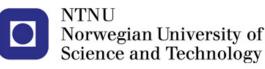
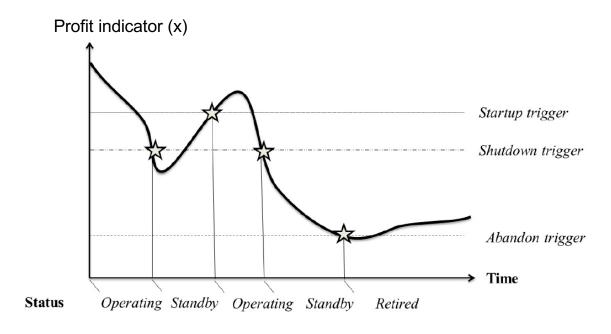

The Effect of Capacity Payments on Peaking Generator Availability in PJM

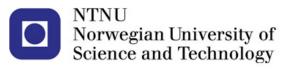
IAEE International 2019

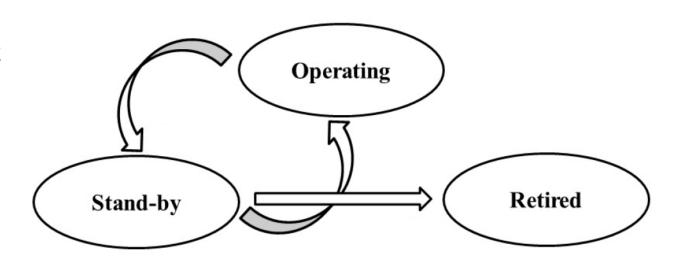
Stein-Erik Fleten, Benjamin Fram, Carl J Ullrich


Magne E. Ledsaak, Sigurd B. Mehl, Ola E. Røstum

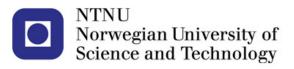
www.ntnu.no


Motivation


- Peaking power plants = cornerstones
- Missing money problem -> capacity remuneration (Joskow 2008)
- Unknown: cost of starting up a plant from mothball state, mothballing and retirement cost
 - Hard to determine in practice
- Estimate irreversible switching costs associated with economic state changes
 - Asset valuation


Background: real options

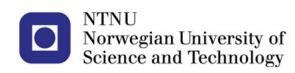
- Profitability in \$/unit capacity
- Usual to assume MR or GBM; we use a nonparametric approach



- How does profitability indicators, environmental regulation and strategic interaction affect thermal peak generators decisions to switch between operating-ready and stand-by states
- Brennan and Schwartz (1985)
- Status changes
 - Shutdown
 - Startup
 - Abandonment

Structural estimation problem

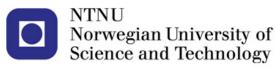
- Maximize log likelihood
 - Likelihood of observing plant status given state variables: profitability in \$/kW and plant status last year
- Subject to
 - Decision makers behave according to our real options switching specification
 - Forming expectations according to how the profitability indicator have been "transitioning" in the past (k-means clustering)
- Output
 - Value functions: value for different profitability levels given OP or SB state
 - Switching and maintenance cost parameters



Current year profit function

$$g(X,s;u) = \begin{cases} P - M_{\text{OP}} & \text{if } s = \text{operating and } u = \text{operating,} \\ P / 2 - M_{\text{OP}} / 2 - M_{\text{SB}} / 2 - K_{\text{SD}}() \text{if } s = \text{operating and } u = \text{standby,} \\ P / 2 - M_{\text{OP}} / 2 - M_{\text{SB}} / 2 - K_{\text{SU}}() \text{if } s = \text{standby and } u = \text{operating,} \\ -M_{\text{SB}} & \text{if } s = \text{standby and } u = \text{standby,} \\ -M_{\text{SB}} / 2 - K_{\text{RE}}() & \text{if } s = \text{standby and } u = \text{standby,} \\ & \text{else.} \end{cases}$$

Parameters to be estimated:


$$\begin{split} \mathsf{M}_{\mathsf{OP}} &= \text{maint. cost in OP state} \\ \mathsf{M}_{\mathsf{SB}} &= \text{maint. cost in OP state} \\ \mathsf{K}_{\mathsf{SD}} &= \text{shutdown cost} &= \gamma_0 + \gamma^\mathsf{T}\mathsf{X} \\ \mathsf{K}_{\mathsf{SU}} &= \text{start up cost} &= \lambda_0 + \lambda^\mathsf{T}\mathsf{X} \\ \mathsf{K}_{\mathsf{RE}} &= \text{abandonment cost} &= \eta_0 + \eta^\mathsf{T}\mathsf{X} \end{split}$$

Application: Peak power plants

- Main data source: EIA Form 860
 - Required annual filing
 - Information on every generator in US
 - Includes existing and planned
- EIA = Energy Information Administration

www.eia.gov

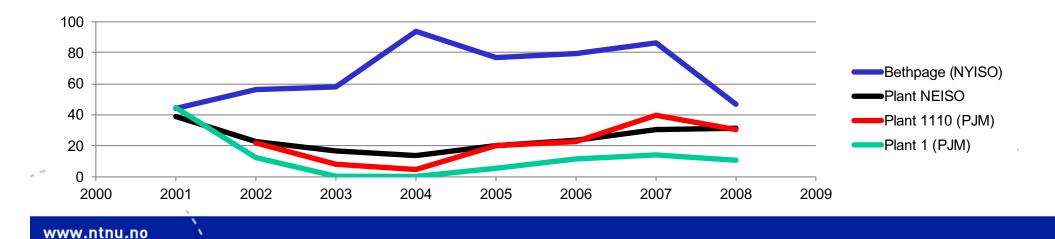
www.ntnu.no

- Sample period 2001-2016
 - EIA 860 (data source) format changes in 2001
- Focus on peaking plants (CTs)
 - Natural gas and #2 oil
 - Final sample:
 - 1,000+ unique generators

Photo: calpine.com

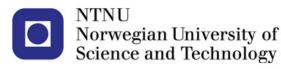
Spark spread (*\$/MWh*) and profit indicator *P_i* (*\$/kW*), year *i*

$$SPRD_{pjn} = PE_n - HR_p PF_{jn} - VOM_p$$


- $PE_n = \text{day } n \text{ elec price}$
- HR_i = heat rate for plant p
- $PF_{j,n}$ = day *n* fuel price for fuel *j*
- VOM_p = variable O&M costs for plant p

Profit indicator P_i is pre-calculated as

$$P_i = \sum_{n=1}^{T_i} \max\left(SPRD_n, 0\right) * \left(\frac{16}{1000 \, kW/MW}\right)$$


Data summary

- An observation is a triple (X_i, s_i, u_i)
- i. the operating state of the power plant *s_i* in the current year,
- ii. the exogenous state X_i (base case = P_i) during the year, and,
- iii. the decision of the manager regarding the operating state u_i of the power plant in the upcoming year.

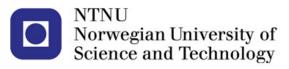
Assumptions

- Discount factor $\beta = 0.91$.
- Coefficients constrained nonnegative except K_RE.
- St.dev of estimates in parantheses. Found by nonparametric bootstrapping.

Finally: estimated coefficients

M _{OP}	E(M _{SB})	σ _{M_OP}	K _{SD}	E(K _{SU})	σ _{K_SU}	K _{RE}
8.5	2.45	0.16	0.0	0.79	0.46	-31.3
(1.22)	(1.03)	(0.18)	(0.0)	(1.32)	(0.77)	(11.0)

Interpretation: Assuming plant managers behave according to our decision model, these are the implied costs.


 M_{OP} = maint. cost in OP state

 M_{SB} = maint. cost in OP state

 K_{SD} = shutdown cost

 K_{SU} = start up cost


K_{RE} = abandonment cost (salvage value)

Discounting at 5%

M _{OP}	E(M _{SB})	σ _{M_OP}	K _{SD}	E(K _{SU})	σ _{K_SU}	K _{RE}	
9.32	3.23	0.05	0.0	0.56	0.32	-49.0	
(1.28)	(1.06)	(0.10)	(0.0)	(1.36)	(0.79)	(22.5)	

 M_{OP} = maint. cost in OP state M_{SB} = maint. cost in OP state K_{SD} = shutdown cost K_{SU} = start up cost K_{RE} = abandonment cost (salvage value)

β=0.95

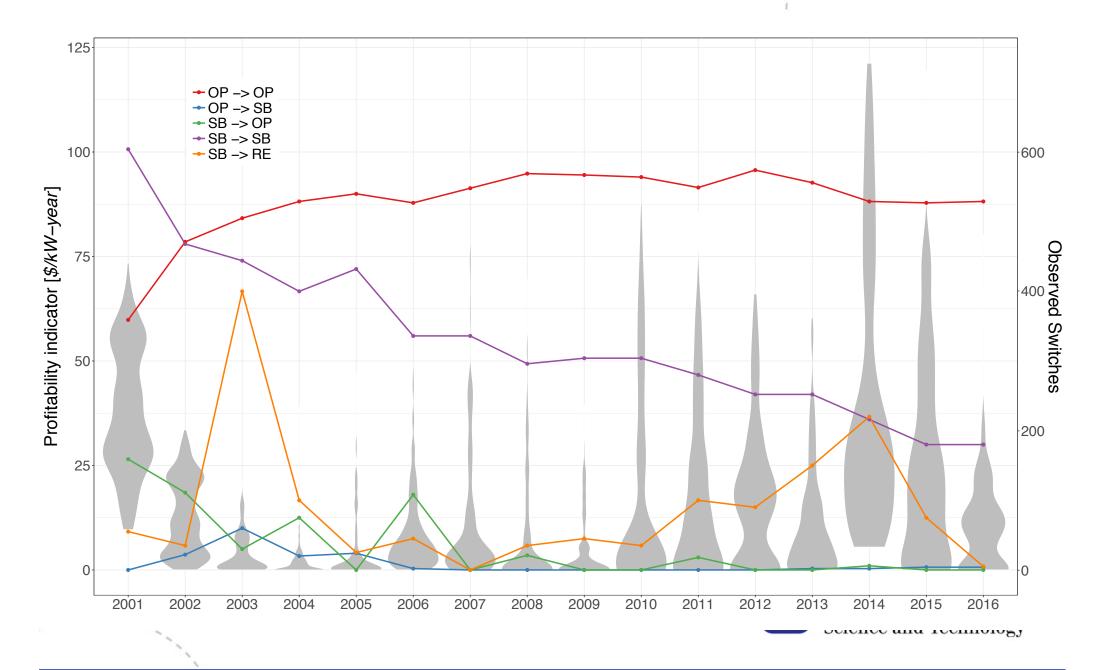
Statnett (Norwegian ISO) announcement April 2015

- 170 Mill NOK used over 5.5 years for 300 MW peak plants, 150 MW to be sold.
- 170 mill NOK/(5.5 yr * 300 MW) = 103 NOK/(yr*kW) =
 13.4 USD/(yr/kW) (at 7.7 NOK/USD).
- Our 95% range: M_{OP} is [-1, 15] USD/(yr/kW) ☺

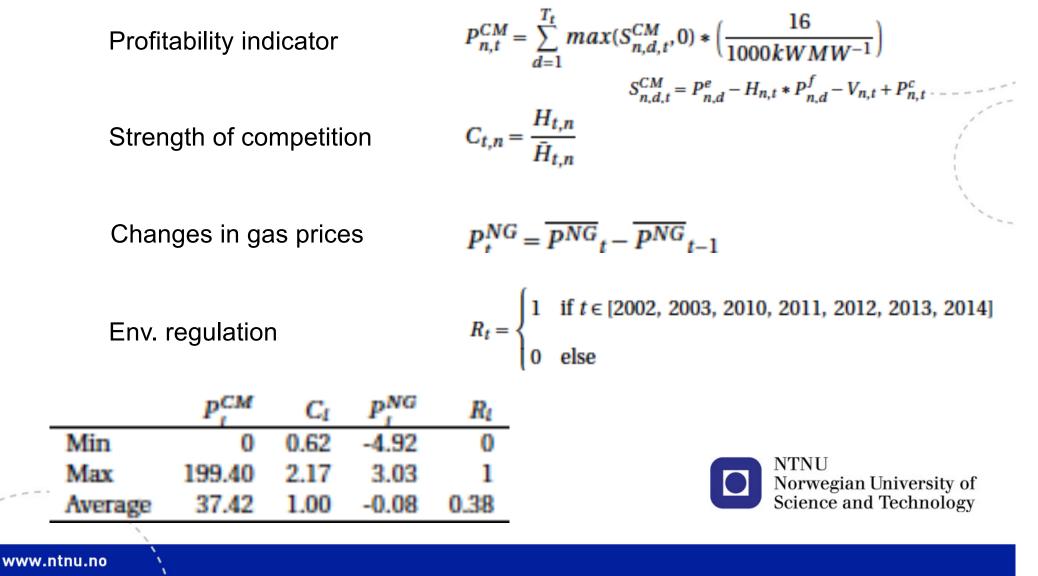
PJM study

• PJM only

-	Current state	0	Р		SB		
	Switching to	OP	SB	OP	SB	RE	
	Number of observations	3479	64	161	755	76	1
2001-2007	Share	98.2 %	1.8%	16.2 %	76.1%	7.7%	
	Average profitability	12.28	5.85	14.25	13.00	5.58	
	Number of observations	4435	4	15	521	32	
	Share	99.9%	0.1 %	2.6 %	91.7%	5.6%	
2008-2016	Energy-only profitability	18.50	11.64	15.67	7.88	9.25	
	Capacity payments	40.22	58.59	29.17	45.10	50.91	
	Average profitability	58.72	70.23	44.84	52.98	60.15	

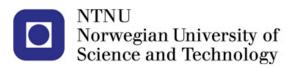

NTNU Norwegian University of Science and Technology

Results PJM 2001-2007


	MOP	M _{SB}	$K_{SB \rightarrow OP}$	$K_{OP \rightarrow SB}$	$K_{SB \rightarrow RE}$
Estimate [\$/kW – year] Significance level	3.04	0.409		0.436	-56.066 1%

	M _{OP}	E(M _{SB})	K _{SD}	E(K _{SU})	K _{RE}
Recall previous slides 5%	9.32	3.23	0.0	0.56	-49.0
	(1.28)	(1.06)	(0.0)	(1.36)	(22.5)

58



Descriptive statistics for PJM study state variables

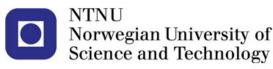
How is switching behavior affected by state variables?

	Estimated value
M _{OP}	33.565 (***)
M _{SB}	0 (***)
$K_{SB \rightarrow OP}$	
Intercept	0
Ci	22.457
P_i^{NG}	2.074 (*)
Ri	-14.281 (***)
$K_{OP \rightarrow SB}$	
Intercept	1.233
Ci	-38.628 (**)
P_i^{NG}	-7.435 (***)
R _i	13.049 (***)
$K_{SB \rightarrow RE}$	
Intercept	-80.807 (***)
C_i	-69.147 (***)
P_i^{NG}	-1.465 (**)
R _i	10.155 (**)
Observations	10401
Note:	*p<0.1; **p<0.05; ***p<0.01

PJM capacity market

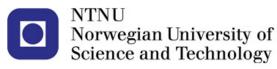
- Generators get paid for available capacity
- "Avoidable cost rates" ACR = $M_{OP} - K_{SD} - M_{SB} - K_{SU}$
- Our estimates imply ACRs in the range \$14.1-16.55/MW-day
- Default PJM range \$17 30/MW-day
- Are consumers paying too much for reliability?

Conclusions


- Real options theory is a useful lens for interpreting the power plant status data
- The degree of local competition, natural gas price changes and environmental regulation affects switchings
- Our method gives reasonable switching cost estimates

of Sy

- Useful for design of capacity markets


Discussion

- Peak power plants provide quick-start and loadfollowing capacity
- Massive shutdowns could endanger system reliability
- Capacity payments/markets
 - Payment calculations should account for the cost incurred in shutdowns
- Policy makers should take into account e.g. restart cost for mothballed plants

Thank you for listening...

- Comments and questions ?
- <u>stein-erik.fleten@ntnu.no</u>
- benjamin.fram@nhh.no
- ullriccj@jmu.edu

