to charge different rates for energy. This should not bias the
results substantially, as the differences in energy costs across retailers is relatively minor.

18The rates are determined according to formulas approved by the Illinois Commerce Commission (Edison,
2016).

19In our analysis we assume that all customers begin on the flat default rate. This should not bias the
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Table 4.

Table 3: Default tariff structure

Customer Class
Energy

Distribution
Transmission Policy and other

Distribution Facilities Customer Metering
$/kWh $/kWh $/customer $/customer $/kWh $/kWh

C23 $0.051 $0.032 $9.987 $4.372 $0.012 $0.005
C24 $0.051 $0.032 $7.069 $4.372 $0.012 $0.005
C25 $0.051 $0.019 $11.421 $4.372 $0.012 $0.005
C26 $0.051 $0.020 $7.553 $4.372 $0.012 $0.005

Table 4: ComEd costs under the default tariff

Total Energy
Distribution

Transmission Policy and other
Distribution Facilities Customer Metering

$78,024,552 $31,990,302 $19,510,770 $10,671,363 $5,255,667 $7,645,008 $2,951,442

Average annual expenditures and 95% confidence intervals for these average expenditures

under the Flat ComEd tariff are depicted in Figure 1. Figure 1 makes it clear that, under

the default tariff, customers in the lowest income bracket pay less in annual electricity bills

than do higher income customers. This trend holds true when controlling for housing type

(that is, single family versus multi-family home, electric space heat versus non-electric space

heat). This is driven almost exclusively by the fact that, in our data, low-income customers

consume less energy on average than higher income customers. This finding is consistent

with other studies (for example, Borenstein (2012)) as well as with other data sources that

track the relationship between average household energy consumption and income (U.S.

Energy Information Administration, 2015). The confidence intervals on the mean impact

are quite wide, reflecting both the variance in expenditures across income groups and the

uncertainty in the assessment of which customers are in which income bracket. We observe

high variance in expenditures in areas with low median incomes and high concentrations of

low-income customers. Nonetheless, the mean expenditures from the lowest income bracket

is statistically significantly different from the mean expenditures of all customers making

more than $35,000 per year.

For the purposes of this analysis, we assume that all network and policy costs are residual

and must be recovered. Network costs are driven in the long run by the need to develop

network infrastructure to meet regulated reliability requirements and to meet peak injections

numbers in Table 4, as all of ComEd’s tariffs are designed to be revenue neutral. However, this assumption
likely slightly overstates the potential consumer surplus and efficiency gains from a transition to more time-
granular pricing schemes. The impact of this is likely small given the relatively small number of customers
currently facing time varying rates. The results presented in section 3 can be considered upper bounds on
the overall impact.
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Figure 1: Annual electricity expenditures under the Flat (default) ComEd tariff

and/or withdrawals, the costs of existing network infrastructure largely do not change in the

short term with the amount of energy consumed or produced (Borenstein, 2016).

2.3.2 Flat tariff with non-coincident peak demand charge: Flat-NCDC

Under the flat tariff with a non-coincident peak demand charge (“Flat-NCDC”), the volu-

metric charges for energy and policy costs and the fixed charges remain the same as under

the default tariff. However, under the Flat-NCDC design, distribution facilities and trans-

mission costs are recovered via a charge applied to each customer’s peak half-hourly demand

in each month, regardless of when this demand occurs (the revenue-neutral charge is roughly

$3.735 per kilowatt). Thus, the Flat-NCDC tariff is identical to the default tariff in all ways

but network cost recovery. See Appendix 6.3 for more detail.
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2.3.3 Critical Peak Price tariff: CPP-10

The “CPP-10” tariff comprises a fixed charge identical to that under the default tariff,

combined with a volumetric “critical peak price” designed to reflect the periods of peak price

in the ComEd system. In typical critical peak pricing programs, off-peak prices are constant

or varying according to a deterministic time-schedule; peak price periods are announced some

time—commonly 24 hours—ahead of the “event period” (for many design characteristics,

see U.S. Department of Energy (2016)). In our design, the off-peak price is $0.0825/kWh,

and the peak price is $0.825/kWh for all customers, leading to a peak to off-peak ratio

of 10. We hold fixed customer and metering charges identical to those in the default flat

tariff. Consistent with existing critical peak pricing programs, we choose 18 event periods,

all lasting between 3:00PM and 9:00PM. The event days are chosen based on the 18 highest

electricity price days for the ComEd load zone in 2016.

The CPP-10 and RTP-Volumetric rate (described below) are designed to have the same

average volumetric rate as the default flat rate. See Appendix 6.3 for more detail.

2.3.4 Real-time price tariff with volumetric network cost recovery: RTP-Volumetric

The RTP-Volumetric tariff charges the hourly locational marginal cost of energy at the

ComEd load zone, and recovers all distribution facilities, transmission services, and policy

and tax costs through a volumetric rate. Customer and metering charges remain fixed as

under the default tariff. Recovering residual costs through volumetric charges distorts the

marginal price signal that network users see. Nonetheless, we include this case to align

with previous studies that have considered such volumetric cost recovery for residual costs

(Borenstein, 2005a, 2012, 2013).

In practice a regulator could charge even more time granular energy prices — for example,

five-minute or half-hourly prices. Increasing the time granularity of pricing would further

increase consumer surplus, as the surplus gained from more efficient prices is roughly pro-

portional to the square of the change in the price (Hogan, 2014).

The CPP-10 and RTP-Volumetric tariff differ from the default flat tariff only in the time

granularity of the energy price signal and the connection to wholesale energy prices. Con-

trasting the results of the CPP-10 and RTP-Volumetric tariffs with those of the Flat tariff

allows us to understand the impacts of passing on increasingly efficient energy price signals

while holding all else equal. See Appendix 6.3 for more detail.
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2.3.5 Real-time price tariff with coincident peak capacity charges: RTP-CCC

The final tariff in our study, the real-time price tariff with a coincident capacity charge

(the “RTP-CCC tariff”), is our benchmark economically efficient tariff. The RTP-CCC

rate charges the hourly locational marginal price of energy at the ComEd load zone. The

tariff recovers all network and policy costs through a fixed charge. Finally, we include a

charge coincident with the PJM system peak intended to reflect a customer’s contribution

to future generation capacity costs. We briefly introduce the RTP-CCC tariff here; please

see Appendix 6.3 for more detail.

The volumetric energy charge in the default ComEd tariff generates roughly 14.5% more

revenue than the sum of revenues from the real-time energy prices and the coincident capacity

charges. This is due to the fact that the default energy price charged by ComEd recovers

a number of non-energy costs, including but not limited to the risk premium for charging

a flat price, and the costs of PJM capacity charges from previous years. We recover these

costs in all tariffs. In the RTP-CCC tariff, we assume these costs are residual and recover

them through a fixed charge. Capacity costs from previous years are residual, as changes to

customer load profiles do not impact ComEd’s need to pay these costs. However, passing

along the real-time price of energy would eliminate risk premium, so classifying these costs

as residual slightly overstates the total amount of residual costs.

Given that the RTP-CCC tariff eliminates the volumetric price for residual cost recovery,

it likely reduces the potential revenues for rooftop solar PV adopters. Recent experience

has shown that changes to net metering designs and reductions in volumetric energy charges

have proven to be politically challenging in the U.S. However, the increased energy price

volatility and the inclusion of a marginal price signal for generation capacity is likely to

increase revenues for energy storage resources, which create value in part by arbitraging low

and high energy price periods.

Figure 2 provides an overview of the structure of the tariffs introduced above. For example,

we see that under the default tariff, all customer and metering costs are recovered through

a fixed charge (the black fill), while all other costs are recovered through volumetric charges

(the dark gray fill).

In Section 3, we explore tariff impacts under the premise that all residential customers face

identical fixed charges for residual cost recovery. In Section 4, we describe alternative fixed

charge designs and explore their economic underpinnings and impacts.
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Figure 2: Breakdown of costs under the tariff designs in this study

3 Estimating bill and consumer surplus impacts from

efficient retail tariffs

To understand the impacts and relative efficiency of the tariffs introduced in Section 2.3,

we compute customer expenditure and volatility impacts under three different cases. First,

we compute customer bills assuming no price response from consumers—demand has an

elasticity of zero. In the zero-elasticity case, all expenditure changes are simply transfers

between customer groups and bill changes reflect changes in consumer surplus. In addition,

because demand is perfectly inelastic, there is no inefficiency (deadweight loss) from mis-

pricing hourly electricity prices. When demand elasticity is not zero, changes in hourly prices

will lead to changes in consumption levels and bill and consumer surplus changes will no

longer be equivalent. The presence of demand elasticity also implies that mis-pricing leads

to efficiency losses and a move toward more efficient pricing can, in principle, increase the

consumer surplus of all consumers. This is especially true given the presence of volumetric

transmission and distribution charges since the average hourly (marginal) price will be too

high. We compute expenditure and consumer surplus impacts for two cases with non-zero

elasticity to gauge the importance of consumer response.
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3.1 Zero-elasticity case

Figure 3 illustrates the the calculations of expenditure changes in the transition from the flat

default tariff to a real-time price tariff, in the case where the elasticity of demand is non-zero.

While the private marginal cost that each customer faces (i.e. the volumetric charge) is only

equal to the short-run marginal cost in the RTP-CCC tariff, the same concepts depicted in

Figure 3 hold for the Flat-NCDC, CPP-10, and the RTP-Volumetric tariffs. That is, when

the marginal price falls below the flat tariff, bill change is calculated as shown Figure 3(a),

and when the marginal price rises above the flat tariff, bill change is calculated as shown

Figure 3(b). In the zero-elasticity case, the demand curve would be vertical, resulting in

zero quantity change. In addition to computing the changes in expenditures due to changes

in the volumetric rate, we also calculate the changes in expenditures resulting from changes

in fixed or demand-based charges.

Figure 3: Illustration of bill change in the transition from flat default to real-time price tariff

(a) Off peak demand

(b) Peak demand

Figure 4 shows the average change in annual expenditures relative to the default tariff for all
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of the tariffs in the zero-elasticity case. The figure also includes the 95% confidence intervals

on the average change for each tariff and income group. Negative changes correspond to

a decrease in expenditures under the tariff relative to the flat tariff, while positive changes

correspond to an increase in bills. The RTP-CCC tariff creates the largest overall distri-

butional impacts, with monotonically decreasing expenditure changes as income increases.

Two tariffs keep the same fixed charges as under the default tariff, and change only the time

granularity of the volumetric price signal: the CPP-10 and RTP-Volumetric tariffs. Transi-

tioning to these tariffs benefits low-income customers on average in our sample, highlighting

the fact that increasing the time granularity of the energy price signal will not inherently

negatively impact low-income customers. Instead, it is RTP-CCC’s increase in fixed charges

(and decrease in average volumetric charge) that has negative impacts on low-income cus-

tomers. No income group under the demand charge tariff—Flat-NCDC—has an average

effect statistically distinguishable from zero.

Figure 4: Change in annual expenditures by tariff and income level, zero-elasticity case

The drivers of the impacts seen in Figure 4 vary by tariff. We explore these drivers using

simple linear regression analysis in Appendix 6.4.

Figure 5 shows the coefficient of variation (CV) of monthly expenditures for all of the tariffs
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analyzed in this study, including the Flat (default) tariff. The CV can be interpreted as

the deviation from the mean for roughly two-thirds of the bills and measures bill volatility

across the different tariff designs. For example, a CV of 0.4 implies that roughly two-thirds

of the bills—or 8 months-worth of bills—are within 40% of that customer’s mean bill. The

CV of the default tariff is extremely low across all income levels, implying that bills are

relatively consistent throughout the year for most customers. All designs except the Flat-

NCDC design increased CVs, as expected with an increase in time variability. Perhaps

counter-intuitively, the inclusion of a demand charge in the Flat-NCDC tariff had only a

minor impact on the average month-to-month bill variation. The RTP-CCC tariff creates

the largest CVs, implying the greatest month-to-month variability in customer bills. Perhaps

counter-intuitively, CVs are lowest for low-income customers under the RTP-CCC tariff,

despite the fact that low-income customers see bill increases on average. This stems from

the fact that the dominant driver of bill increases for low-income customers is the increase

in fixed charges, which do not change from month-to-month.

Figure 5: Coefficient of variation of monthly expenditures, zero-elasticity case

While price volatility—and the resulting month-to-month expenditure volatility—is a con-

cern for many customers and the regulators and advocates that represent them, we focus
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primarily on aggregate customer expenditures for the remainder of the paper. There are

many methods to hedge bill volatility (Borenstein, 2007, 2005b). Among them, contracts

for differences and other types of option contracts maintain the efficiency of marginal price

signals while providing protection. Other types of payment plans—such as those already of-

fered by many utilities today—can also alleviate the potential impacts of unexpectedly high

bills in a given month. One example, detailed in Borenstein (2005b), is to automatically

enroll customers with unusually high costs in given month into a payment plan. Such “spark

loans” are one of many proposals for mitigating month-to-month expenditure volatility that

maintain efficient marginal incentives.

3.2 Price elasticity and change in consumer surplus

In addition to the zero-elasticity case, we model two cases for price elasticity. Consistent

with the existing literature (for example, Borenstein (2005a)), we consider only own-price

elasticity and do not consider cross-price elasticity. Additionally, consistent with existing

literature, we assume no customer response to non-coincident peak-demand charges (see, for

example, Mays and Klabjan (2017)). In this sense, we can consider the Flat-NCDC tariff to

be a tariff in which a fixed charge is allocated to customers based on their peak demand in

each month.

Empirical estimates of the price elasticity of customers vary widely and depend on a variety

of factors including time of day, season, availability of information, and level of automation.

We consider two values for own-price elasticity: one value on the low end of the range of

empirically measured elasticities (-0.1), and one value on the high end of the range (-0.3).

We model price response according to Equation 2. For RTP-CCC and RTP-Volumetric, a

few hours of nonpositive prices occur in 2016. For these cases we manually set a very low

positive price, i.e. 10−7 to guarantee mathematical applicability of the formula. This leads

to relatively large (roughly 4x) increase in demand over baseline during negative price hours.

x′i,h = xflati,h

(
p′h
pflath

)ε

(2)

In all of our demand response cases, we maintain revenue neutrality for all network and

policy costs. We do not maintain revenue neutrality in energy costs, as a reduction or

increase in demand in one time period corresponds to a reduction or increase in energy

production costs. Residual network and policy costs, however, do not decrease with volume

of consumption. Following the calculation of demand using Equation 2, we compute the

23



deviation from the total required network and policy revenue. We then increase or decrease

fixed charges accordingly, and recalculate all expenditures.20 All results presented below are

of expenditures following tariff rebalancing.

Figure 6 illustrates the change in consumer surplus and efficiency (dead weight loss) that

emerges from the transition from the flat to the RTP-CCC tariff. As depicted in the graphic

we assume demand curves to be linear. Note that in the zero-elasticity case, the change

in consumer surplus is equivalent to the change in expenditures, as there is no change in

efficiency. Thus, in the zero-elasticity case, changing the tariff affects only the distribution of

consumer surplus, and not the total quantity of consumer surplus. We subtract any changes

in fixed or demand charges from the consumer surplus change depicted in Figure 6 to arrive

at our final estimate of consumer surplus change.

Figure 6: Illustration of consumer surplus and efficiency change in the transition from the
flat default to the real-time price tariff

Table 5 displays the aggregate consumer surplus change in the transition to each of the four

tariffs assessed. Table 9 in Appendix 6.1 contains the mean per-customer change in consumer

surplus and the 95% confidence intervals on the mean impact for each socioeconomic group

for the high elasticity case. As expected, we see the largest aggregate gain in consumer

surplus under the RTP-CCC tariff.

Table 9 highlights that all socioeconomic groups benefit on average in every tariff, but for

the Flat-NCDC, CPP-10, and RTP-Volumetric cases, some individual customers in each

socioeconomic group experience losses in surplus. Under the RTP-CCC tariff, we see sub-

stantial surplus gains, with average per-customer surplus gains between 28% and 48% of

20Rebalancing with fixed charges will, of course, have distributional impacts. However, given the relatively
small magnitude of the charges required by rebalancing, this impact is minor compared to the impacts of
the transition from one tariff design to another.
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annual expenditures for different socioeconomic groups (in the high elasticity case). This

is an important point. While the policy debate often focuses on bill changes assuming no

demand elasticity, this shows that this can be misguided; consumers whose bills might be

projected to increase, assuming no demand response, may in fact benefit from the tariff

change once demand response is accounted for.

Perhaps less intuitively, we see substantially larger consumer surplus gains under the Flat-

NCDC tariff than we do under the CPP-10 and RTP-Volumetric tariff. This stems from

the fact that, under the Flat-NCDC and RTP-CCC tariffs, a substantial portion of residual

costs are removed from the volumetric portion of the tariff. The volumetric portion of the

tariff is thus much closer to the actual marginal cost of energy much more often under the

Flat-NCDC tariff than under the CPP-10 and RTP-Volumetric tariffs. This implies that the

distortion arising from the recovery of residual network and policy costs through volumetric

rates is likely larger than the distortion arising from the fact that the energy component of

the flat default tariff does not reflect the time- and location-varying marginal cost of energy.

Our discussion above focuses only on changes in consumer surplus; we do not calculate

change in social welfare because we leave the discussion of environmental externalities outside

the scope of the current accounting. As highlighted by Borenstein and Bushnell (2018),

the cost of environmental externalities may roughly equal volumetric residual charges in

the Chicago area implying that the average marginal price may be closer to the optimal

marginal price when transmission and distribution are remunerated through a volumetric

charge. Nonetheless, if an emissions surcharge were efficiently applied to all tariffs, we would

still expect to see a tariff with efficient network cost allocation be closer to the social marginal

cost than a tariff with inefficient network cost allocation.

Table 5: Aggregate change in consumer surplus by tariff

Elasticity Case Flat-NCDC CPP-10 RTP-Volumetric RTP-CCC

ε = -0.1 $983,429 $445,683 $125,181 $10,036,693
ε = -0.3 $3,130,361 $1,478,859 $390,054 $29,237,459

As we would expect, the primary effect of increasing the elasticity of demand is to increase

the number of customers who benefit from the transition to a more efficient tariff. Figure 7

highlights the consumer surplus change for customers in the lowest income bracket (<$15,000

per year) under the RTP-CCC tariff for the three elasticity cases. A positive change is an

increase in consumer surplus, while a negative change is a decrease. The shaded regions in

the plot are the 95% confidence intervals for the ranked effects. The consumer surplus change
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in the zero-elasticity case is equal to the change in expenditures. In the zero-elasticity case,

between 60% and 68% of customers making less than $15,000 per year see their bills increase

under the RTP-CCC tariff with uniform fixed charges. However, as consumers become more

elastic, we see that average changes in surplus relative to the Flat default tariff begin to be

positive. This leads to an interesting insight: while conversation surrounding tariff design

change tends to focus on changes in expenditures, a better focus may perhaps be on changes

in consumer surplus.

Figure 7: Change in consumer surplus in the transition from the Flat to RTP-CCC tariff
Annual income: Less than $15,000

In practice, customers will have a distribution of elasticities, rather than a single value as

modeled here. Thus, in practice, while the average elasticity across all customers may lead

to an average net gain in consumer surplus, some customers may still see negative changes

in surplus.
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4 Mitigating bill impacts with progressive fixed charges

Section 3 demonstrates that transitioning to a retail tariff that more accurately reflects the

marginal cost of consumption—the RTP-CCC tariff in our design—would create substantial

consumer surplus gain relative to other design options. However, in Section 3, we naively

charge every residential customer the same fixed, per-customer charge for residual cost recov-

ery, regardless of the customer’s socioeconomic status, consumption, or any other variable.

This approach to allocating residual costs creates substantial distributional concerns. Some

socioeconomic groups benefit far less than others in the transition to the RTP-CCC tariff

with uniform fixed charges. Low-income customers are particularly impacted, experiencing

annual expenditure increases of roughly $30 on average, with some customers experiencing

substantially larger expenditure increases (see Figure 7). Even in a scenario with negative

or zero average expenditure changes, we may still want to protect against substantial bill

increases for vulnerable customer groups.

When moving to an efficient rate design, one pathway for mitigating undesired distributional

impacts is to utilize or enhance existing programs for lowering energy costs for low-income

customers. The two primary existing programs in the ComEd service territory, the federal

Low-Income Home Energy Assistance Program (LIHEAP)21 and the ComEd CARE22 pro-

grams are need-tested. That is, customers must demonstrate need by providing proof of a

qualifying income level or proof of enrollment in another need-tested support program (such

as the Supplemental Nutrition Assistance Program). However, need-tested programs often

receive very low enrollment due to a variety of reasons. In 2012, only 22% of individuals

eligible for LIHEAP nationwide actually received support under the program (Falk et al.,

2015). Eligibility for ComEd’s CARE program requires enrollment in LIHEAP, so enroll-

ment among eligible customers is likely low. As a result, these programs are often overlooked

when considering new tariff designs; regulators are understandably skeptical of the ability of

these programs to mitigate concerns affecting low-income customers.

However, based on the principles of monopoly cost recovery, and as discussed in Section 2, a

wide range of fixed charges are approximately economically efficient. This insight opens the

door to bill protection mechanisms for vulnerable customer groups that capture all—or the

vast majority—of the benefits of the economically efficient tariff options discussed in Section

3.

In this section, we illustrate three different methods for recovering residual costs through

21www.LIHEAPIllinois.com
22www.comed.com/MyAccount/CustomerSupport/Pages/ResidentialHardship.aspx
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fixed charges. We demonstrate that these methods can mitigate many of the distributional

impacts of moving towards more efficient tariff designs.23 Because these methods enable

network cost recovery while preserving marginal cost signals, they maintain the efficiency

benefits of the RTP-CCC tariff explored in Section 3. In the presence of wealth effects,

wherein low-income customers change their demand functions in response to changes in

fixed charges, progressive pricing mechanisms may be more efficient than a uniform fixed

charge approach.

We explore several methods for progressive fixed charges. First, we explore fixed charges

based on historical consumption data that correlate with income. We then explore fixed

charges based directly on customer income. Finally, we explore fixed charges based on

geographical information. The three designs we highlight have different tradeoffs. In practice,

the design chosen for a given geography will need to be tailored to the regulatory and

stakeholder objectives and the available data.

While we focus here on designing fixed charges to mitigate distributional impacts, regulators

could use the same data and methods described here to accomplish any number of regulatory

goals. For example, regulators could set fixed charges to achieve “gradualism” or “rate

stability.” Such charges would be designed to minimize the bill changes that any customer

experiences, regardless of income or other variables (Burger et al., 2018).

4.1 Progressive fixed charges based on customer demand charac-

teristics

Many customer consumption characteristics correlate strongly with income. Table 6 presents

the average value for different consumption characteristics at each income level, normalized

to the value associated with the lowest income group (computed according to the method

described in Section 2.2).24 The non-normalized data are presented in Table 10 in Appendix

6.8. For example, customers in the highest income bracket have, on average, 29% higher

annual peak demand than customers in the lowest income bracket. The variables that are

most predictive of income may vary across geographies.

23We refer broadly to the mechanisms explored here as “progressive pricing” mechanisms, as the underlying
impact in each case is to mitigate the additional burden of transitioning to efficient tariffs created by uniform
fixed charges.

24Peak-to-Off-Peak ratio is the ratio of the customer’s peak demand over the entire year to the customer’s
average half-hourly consumption. The various monthly peak demands correspond to the peak demands in
the specified month. Finally, the consumption data in different time slots (e.g. “Consumption: 6:00PM-
6:30PM”) correspond to the consumption during the specified time slot, summed over the entire year. These
demand characteristics are chosen due to their strong correlation with income.
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Table 6: Average Profile Variables by Income

Income ($1,000 USD)
Average
Monthly

Consumption

Annual
Peak

Demand

Peak-To-
Off-Peak

Ratio

May
Peak

Demand

June
Peak

Demand

July
Peak

Demand

August
Peak

Demand

Consumption:
5:30PM-
6:00PM

Consumption:
6:00PM-
6:30PM

Consumption:
6:30PM-
7:00PM

<$15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
$15 – $25 1.07 1.03 0.95 1.05 1.06 1.05 1.05 1.08 1.08 1.08
$25 – $35 1.10 1.06 0.95 1.09 1.09 1.09 1.09 1.12 1.12 1.11
$35 – $50 1.12 1.09 0.95 1.12 1.13 1.13 1.12 1.15 1.15 1.15
$50 – $75 1.14 1.13 0.97 1.17 1.17 1.17 1.16 1.18 1.18 1.18
$75 – $100 1.18 1.17 0.97 1.22 1.22 1.22 1.21 1.23 1.23 1.23
$100 – $125 1.20 1.19 0.97 1.25 1.26 1.25 1.25 1.26 1.26 1.26
$125 – $150 1.21 1.21 0.98 1.27 1.28 1.27 1.27 1.28 1.28 1.27
>$150 1.25 1.29 1.02 1.36 1.35 1.34 1.33 1.32 1.33 1.32

Regulators wishing to create more progressive fixed charges may exploit these demand char-

acteristics. That is, fixed charges could be designed based on these characteristics. In order

to avoid customer responses to the fixed charges —and thus decreasing the efficiency of

the tariff— the fixed charges must be held constant for some period of time.25 Given that

network costs are driven in the long run by coincident peak demand, charges determined

according to a customer’s coincident peak demand are likely to be more well aligned with

regulatory objectives of cost-causality.

Figure 8 compares the average bill change for customers of different income levels under two

different fixed charge scenarios. In the RTP-CCC tariff, fixed charges are uniform across all

customers, as presented in Section 3. The marginal prices under the RTP-CCC-APD tariff

are identical to the RTP-CCC tariff. However, fixed charges for residual cost recovery are

determined according to the customer’s annual peak demand (APD stands for “annual peak

demand”).26 Given the strong correlation between a customer’s peak demand and income,

the RTP-CCC-APD is substantially more progressive than the RTP-CCC tariff.

This structure is similar to contracted capacity tariffs used in locations like France and Spain

today.27 However, demand subscriptions assessed annually allow customers to lower their

contributions to residual costs by changing their peak demand.

Fixed charges based on demand characteristics have the benefit of simplicity. However,

they face two primary drawbacks. First, if updated frequently to reflect changes in demand

25That is, a fixed charge based on historical consumption would need to be held constant for, for example,
ten years following the implementation of the fixed charge. The longer this time period, the lower the
customer response to the fixed charge is likely to be. Regulators could update the customer fixed charges
based on a rolling average of the customer demand characteristic of interest (for example, the average annual
peak demand over the past 10 years). If fixed charges based on demand characteristics are updated frequently,
customers would face inefficient incentives to modify their consumption and production decisions to modify
their residual cost payments.

26Each customer’s monthly fixed charge is determined by multiplying the customer’s peak demand over
the year by $8.90 per kilowatt.

27See, for example, Électricité de France’s Tarif Bleu (Électricité de France, 2018)
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Figure 8: Change in annual expenditures under the RTP-CCC and the RTP-CCC-APD
tariffs, zero-elasticity case

characteristics, such fixed charges could effectively mimic the inefficient incentives created

by marginal charges for residual cost recovery. Second, while low-income customers may

benefit on average from such charges, some low-income customers may experience higher

expenditures.

4.2 Progressive fixed charges based on customer income

Rather than determining fixed charges according to customer demand characteristics, regu-

lators may wish to design fixed charges based directly on income. Such mechanisms could

replace or complement existing bill protection programs such as CARE. We highlight two

potential methods for designing progressive fixed charges based on income. First, we examine

a method in which low-income customers are provided discounted fixed charges, financed by

higher fixed charges for non-low-income customers. Second, we examine a method in which

changes in expenditures for low-income customers are capped (hedged) through discounted

fixed charges. We refer to both fixed charge discounts and hedges as “bill protections” for
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simplicity.

The data used in this analysis do not contain customer-level income data, as discussed in

Sections 2.1. In order to explore income-based discounts and hedges, we assume that each

customer’s income is equal to the median income in the Census Block Group in which the

customer lives.28 In practice, customer-level income data could be obtained through credit

agencies, means-testing, or other sources.

Under both the hedging and fixed charge regimes, the expected impact of the program

can be tuned to produce the desired level of protection. That is, the maximum change in

expenditures (e.g. 10%) and the number of vulnerable customers experiencing the specified

bill change are decision variables.

For example, Figure 9 shows the percent of low-income29 and non-low-income customers

that experience bill changes greater than 10% in the transition to the RTP-CCC tariff as a

function of the fixed charge for low-income customers. With fixed charges for low-income

customers equal to roughly $13.30 per-customer per-month, or roughly 33% of the magnitude

of the fixed charges for non-low-income customers (roughly $40.39 per-customer per-month),

no low-income customers experience bill increases greater than 10%. Intuitively, the impact

on non-low-income customers is relatively small, as non-low-income customers vastly out-

number low-income customers in our data. In this case, the fixed charge for non-low-income

customers increases from roughly $38.30 per-customer per-month (under the RTP-CCC tariff

with uniform fixed charges) to $40.39 per-customer per-month.

28This is a common simplifying assumption made in many analyses that leverage census data, as noted by
Borenstein (2012).

29We define low-income customers as customers in Census Block Groups with median incomes less than
$25,000 per year. The federal poverty limit for a family of four in 2016 was $24,300 per year.
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Figure 9: Bill change as a function of fixed charge: Transition from the flat to the RTP-CCC
tariff, zero-elasticity case.

An alternative method would be to provide hedges that cap the bill changes experienced by

vulnerable customers. These hedges could be financed through higher fixed-charges on all

other customers. Figure 10 shows one example of such a mechanism for the zero-elasticity

case. Figure 10 highlights the limited expenditure impacts that such bill caps could have

on non-hedged customers. While progressive hedges create lower overall cost impacts on

non-low-income customers relative to low-income discounts30, they do not provide efficient

marginal incentives for all customers.31

30Fewer customers receive fixed charge discounts, as discounts are only provided to the subset of customers
that would otherwise face bill increases. Thus, the total cost to be recovered from non-low-income customers
is lower than under the discount method.

31A customer that expects to see a bill increase relative to the flat default tariff has no incentive to consume
efficiently if his or her bill is capped.
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Figure 10: Progressive hedging example, zero-elasticity case.

4.3 Progressive fixed charges based on geography

In practice, regulators and utilities may not know customer incomes, and may need to use

alternative data sources to determine the appropriate fixed charge. Section 4.1 highlights

how regulators could use demand characteristics, but regulators may also wish to use other

observable information that correlates with income, such as home size or value.32 Here we

explore the use of geographical and census data—specifically, the characteristics associated

with a customer’s Census Block Group—to determine whether or not a customer receives

bill protection.

Of course, no proxy variable will be perfect. Figure 11 shows the magnitude of type 1

and 2 errors created when using customer geography and the income characteristics of the

customer’s Census Block Group to determine eligibility for bill protection. Type 1 errors refer

to non-low-income customers that receive bill protections that are intended for low-income

customers. Type 2 errors refer to low-income customers that are eligible for bill protections

but that do not receive them. In Figure 11, the threshold for protection is the percent of

customers in a given Census Block Group with income below $25,000 per year. Intuitively,

when the threshold for protection is that 0% of customers in a given CBG are low-income,

32There is long standing precedent for using information such as home size in designing efficient and
equitable two-part tariffs (Lewis, 1941).
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0% of low-income customers are overlooked, and 100% of non-low-income customers are also

protected. Similarly, when the threshold for protection is that 100% of customers in a given

geography are low-income, 0% of low-income customers receive protection, as no CBG is

comprised entirely of low-income customers. As noted, LIHEAP has historically had a Type

2 error rate of roughly 78%. In this example, if the threshold for bill protection was that

50% of customers in a given geography were low-income, the Type 2 error rate would be

roughly equivalent to LIHEAP, and the Type 1 error rate would be less than 10%.33

Figure 11: Type 1 and 2 errors in using Census Block Group data to determine bill protec-
tions

5 Conclusions

The emergence of DERs has brought tariff design to the fore of regulatory issues globally.

There is now broad acceptance that rate designs must be updated to better reflect the

underlying cost of service for different customers. Such tariffs would reflect the time and

33It is worth noting that geographically-based fixed charges could ultimately be reflected in rents or land
values, as low-tariff regions could be more desirable. This would mitigate the benefit of a geography-based
approach.
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location-varying marginal cost of energy and would recover residual system costs through

fixed charges that do not change as a customer changes his or her consumption profile.

However, the implementation of improved tariffs has been stymied in part by the perceived

distributional impacts of transitioning to more efficient tariffs. This paper demonstrates

that simple changes to fixed charge designs for residual cost recovery make it possible for

regulators to improve the economic efficiency of retail tariffs without harming distributional

equity. This paper demonstrates that the goals of designing economically efficient and dis-

tributionally equitable tariffs need not be in conflict.

Section 3 assesses the consumer surplus gains and distributional impacts of transitioning

to many commonly discussed rate designs, including a design with economically efficient

marginal prices and a uniform fixed-charge for residual cost recovery. We found five key

outcomes:

1. Any transition creates winners and losers, even within customer segments that are

benefited by or hurt on average from a transition.

2. Updating the energy component of the tariff to better reflect the real-time marginal

costs of energy benefits low-income customers on average, although the gains are rel-

atively modest (1% to 5% of expenditures) if no changes are made to the design of

residual cost recovery mechanisms.

3. Transitioning to uniform fixed charges for residual cost recovery is likely to cause higher

average expenditures for low-income customers on average. This is due primarily to

the low average consumption levels of low-income customers relative to higher-income

customers.

4. Nonetheless, with relatively limited price elasticity, nearly all socioeconomic groups are

likely to see average consumer surplus benefits in the transition to an efficient tariff

with fixed charges for residual cost recovery, even if bills increase for certain groups.

5. The recovery of residual network and policy costs through volumetric rates appears to

be a larger economic distortion than the recovery of energy costs through time invariant

rates.

Next, Section 4 demonstrates that simple deviations from uniform fixed charge designs can

mitigate some or all of the undesirable distributional impacts of transitioning to an efficient

rate design while maintaining nearly all of the desired economic efficiency benefits. A close

examination of the economics of rate design reveals that the feature that makes designing
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electricity rates so challenging provides the key to improving the efficiency and equity of retail

electricity rates. Due to the existence of non-convex costs that cannot be efficiently allocated

to individual users’ marginal consumption or production decisions, there is a wide array of

potential fixed charges for residual cost recovery, all of which have equal or approximately

equal economic efficiency.

We explore three possible designs for economically efficient residual cost recovery that al-

leviate the distributional challenges of uniform fixed charges. We demonstrate that fixed

charges designed using observable information such as customer demand profiles or geogra-

phy can provide more efficient bill protections than existing needs-tested programs such as

the Low-Income Home Energy Assistance Program.

We introduce two progressive bill protection schemes: one based on discounted fixed charges

for low-income customers, and one based on bill caps for low-income customers. While

discounted fixed charges are relatively simple mechanisms, these mechanisms tend to have

larger expenditure impacts on non-low-income customers than the bill cap protection scheme.

However, while bill caps have relatively small impacts on non-low-income customers, they

do not provide efficient marginal signals to all protected customers.

Distributional impacts are, of course, not the only challenge impeding rate reform today.

Other rate design principles like simplicity and gradualism will influence regulators in prac-

tice. Any transition is likely to create winners and losers. Benefits are likely to accrue in

the long run, whereas costs are born by losers today. These dynamics will create political

challenges to reform, and unique challenges may require unique solutions.

There is substantial room for additional research into the issues raised in this paper. In

particular, what are the optimal mechanisms and thresholds for identifying which customers

are eligible for bill protections? How might customers respond to the types of progressive

fixed charges and hedges introduced in this paper? Stakeholder and regulator engagement

can inform an agenda for future work towards practical tariff improvements with enhanced

protection for low-income customers.
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6.1 Data

The original sample obtained from ComEd contained 344,717 customers, including housing-

type data and half-hourly electricity consumption data from 2016. However, a substantial

number of customers in this sample contained missing or potentially flawed data, and were

therefore removed. Out of the initial 344,717 customers only 278,821 appear in each of

the monthly files. There are two primary causes for incomplete time series. First, the

smart meters that are used to measure and report consumption data were deployed in a

step-wise fashion. Half-hourly consumption data are only available for customers following

the installation of smart meters, which happened mid year for certain customers. Second,

customers may move throughout the year, thus changing their meters and corresponding

customer IDs.

Next, in an effort to use only high quality customer data, we removed all customers with

incomplete or inconsistent data. We removed all customer accounts with any missing con-

sumption values for any half-hourly period. Additionally, for numerous customers the daily

sum of the half-hourly consumption reads did not equal the reported total daily sum. That

is, there were inconsistencies—in some cases, substantial inconsistencies—in the raw data

provided by ComEd. The majority of cases with this issue occur in January, February and

March. We removed all customers with at least one case of more than a 5% deviation be-

tween the reported daily energy consumed and the sum of the half-hourly consumption reads.

Beyond the fact that deviations occurred predominately in January, February, and March,

no clear trends were observed in the culled data.

Finally, we removed 62 customers from non-residential rate classes. As noted in 2.1, the final

sample contains 100,170 residential customers with complete half-hourly consumption data

for 2016.
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Table 7: Demographic characteristics of the ComEd Service territory and the data used in
this study

Demographic variable ComEd Service Territory Customer Sample

In
co

m
e

Less than $15,000 10.49% 13.72%
$15,000 - $24,999 8.43% 10.33%
$25,000 - $34,999 9.25% 9.35%
$35,000 - $49,999 14.36% 12.37%
$50,000 - $74,999 20.06% 16.73%
$75,000 - $99,999 13.89% 11.83%

$100,000 - $124,999 9.08% 8.36%
$125,000 - $149,999 5.29% 5.20%
More than $150,000 9.15% 12.11%

A
ge

0-17 25.37% 22.82%
18-24 9.41% 9.79%
25-64 53.52% 54.97%
65+ 11.7% 12.42%

R
ac

e

White alone 65.05% 55.91%
Black or African Amer. alone 16.91% 23.19%

Amer. Indian & Alaska native alone 0.33% 0.30%
Asian alone 5.43% 6.82%

Native Hawaiian & other Pac. Isl. alone 0.06% 0.04%
Other racial designations 12.22% 13.74%

E
d
u
ca

ti
on

al
at

ta
in

m
en

t Less than 9th Grade 6.89% 8.32%
Some High School, no diploma 7.62% 7.45%

High School Graduate (or GED) 25.44% 23.94%
Some College, no degree 20.20% 19.07%

Associate Degree 6.69% 6.36%
Bachelor’s Degree 20.43% 21.22%
Master’s Degree 9.22% 9.88%

Professional School Degree 2.39% 2.47%
Doctorate Degree 1.12% 1.29%

E
m

p
lo

y.

Civilian employed 61.73% 60.00%
Civilian unemployed 6.41% 6.39%

Armed forces 0.16% 0.02%
Not in labor force 31.70% 33.59%

Note: 2011 demographic data for the ComEd service territory used Commonwealth Edison (2011).
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6.2 Derivation of Equation 1

Customer bill change is given by ∆i = Y ′i β + εi where pi = P(Yi). We seek to minimize the

expected square error:

β = arg min
b

∑
i

E(∆i − Y ′i b)′(∆i −X ′ib) (3)

The objective function in (3) is equivalent to∑
i,j

pij(∆i − e′jb)′(∆i − e′jb) =
∑
i,j

pij(∆i − e′jb)′(∆i − e′jb) (4)

=
∑
i,j

pij∆i∆i − pijb′ej∆i − pije′jb+ pijeje
′
jb (5)

=
∑
i

∆i∆i − 2∆ip
′
ib+ b′diag(pi)b (6)

Taking the derivative of (6) with respect to b we obtain the first order condition for the

optimization problem in (3):

0 =
∑
i

−2∆ipi + 2diag(pi)β (7)

By rearranging this expression, we get the initial result in Equation 1. Note that the second

derivative equals
∑

i 2diag(pi), which is a diagonal matrix with non-negative entries along the

diagonal; hence, it is positive semi-definite. This confirms that (3) is a convex optimization

problem with the solution β as the unique optimum.
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6.3 Tariff designs

Notes on Flat-NCDC: Non-coincident peak demand charge designs have garnered some at-

tention in recent years as alternatives to volumetric charges (see, for example, Hledik (2014)).

However, individual peaks often do not align well with the network or system-demand peaks

that drive costs. Further, residual costs are not affected by individual customer peak de-

mands. NCDCs are therefore distortionary mechanisms for recovering residual charges. We

include this case to highlight the impacts of non-coincident peak-demand charges. We test

multiple levels of NCDCs and find similar results in all cases. We present only one NCDC

case for concision.

Notes on CPP-10: As of the end of 2016, there were 23 residential critical peak pricing

programs in the U.S. (U.S. Energy Information Administration, 2017). Critical peak pricing

programs are commonly considered improvements over flat pricing schemes, as they capture

some of the time variability in the price of electricity. However, because these schemes are

typically limited to a finite number of event days per year, and because the price of electricity

is typically administratively determined during event- and non-event-periods, these programs

tend to capture only a small fraction of the efficiency of real-time pricing programs (Blonz,

2018). We test a number of peak-to-off-peak price ratios and find similar results in all cases.

We present only one critical peak price case for concision.

Notes on RTP-CCC: All U.S. wholesale electricity markets—with the exception of ER-

COT in the state of Texas—operate some form of organized capacity market designed to

ensure that the system maintains a desired margin of generation capacity above electric-

ity demand. These capacity remuneration mechanisms have the effect of suppressing short

run electricity prices below the levels necessary to maintain an “adequate” level of capacity

(where the adequate level is most often defined by a regulatory authority or system operator)

in the system (Spees et al., 2013).34 Critically, prices during periods of scarcity do not rise

to the long run marginal cost and do not adequately signal a consumer’s contribution to

future capacity costs (Joskow and Tirole, 2007). Using simulation models of varying degrees

of complexity, Mays and Klabjan (2017) and Newell and Faruqui (2009) demonstrate that,

in markets with capacity remuneration mechanisms, adding a peak-coincident charge to the

real-time price of energy during periods of scarcity can increase efficiency relative to a pure

real-time price. The rational for forward-looking capacity charges for transmission and dis-

tribution is the same as that outlined here. However, as noted, we do not have network

topology or loading data, and thus don’t assess such charges.

34This follows directly from the fact that the current system capacity is supported by both energy and
capacity market revenues.
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The efficient signal equals the expected marginal change in capacity market costs C for a

marginal change in demand at any point in time xt. If capacity demand at the capacity

market clearing price P ∗ is D(P ∗), then capacity market costs are as in Equation 8. The

optimal coincident capacity charge is then as in Equation 9.

C = D(P ∗)P ∗ (8)

E

[
∂C

∂xt

]
= E

[
∂D(P ∗)

∂xt
P ∗ +D(P ∗)

∂P ∗

∂xt

]
(9)

We assume the marginal change in price with respect to demand to be zero. In other words,

we assume that P ∗ is a function of the capacity supply curve only. This allows us to simplify

Equation 9 to the form shown in Equation 10.

E

[
∂C

∂xt

]
= E

[
∂D(P ∗)

∂xt

]
E[P ∗] (10)

We calculate the expected capacity market clearing price as the average of the 2013, 2014,

and 2015 capacity market clearing prices for the ComEd load zone. We calculate the expected

change in the capacity market demand as the probability weighted change in the demand

of the customers in our sample. We use 2005-2015 PJM system-wide data to calculate the

probability that any given hour will be one of the five PJM-wide peak demand hours.35 The

resulting prices are represented in Figure 12. We add these peak-coincident capacity charges

to the real-time price of energy during the five days of highest PJM-wide demand in 2016.36

On all other days, the marginal energy price is the hourly locational marginal price at the

ComEd load zone. In practice, this might look very similar to a critical peak price added on

top of a real-time price, in which event days are announced in anticipation of peak demand.

35This mirrors the method used by Newell and Faruqui (2009). Mays and Klabjan (2017) use an opti-
mization model to compute the optimal pass through of capacity market costs. The focus of our paper is on
the distributional impacts rather than on estimating a precise measure of welfare gain, and thus believe our
simplified approach to be adequate.

36These days were, in order of highest demand, 8/11/16, 7/25/16, 8/12/16, 7/27/16, 8/10/16 (PJM
Interconnection, 2017)
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Figure 12: Coincident capacity charges
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6.4 Drivers of bill changes

To understand the primary drivers of the bill changes seen in Figure 4, we run a series of

simple linear regressions on various customer-level characteristics. We model annual ex-

penditure changes for tariff r and customer i as ∆i,r = ΓrCi + εi,r, where, εir represents

the residual, and Ci represents the customer characteristic of interest. We assess customer

service class and six energy consumption-based characteristics, outlined below:

1. Annual consumption: ACi =
∑

t xi,t, where xi,t is customer i’s demand at time t

2. Monthly consumption: MCi,m =
∑

t∈m xi,t, ∀m ∈ {1, ..., 12}

3. Monthly peak demand: x̂i,m = max(xi,t), ∀t ∈ m, ∀m ∈ {1, ..., 12}

4. Price quantiles: PQi,q,r =
∑

t∈q xi,t, ∀q ∈ {1, ..., Q}, ∀r37

5. Hourly consumption: HCi,h =
∑

t∈h xi,t, ∀h ∈ {1, ..., 24}

6. Standard deviation of daily consumption: σdi =
√∑

d(xi,d−x̄i,d)

365

Table 8 presents the adjusted R2 values from 8 sets of customer characteristics. We observe

that, as expected, the primary driver of bill changes in a transition towards time varying rates

is aggregate consumption during high price periods. We also note that annual consumption

is a strong predictor of bill changes under the RTP-CCC tariff, stemming primarily from the

fact that the RTP-CCC tariff includes a substantially lower volumetric rate and substantially

higher fixed charge.

37We sort each marginal price vector into quantiles, and sum each customer’s energy consumption during
the times corresponding to that price quantile. For example, if q = 10, PQi,10,r is the sum of consumer i’s
energy consumption during the hours corresponding to the 10% highest energy prices for tariff r. For the
RTP-Volumetric and RTP-CCC tariffs, Q = 10. For the CPP-10 tariff, q = 2. Given that the flat default
and Flat-NCDC tariffs have no price variation over time, Q = 0.
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Table 8: Adjusted R2 values for regressions of aggregate changes in annual expenditures on
profile characteristics

Profile Characteristic Flat-NCDC CPP-10 RTP-Volumetric RTP-CCC

Annual Consumption 0.027 0.020 0.003 0.928
Monthly Consumption 0.414 0.328 0.578 0.959

Monthly Peaks 0.215 0.210 0.419 0.499
Price Quantiles 0.000 0.583 0.978 0.977

Price Quantiles and Class 0.000 0.891 0.978 0.989
Hourly Consumption 0.078 0.434 0.693 0.957

Service Class 0.370 0.106 0.112 0.216
Std. Dev. Of Daily Consumption 0.046 0.134 0.025 0.547
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6.5 Consumer surplus calculations

In this paper, we adopt assume customer demand for each customer i in each time period t

follows the following equation:

xi,t = Ai,tp
ε
t (11)

Equation 11 follows from Borenstein (2013). The parameter Ai,h is a customer-specific scaling

factor that is calculated using the customer’s consumption under the default rate and the

default volumetric rate. The parameter ε is the own price elasticity of demand. Following

from from Equation 11, the consumer surplus in each time period is calculated as follows:

CSi,t =

∫ xi,t(pt)

xi,t(pmax)

( xi,t
Ai,t

)1/ε

dx− Fi,t (12)

The parameter pmax is the maximum price the customer is willing to pay for the first unit of

electricity consumed. We detail how this parameter is calculated below. The parameter Fi,t

is the fixed charge that customer i faces, scaled to time period t. The aggregated consumer

surplus over the entire year is calculated by summing Equation 12 over all t:

CSi =
ε

1 + ε

∑
t

(
Ai,t
(
pε+1
t − pε+1

max

))
−
∑
t

Fi,t (13)

To calculate the maximum price that consumers are willing to pay, we calculate pmax such

that all customers have non-negative consumer surplus under the default flat tariff. That

is, for every consumer, the surplus from consumption is greater than or equal to the fixed

charge under the default tariff. In order to find this value, we first solve the consumer surplus

calculations for the flat tariff using a placeholder pmax value. We then find the consumer

with the lowest total surplus. Finally, using a low estimate of price elasticity (ε = −0.1), we

solve the following equation for the pmax that yields zero surplus:

pmax =

(∑
t

(
Atp

ε+1
t

)
− (1+ε

ε
)F∑

tAt

) 1
ε+1

(14)

The resulting pmax is $9.012/kWh, which is roughly in line with measures of the cost of

interruptions of electricity service for residential customers. Using this pmax, we see that,

with low elasticity, more than 99% of customers have positive surplus under the RTP-CCC

tariff (in which all customers have a uniform fixed charge of roughly $39 per customer per

month). With high elasticity, more than 99.7% of customers have positive surplus under the

RTP-CCC tariff. Under the RTP-CCC-APD tariff (in which fixed charges are allocated based
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on customer peak demand), more than 99.7% of customers have positive surplus with low

elasticity. With high elasticity, more than 99.9% of customers have positive elasticity under

the RTP-CCC-APD tariff. This is likely a conservative estimate, as the value of connecting

to the network is likely to be higher than the short term cost of curtailing consumption.

Figure 13 displays the aggregate consumer surplus under the RTP-CCC and RTP-CCC-

APD tariffs.

Figure 13: Distribution of annual consumer surplus under the RTP-CCC and RTP-CCC-
APD tariffs
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6.6 Change in consumer surplus in the transition from the flat to

the RTP-CCC tariff

Table 9: Change in consumer surplus relative to the flat default tariff by socioeconomic
group, high elasticity case

Demographic variable
Flat NCDC CPP 10 RTP Volumetric RTP CCC

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

In
co

m
e

Less than $15,000 31.88 18.53 44.72 15.48 12.75 18.42 5.58 4.27 6.78 228.94 190.27 270.81
$15,000 - $24,999 40.73 24.37 56.80 15.59 12.20 19.07 4.80 3.43 6.22 265.28 222.76 306.27
$25,000 - $34,999 38.68 22.07 55.53 15.23 11.84 19.31 4.50 2.96 5.92 279.60 234.92 320.89
$35,000 - $49,999 39.21 24.64 53.52 15.24 12.15 18.66 3.98 2.54 5.29 292.62 257.73 331.29
$50,000 - $74,999 32.11 18.66 45.02 14.06 11.18 16.98 3.60 2.55 4.95 299.70 266.72 336.54
$75,000 - $99,999 30.61 13.98 46.17 14.13 10.64 17.67 3.06 1.60 4.42 317.27 277.75 357.79
$100,000 - $124,999 27.59 5.10 45.05 14.19 9.44 18.82 2.72 0.93 4.63 327.65 276.61 381.56
$125,000 - $149,999 24.54 -1.60 49.29 14.31 8.94 20.07 2.55 0.44 5.20 332.39 266.74 404.36
More than $150,000 7.42 -13.03 26.27 14.44 10.80 18.64 2.75 1.04 4.35 346.70 296.51 407.12

A
ge

0-17 41.78 30.84 54.18 15.49 13.05 17.99 3.66 2.65 4.70 311.20 282.50 338.88
18-24 36.96 19.17 55.41 15.62 11.87 19.05 4.11 2.54 5.75 283.20 238.49 328.52
25-64 28.74 20.99 35.55 14.61 13.06 16.13 3.87 3.20 4.53 290.32 270.56 308.96
65+ 20.22 5.27 33.90 13.60 10.48 16.87 4.09 2.73 5.41 286.86 247.60 328.13

R
ac

e

White alone 21.51 14.01 29.26 12.00 10.50 13.41 2.57 1.99 3.20 303.12 285.25 324.50
Black or African Amer. alone 44.84 33.89 54.91 22.28 19.81 25.01 7.70 6.76 8.80 264.36 234.15 292.85
Amer. Indian & Alaska native alone 47.68 -76.77 118.24 13.81 -4.85 32.63 3.54 -5.01 12.61 282.75 61.91 523.43
Asian alone -3.36 -24.74 20.27 9.81 5.30 14.21 3.11 1.18 5.40 263.62 206.29 331.77
Native Hawaiian & other Pac. Isl. alone 14.01 -176.18 156.42 14.47 -18.15 52.53 4.18 -9.98 14.32 208.51 -171.25 843.89
Other racial designations 61.67 48.93 72.73 16.11 13.23 19.23 3.43 2.19 4.62 315.93 279.96 348.22

E
d

u
ca

ti
on

al
A

tt
ai

n
m

en
t Less than 9th Grade 60.02 42.49 74.70 15.87 12.33 19.50 3.77 2.36 5.34 290.22 252.14 331.34

Some High School, no diploma 52.18 33.93 70.07 16.65 12.85 20.97 4.51 2.78 6.31 282.92 234.82 332.37
High School Graduate (or GED) 43.62 33.39 54.39 14.89 12.37 17.18 3.66 2.63 4.74 309.08 282.16 335.76
Some College, no degree 33.41 20.57 46.02 15.15 12.85 18.16 4.03 2.95 5.01 301.92 264.63 336.56
Associate Degree 31.23 8.01 50.50 13.86 8.92 18.23 3.48 1.76 5.57 307.63 251.03 362.37
Bachelor’s Degree 8.62 -4.45 22.44 13.48 11.00 16.00 3.73 2.67 4.80 280.21 243.79 322.39
Master’s Degree 3.95 -15.78 21.41 14.08 10.15 17.95 4.04 2.62 5.94 276.94 226.89 329.35
Professional School Degree -7.78 -48.70 31.86 15.12 7.09 24.15 4.69 1.53 8.73 275.25 165.86 387.75
Doctorate Degree -4.71 -53.87 50.78 14.23 5.41 27.54 4.50 0.27 9.53 250.45 99.44 458.57

E
m

p
lo

y.

Civilian employed 28.18 20.00 36.04 14.32 12.68 15.82 3.61 3.00 4.28 295.24 275.84 313.42
Civilian unemployed 45.68 25.87 65.80 17.16 12.65 21.16 4.70 3.05 6.85 295.25 238.98 347.20
Armed forces 50.10 -119.01 207.51 9.48 -19.85 68.11 0.31 -19.88 18.21 241.40 -135.92 949.08
Not in labor force 33.82 24.73 43.63 15.09 13.15 17.28 4.18 3.38 5.04 291.05 265.81 316.27

Note: All values in 2016 USD.
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6.7 Bootstrap

Figure 14 demonstrates that the bootstrap method and the method described in Equation 1

provide the same result. The slight differences in the computed and bootstrapped means

result from the size of the bootstrap. This confirms that the method provides the results as

expected.

Figure 14: Comparison of bootstrap and computed results for the RTP-CCC tariff
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6.8 Progressive pricing

Table 10 contains the average values for several consumption characteristics for different

income levels. This is presented in a normalized fashion and described in greater detail in

Table 6 in Section 4.1.

Table 10: Average Profile Variables by Income

Income ($1,000 USD)
Average
Monthly

Consumption

Annual
Peak

Demand

Peak-To-
Off-Peak

Ratio

May
Peak

Demand

June
Peak

Demand

July
Peak

Demand

August
Peak

Demand

Consumption:
5:30PM-
6:00PM

Consumption:
6:00PM-
6:30PM

Consumption:
6:30PM-
7:00PM

<$15 464.53 3.98 15.01 2.81 3.13 3.25 3.24 141.83 144.77 146.26
$15 – $25 496.02 4.11 14.31 2.94 3.30 3.42 3.40 153.56 156.47 157.87
$25 – $35 509.26 4.23 14.22 3.04 3.42 3.53 3.52 158.59 161.60 163.04
$35 – $50 521.05 4.33 14.22 3.13 3.54 3.65 3.63 163.53 166.58 167.96
$50 – $75 530.48 4.49 14.49 3.27 3.67 3.79 3.76 167.72 170.97 172.34
$75 – $100 546.66 4.63 14.51 3.41 3.83 3.94 3.92 174.55 177.91 179.21
$100 – $125 556.69 4.74 14.56 3.52 3.94 4.06 4.03 179.03 182.63 183.94
$125 – $150 561.76 4.82 14.73 3.58 4.01 4.12 4.10 181.42 185.09 186.39
>$150 578.45 5.14 15.34 3.82 4.23 4.35 4.32 187.63 192.09 193.67

Figure 15 shows the impact of progressive fixed charges on low-income and non-low-income

customer bills for three different fixed charge scenarios in the RTP-CCC tariff. The first—

the default case—all customers have the same fixed charge, regardless of income ($38.30

per-customer per-month). In this case, roughly 80% of low-income customers see a bill

increase, and roughly 56% of non-low-income customers see bill increases.38 In the second

case, low-income customers face a $22.30 per-customer per-month fixed charge, and non-

low-income customers face a $39.64 monthly fixed charge. In this case, only roughly 35%

of low-income customers face bill increases, and the percent of non-low-income customers

facing positive bill changes increases slightly to roughly 58%. Finally, in the third case,

low-income customers face zero fixed charges, and non-low-income customers pay a monthly

fixed charge of $41.51. In this case, all low-income customers see bill decreases, while the

fraction of non-low-income customers facing positive bill changes increases to 62.5%. It is

worth stating that charging zero residual costs to low-income customers would entail a cross-

subsidy from non-low-income to low-income customers, as low-income customers would no

longer be paying more than their incremental cost of service (Faulhaber, 1975).

38Note that these numbers differ from those seen in Figure 7 due to the different method of identifying
low-income customers. In Figure 7, we directly identify the impacts on low-income customers using the
method defined in Section 2.2. Here, we identify low-income customers as customers living in Census Block
Groups with median incomes below $25,000.
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Figure 15: Impact of progressive fixed charges on low- and non-low-income bill changes for
three charge scenarios

Note: Zero-elasticity case.
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