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Abstract 
High penetration of new distributed energy technologies would call for a different way to manage 

reliability in the power sector. In the most extreme case, the consumer would produce all the power 

their home needs and store it until the time of consumption, effectively by-passing the utility. The 

issue of electricity security for self-sufficient households would still remain because these 

technologies can eventually fail due to technical or weather conditions, or be subject to spikes in 

demand which installed capacity will not be able to meet. An option could be to draw power from 

the grid when this happen, but this behaviour could eventually constitute an existential threat for 

utilities. In response to these concerns, we test in this paper the creation of a risk market that 

enables reliability preferences to be internalized through the use of insurances. We propose the 

utility can offer last resort power – an insurance-- to energy self-sufficient households to protect 

them against the prospect of a blackout. The overarching idea is that instead of selling 

commoditized kilowatt-hours, consumers would pay for guaranteed services. 
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Introduction 
High penetration of new distributed energy resource (DER) technologies would call for a different 

way to manage reliability in the power sector. In central electricity systems, planners invest in 

capacity higher than the peak load to have reserve margins that can deliver almost perfect coverage, 

as they can spread this cost among all customers. This approach was more feasible when 

technology options were limited, and the underlying assumption was that blackouts have an 

infinite negative value. In a DER-dominated power system, however, it seems unnecessarily 

expensive and unfair, as all customers pay an equal amount regardless of their preferences for risk. 

To deal with security of supply in this context, this paper tests the creation of a risk market that 

enables reliability preferences to be internalized through the use of insurance.  

New distributed energy technologies - by this we refer to the combination of domestic photovoltaic 

(PV) panels plus batteries plus information devices - allow households to generate, trade, reduce, 

and shift their electricity consumption, bypassing the traditional utilities. The most extreme case 

of distributed energy resource (DER) adoption would be self-sufficiency, i.e., the consumer 

produces all the power their home needs and also stores enough for later use. However, the issue 

of security of supply for self-sufficient households would remain. There is an inherent risk in all 

intermittent technologies that they could temporarily fail due to adverse weather or technical 

problems.  

Being self-sufficient would allow households to disconnect from the grid and avoid all external 

charges (Green and Staffell 2017). However, most of those households will still need to use the 

networks to draw power from the grid if their system fails. A pay-as-you-go scheme would not 

reflect the opportunity cost of idle infrastructure and could lead to a utility death spiral if the way 

this back up is priced stays the same (Felder and Athawale 2014; Muaafa et al. 2017). 

Traditionally, network costs are bundled into the price of electricity. This pricing may be 

inadequate if self-sufficient households defect from the grid on mass, and in the presence of 

technologies where customers can best reflect their preferences for guaranteed services. 

Insurance exists to reduce or eliminate the cost to an individual who faces an adverse event, like 

the loss of power. There are many different types of insurance policies available, and virtually any 

individual or business can find an insurance company willing to insure them for a price. We 

propose the utility can offer power of last resort to energy self-sufficient households in case they 
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suffer a blackout. Specifically, the value proposition is that utilities’ idle capacity resulting from 

the fast deployment of DERs in the domestic sector can be repackaged and repriced as insurance. 

This service is currently embedded in electricity provision and is taken for granted. By selling 

insurance, utilities would guarantee a stable revenue stream by charging a constant fee, instead of 

charging very high prices in periods of abrupt demand surges followed by low fees for periods of 

negligible demand. This proposal may also appeal to customers as an insurance-based model can 

reflect their attitudes towards the risk of blackout and can, therefore, be an efficient and equitable 

way to pay for network access. 

We investigate the extent to which contracts for insurance can converge into a theoretical optimal 

contract. This contract is defined on the basis of a household-specific energy budget, a risk 

aversion attitude, an expected loss and with the supplier possessing full and complete information 

about the households. The static version of the model is then generalized into a dynamic framework 

where households are allowed to renew or switch contracts over time, and firms do not possess 

full information about households and hence cannot offer an optimal contract. Instead, they offer 

a menu of contracts from which households choose the one they prefer and can most afford. Firms 

are allowed to adapt their offerings periodically based on profitability considerations.  

The dynamic outcomes of this generalized setup are examined through an agent-based model, 

particularly how the perception of risks and losses impact the price of insurance and potential 

revenues of utilities. We also use the agent-based model to examine the stability of such an 

insurance market and household-level outcomes, and explore how this market would react to 

policy initiatives that affect its underlying parameters.  

This paper addresses a latent problem. While most of the literature on disrupting DERs looks at 

the gradual penetration of new technologies, we take a different stance and assume that this 

penetration has already occurred. So, instead of analyzing the incumbent utilities’ reaction to the 

erosion of their market shares, we start from the end and figure out the steps back. 

Through this paper’s proposed approach, the security of electricity provision would move away 

from an engineering approach, based on system-wide costs, towards an economic approach, where 

an insurance mechanism along with an array of alternative contracts can balance system-wide 

supply and demand.  
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Electricity has multiple attributes beyond the energy component. These additional dimensions 

may, at times, be difficult to price. For example, non-priced factors such as levels of emissions 

attached, reliability services and supply risks are embedded into the price of electricity. These 

dimensions of electricity can be treated as externalities as they are not explicitly captured in the 

pricing systems. As markets for these attributes do not exist (for example, customers often take 

reliability for granted), there is a temptation to think that the un-marketed good is un-marketed 

because it is abundant and hence has a negligible price (Pearce 2000). As such, consumers cannot 

reflect their preferences for reliability.  

The only proposal for an insurance market for electricity has been from the head of the United 

Kingdom’s energy regulator, the Office of Gas and Electricity Markets, or OFGEM, in  an article 

published in The Telegraph titled  “Households could be charged annual 'insurance premium' for 

access to electricity grid.” (Gosden 2016) Other business models that unbundle electricity services 

have started to emerge. For example, the Rocky Mountain Institute proposed a business model for 

lighting — measured in lumens — where the provider delivers a specified service (Calhoun et al. 

2017). Other institutes such as Energy Systems Catapult have applied broadly similar thinking to 

propose the creation of a domestic heating and cooling service (Watkins 2017). 

Model 
The following assumptions for our model provide the context for our analysis (see Fuentes, 

Blazquez and Adjali [2019] for the justification of these shortcuts): 

1. Households wish to have power provision 100 percent of the time, at the lowest cost to 

them, while maximizing their level of electricity independence.  

2. Overnight, all households install large amounts of PV and batteries, which allows them to 

be power independent.  

3. Utilities are entitled to cut households off from their network if they no longer use their 

service on a regular basis. 

4. There is an inherent risk associated with all intermittent forms of generation. 

5. Households cannot buy power from other households. This simplification allows us to 

isolate pure risk management strategies and ignore potential externalities arising through 

inter-household networks. 
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6. Households have pre-allocated budgets for purchasing additional energy or insurance in 

the event a shortfall occurs from their domestic source. 

7. For further simplification, we do not analyze commercial and industrial users.  

Theoretical foundations 
This section provides the theoretical basis upon which we test the prospects of an insurance market 

for electricity. Please refer to the appendix for a technical description of this model.  

We first, based on a static framework, derive the optimal conditions for a household to buy an 

insurance contract for electricity given a budget constraint, its risk preferences and expected power 

loss. The risk to the household arises from the fact that its total power demand may exceed its 

installed capacity with a certain degree of probability at any given time. The budget constraint is 

defined as a fixed pre-allocated budget for additional energy needs for each household.3  Using a 

simple single period model, we find households would be willing to purchase a contract if the 

degree of cover offered (𝜅) is sufficiently high (a threshold defined by the household specific loss 

expected as well as its own risk profile).  

Next we identify what the ‘ideal’ contract is for a household from the supplier’s perspective. We 

find that, in equilibrium, the supplier can maximize its profit from the household by offering it a 

two-part tariff contract with a per unit price of energy consumed and a ‘standing charge’ price. 

These are functions of the household’s budget, expected loss amount and risk profile, as well as 

the supplier’s fixed costs.  

We extend this static model into an inter-temporal dynamic model and relax the rationality 

assumptions. We also introduce an alternative dynamic specification, where both the supplier and 

the households are allowed to learn from past behavior and outcomes and adapt their behavior over 

time. This allows households to make ‘mistakes’ in their choice of insurance contract (coverage 

purchased) and the ability of the utility to change the tariff for each contract offered based on 

demand.  

These adjustments allow us to incorporate learned behavior. First, we introduce a coverage limit 

in the contract, which acts as an additional constraint for households in the model. Second, we 

                                                           
3 See appendix for more details. 
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allow for the possibility of the supplier making multiple insurance contracts available to 

households. In this scenario, the supplier provides a menu of alternative contracts, from which 

households have to select one. Third, we introduce an adaptation rate parameter 𝜏, which 

represents how quickly households and the supplier are allowed to change their respective demand 

and supply behaviors. This makes the modeling less restrictive and provides us with a more flexible 

and dynamic setup, the implications of which we test using an agent-based model. The resulting 

behaviour is later benchmarked against the rational equilibrium outcome, obtained from the static 

model.   

The sequence of the dynamic model is as follows. At time 𝑡 = 0, the supplier offers the contract 

that bundles specific prices and expected loss coverage, from which each household selects one 

based on its risk profile, energy budget and required coverage. In each subsequent period the 

households may face a random loss of energy, which may or may not be covered in full, based on 

the contract purchased and the coverage it offers. The supplier updates the contract every 𝜏 periods, 

and the households, once they have chosen a contract, are contractually bound to it for 𝜏 periods. 

After every 𝜏 periods, the supplier has the option of modifying the offerings and households have 

the option to update their choices. This set of contracts and choices once again remain fixed for 

the next 𝜏 periods.   

A household 𝑛 selects contract 𝑘 with probability 𝜌𝑡
𝑘 at every 𝜏 periods from a menu of alternative 

contracts. The probability distribution is updated in every period 𝑡, thus making 𝜌𝑡
𝑘 a household-

specific endogenous parameter. The update rule is based on learning from past ‘mistakes’ that arise 

from choosing a contract with an inappropriate level of coverage, due to their budget constraint, 

risk profile, or exogenously fixed coverage limits. Hence, at the time of choosing the next contract, 

the household faces a potentially new probability distribution, representing the cumulative effect 

of the mistakes from the last 𝜏 periods. The supplier is allowed to adjust the unit prices offered in 

the contracts every 𝜏 periods, reflecting changing demand conditions. The existing per unit price 

is adjusted (increased or decreased) to reflect the change in cumulative demand over 𝜏 periods, 

provided the change is large enough, as determined by parameter 𝜃. A higher 𝜃 implies a less 

frequent price update, but each update is of a greater amount than a smaller 𝜃; a smaller 𝜃 implies 

more frequent updates but by a smaller proportion than a higher 𝜃.  
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Agent-based model 
The dynamic model described above is operationalized as an agent-based model. The model solves 

for final unit prices under different contract settings, cumulative revenues for the supplier, and the 

extent to which this product allows reliability to be internalized by calculating the percentage of 

houses that are left uninsured.  

Each household agent is characterized according to its risk aversion, expected losses, budget and 

a probability of distribution, as shown in Table 1. The supplier provides a menu of three alternative 

contracts for households to choose from, i.e., 𝐾 = 3. A household at 𝑡 = 0 starts with an even 

probability distribution (0.33, 0.33, 0.33) across all contracts in the menu. The households choose 

a contract and the menu is updated every 12 time steps within the simulation (𝜏 = 12).  By default, 

we set contract 1 to be a ‘spot’ contract with no pre-specified energy limit, i.e., potentially 𝐿1 →

∞.  Contracts 2 and 3 set upper limits on how much energy a household can draw. We impose the 

following constraints on the contracts: 𝐿1 > 𝐿2 > 𝐿3 and 𝑝1 >  𝑝2 > 𝑝3. Thus in a sense, the spot 

contract is the risk-less contract but with the highest per unit price, while contract 3 is the most 

risky contract but with the lowest per unit price. Contract 2 is an intermediate one, which provides 

a balance between risk and cost. 

Table 1. List of parameters and operational values in the simulations 

Parameter Context Meaning Values 

Input    

�̅� Household Upper limit of household-specific coefficient of absolute risk 

aversion 

{0.1, 0.9} 

�̿� Household Upper limit of potential loss per household {100, 500} 

 �̅� Household Upper limit of household-specific budget {50, 500} 

�̅� Household Upper limit of household-specific probability of loss {0.2, 0.8} 

𝑝0
1 Supplier Initial unit price for contract 1 (at 𝑡 = 0) {100, 150} 

𝐿1 Supplier Limit on energy that can be drawn under contract 1, as a proportion 

of upper limit of potential loss (𝐿1 ∗  �̿�) 

{1} 

𝑝0
2 Supplier Initial unit price for contract 2 (at 𝑡 = 0) {25, 75} 

𝐿2 Supplier Limit on energy that can be drawn under contract 2, as a proportion 

of upper limit of potential loss (𝐿2 ∗ �̿�) 

{0.5, 0.9} 

𝑝0
3 Supplier Initial unit price for contract 3 (at 𝑡 = 0) {1, 10} 

𝐿3 Supplier Limit on energy that can be drawn under contract 3, as a proportion 

of upper limit of potential loss (𝐿3 ∗ �̿�) 

{0.1, 0.45} 
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𝜃 Supplier Threshold in cumulative demand change for price adjustment {0.05, 0.5} 

Control    

�̅� Household Utility under certain zero loss {2500} 

𝑁 Environment Number of households {2500} 

𝐹1 Supplier Lump sum payment under contract 1 {0} 

𝐹2 Supplier Lump sum payment under contract 2 {50} 

𝐹3 Supplier Lump sum payment under contract 3 {50} 

Output    

𝑝300
1  Supplier Final unit price under contract 1  

𝑝300
2  Supplier Final unit price under contract 2  

𝑝300
3  Supplier Final unit price under contract 3  

Revenue Supplier Cumulative revenue for 𝜏 previous periods  

ℎ𝐹 Environment Houses (% of those facing a loss) with full coverage, averaged across 

300 runs 

 

ℎ𝐵 Environment Houses (% of those facing a loss) with partial coverage due to binding 

budget constraint 

 

ℎ𝐿 Environment Houses (% of those facing a loss) with partial coverage due to binding 

contract coverage limit constraint 

 

ℎ𝐼 Environment Houses (% of those facing a loss) with partial coverage due to binding 

incentive constraint 

 

ℎ𝐵𝐿 Environment Houses (% of those facing a loss) with partial coverage due to binding 

budget constraint and contract limit constraint 

 

𝑎𝑣𝑔 𝜌1, 𝑠𝑑 𝜌1 Household Mean and SD of the distribution of 𝜌1(300) across households  

𝑎𝑣𝑔 𝜌2, 𝑠𝑑 𝜌2 Household Mean and SD of the distribution of 𝜌2(300) across households  

𝑎𝑣𝑔 𝜌3, 𝑠𝑑 𝜌3 Household Mean and SD of the distribution of 𝜌3(300) across households  

 

The update of a household’s probability distribution over the available menu of contracts assumes 

a simple reinforcement learning algorithm, based on which of the three constraints had been 

binding in period 𝑡 − 1. These are summarized as follows: 

 Rule 1: If the budget constraint was binding in period t, in period t + 1 reduce the 

probability weights on contracts with relatively higher per unit prices and increase the 

probability weights on contracts with relatively lower per unit prices. 

 Rule 2: If the incentive constraint was binding in period t, in period t + 1 reduce the 

probability weights on contracts with relatively lower coverage limits and increase 

probability weights on contracts with relatively higher coverage limits. 
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 Rule 3: If the coverage limit constraint was binding in period t, in period t + 1 reduce the 

probability weights on contracts with relatively lower coverage limits and increase 

probability weights on contracts with the highest coverage limits. 

Rules 2 and 3 are similar as they both add weight on contracts with relatively higher coverage. The 

only distinction is in the rate at which they shift the households’ choice towards the spot contract, 

with Rule 3 shifting the probability weights in favor of the spot contract at a higher rate than Rule 

2. Rule 1, on the other hand, shifts the weights in favor of cheaper contracts. Once the updates 

have taken place, the probabilities are rebased to ensure that they are bounded within the [0, 1] 

interval.  

Experimental setup 
The agent-based simulations are implemented in Netlogo 6. Each run of the simulation represents 

one instance of a single experiment, where an experiment is defined as a unique combination of 

input parameter values. Each experiment is replicated 10 times to account for randomness in the 

model, where each replication is labeled as a ‘run.’ Each run is composed of 300 time steps because 

we observed that the model attained a high degree of stability well within this figure.  

The input and output variables were recorded over multiple text files by Netlogo at every time step 

of each run in the experiment. The text files were then combined and analyzed using the statistical 

software R separately. The analysis of the results is presented in the three subsections of the results.  

Results 
The model solves for final prices for each one of the three type of contracts, the revenue for 

utilities, and the extent to which households internalize and transfer risks to the utility. We measure 

these by estimating the percentage of houses that obtain full or partial coverage. For those who 

only obtain partial coverage, we investigate the source of that decision, i.e., whether the decision 

was constrained by their budget, by contract limits and/or binding incentives. 

To give a comprehensive picture, we present the convergence and stability properties of the model 

based on the central values, variances and trends in output variables, measured over the 300 steps 

in each run. We then explain the observed variation in the outputs at the macro level, using 

multivariate regressions, and present the estimated impact of input variables. We measure the 

values of output variables at the end of each run in each experiment, or in other words the ‘final’ 
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value of the output at the 300th step. Finally, we examine sub-samples of households and correlate 

their behavior with their intrinsic properties to explore the behavior at the agent level. This is done 

using a final and intermediate measure of outputs in each run. 

Convergence 
We find that the model has strong convergence properties in the output variables under all input 

settings explored within the simulations. This is true for prices, the proportion of houses facing 

one or more (or no) constraints, and in the distribution of choice probabilities. This indicates that, 

conditional on the learning and adaptation algorithms of the supplier and households, the market 

moves towards a dynamically stable outcome within the stipulated 300 steps.  

Figure 2. Convergence patterns in the unit prices of the three contracts 

 

 

Figure 3. Convergence patterns in the average choice probabilities across the three contracts 
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Figure 4. Convergence patterns in the proportions of households facing alternative constraints 

 

Figures 1-3 show outputs of a sample of runs from the sensitivity analysis, where the control 

variables are varied across two levels – low and high. What we observe is that the output variables 

either achieve a stable value quickly (such as in the prices in Figure 1), or the variations exhibit a 
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predictable pattern within a very narrow band (such as in choice probabilities and household 

proportions in Figures 2 and 3, respectively). These patterns are consistent in the actual 

experiments, where input variables are varied and controls are held fixed.  

This implies that the dynamic model implemented here exhibits strong convergence properties, 

even without the strict rationality assumptions of the static case. A simple reinforcement learning 

mechanism can provide stable outcomes in the market.  

Input-output relationships 
Here we present the partial impact of input variables on output variables using a set of linear 

regressions, in which the coefficients of the input variables indicate the partial impact of the input 

on the output. Tables 2-4 show the magnitude of the impact, whether the impact is positive or 

negative and the statistical significance of independently varying each input on the output, as 

measured in the experiments. The values presented in bold indicate a relatively large magnitude 

of impact (which is statistically significant) when compared with the size of other coefficients in 

the same regression equation.  

Impact on contract prices and revenue 

We observe that as the potential loss for households increase, they generally switch from cheaper 

but riskier to more expensive but safer contracts. The unit prices of the less risky contracts (1 and 

2) seem to depend positively on the upper limit of expected losses faced by the households, as seen 

by the coefficients of �̅�. However, the price of contract 3, the riskiest contract, has a negative and 

significant coefficient. Thus, higher levels of expected loss faced by households pushes up the 

demand for the safer contracts with relatively wider coverage, with households willing to pay the 

higher unit price.  

Table 2. Effect sizes on output variables – final prices and revenue 

Output 

Input 

𝑝300
1  𝑝300

2  𝑝300
3  revenue 

Intercept -44.18*** -12.91***  2.05***  3.27E04*** 

�̅�   28.36***  4.20*** -0.80***  7.48E04*** 

�̿�   0.00  0.00 -0.0001***  23.39*** 

�̅�  -0.06 -0.22 -0.02 -45.64 

�̅�  -0.02*** -0.01***  0.00  247.70*** 
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𝑝0
1   1.37***  0.00  0.00  3.58 

𝐿2   83.23***  12.26*** -2.45***  2.27E04*** 

𝑝0
2  -0.003  1.10***  0.00  9.98 

𝐿3   59.64***  22.60*** -2.31***  7.46E04*** 

𝑝0
3   0.38***  0.08***  0.93***  1.55E03*** 

𝜃  -160.00*** -11.60***  2.70***  3.22E03* 

 

We observe that the demand for the riskiest contract not only falls, as expected, when its nearest 

rival becomes less risky, but it also falls when it becomes less risky. Less frequent but larger price 

changes are associated with increased demand for less risky alternatives and lower demand for the 

riskier contract. Overall, it seems that the demand for the less risky contracts is more sensitive to 

changes in the above input parameters than the riskier ones. This is apparent in the gradual decrease 

in the size of the coefficients from a high positive value (contract 1) to a small negative value 

(contract 3).  

The utility’s revenue is also most strongly impacted by the same parameters as above, plus the 

initial price of contract 3, 𝑝0
3. Of all the initial prices, only the initial price of contract 3, the riskiest 

contract, has a notable impact on its final price, affecting it positively and, in turn, positively 

impacting the utility’s revenue. This is another way in which the riskiest contract is distinct from 

the other two. 

Constrained households 

One would expect that increasing coverage would reduce the proportion of households constrained 

by coverage limits, and possibly increase the proportion obtaining full coverage. However, as 

shown in Table 3, this is not always the case (negative coefficient of 𝐿3 for ℎ𝐹, and a positive 

coefficient of 𝐿2 for ℎ𝐿). We also see that varying 𝐿2 and 𝐿3 also seems to affect the proportion of 

households subject to the budget constraint, which is a surprising result.  No households under the 

settings used in our experiments faced a binding incentive constraint (where the actual loss was 

greater than the certainty equivalent). 

Table 3. Effect sizes output variables – household coverage and constraints 

Output ℎ𝐹 ℎ𝐵 ℎ𝐿 ℎ𝐵𝐿 ℎ𝐼 
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Input 

Intercept  6.79***  44.65***  6.79***  48.07*** NA 

�̅�  -0.4***  0.18 -0.49***  0.63*** NA 

�̿�  -0.01***  0.01*** -0.01***  0.01*** NA 

�̅�  -0.01 -0.02 -0.01  0.05 NA 

�̅�   0.02*** -0.02***  0.02*** -0.03*** NA 

𝑝0
1   0.00  0.00  0.00  0.00 NA 

𝐿2   5.49***  9.47***  5.48*** -15.54*** NA 

𝑝0
2   0.00  0.01***  0.00  0.00 NA 

𝐿3  -17.72***  34.53*** -17.72*** -27.31*** NA 

𝑝0
3  -0.6***  0.32*** -0.67***  0.67*** NA 

𝜃  -1.23***  0.85*** -1.23***  1.14*** NA 

 

Choice probabilities 
As losses become more likely, the probability of choosing contract 2 increases. This seems to 

suggest that the increased chance of households facing a loss leads to an increased preference for 

the middle contract, which is both relatively less risky than contract 3 and less expensive than 

contract 1. There is a still a spread around the choice probabilities across households. 

The results presented in Table 4 suggest that the upper limit of the household-specific loss (�̅�) and 

the coverage limits (𝐿2 and 𝐿3) are the only input parameters which have a notable impact. Thus 

there is an increased preference for the ‘safer’ option.  

Table 4. Effect sizes output variables – choice probability means and standard deviations 

Output 

Input 

𝑎𝑣𝑔 𝜌1 𝑠𝑑 𝜌1 𝑎𝑣𝑔 𝜌2 𝑠𝑑 𝜌2 𝑎𝑣𝑔 𝜌3 𝑠𝑑 𝜌3 

Intercept  0.49*** 0.44***  0.20***  0.18***  0.31***  0.37*** 

�̅�  -0.06*** -0.07***  0.11***  0.04*** -0.04*** -0.03*** 

�̿�   0.00  0.00  0.00  0.00  0.00  0.00 

�̅�   0.00  0.00  0.00  0.00  0.00  0.00 

�̅�   0.00  0.00  0.00  0.00  0.00  0.00 

𝑝0
1   0.00  0.00  0.00  0.00  0.00  0.00 
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𝐿2  -0.18*** -0.12***  0.00  0.00  0.17*** -0.02*** 

𝑝0
2   0.00  0.00  0.00  0.00  0.00  0.00 

𝐿3  -0.24*** -0.03*** -0.20*** -0.02***  0.44***  0.09*** 

𝑝0
3   0.00  0.00  0.00  0.00  0.00  0.00 

𝜃   0.00  0.00  0.00  0.00  0.01***  0.00 

 

Interactions of inputs 

Figures 4-7 show how output variables are affected by each input for the entire range of values of 

the other input variables. We then concentrate on the joint impact of the four primary inputs - �̅�, 

𝐿2, 𝐿3 and the threshold parameter 𝜃. 4 

Price variation per contract 

Figures 4a, b and c explore the variation in the final unit prices in the three contracts across 

different input parameter settings. As can be seen, 𝜃 is a strong moderator of the relationships 

between the rest of the inputs and prices. We find there are consistent relationships between the 

unit prices and �̅�, 𝐿2, 𝐿3 at low values of 𝜃. However, these relationships disappear almost 

completely for higher values of 𝜃. Therefore, in situations where the utility makes infrequent but 

large changes in prices, outputs no longer depend on the other parameters. This is an important 

result in terms of market design and has important regulatory implications.  

 

 

 

                                                           
4 Figures 4 to 7 graphically present the impact of the four inputs on every output variable. In each figure, each box 
and whiskers plot shows the four quartiles and the median of the output variable in question across all the 10 runs 
in any given experiment. Each figure is divided into eight regions, with two boxplots in each region. These two 
boxplots represent experiments with low (0.2) and high (0.8) values of π ̅   respectively for given values of the other 
three inputs. The left four regions represent experiments with the lower value of θ=0.05, whereas the four regions 
on the right half of the figures represent the higher value of θ=0.5. Each half is further sub-divided into two 
quarters – where each quarter is representative of low L^3 (0.1) and high L^3 (0.45) respectively. Finally, each 
quarter is further sub-divided into two sections, where each section represents experiments with the low value of 
L^2 (0.5) and the high value of L^2 (0.9). As mentioned above, there are eight such sections, with two boxplots in 
each. The ordering of experiments in each figure is consistent across Figures 4-7, to make them comparable. 
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Figure 5a. Variation in unit price of Contract 1 

 

Figure 5b. Variation in unit price of Contract 2 
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Figure 5c. Variation in unit price of Contract 3 

 

 

We noted other significant interaction effects between the input and output variables, such as the 

positive �̅� 𝑥 𝐿2 effect on 𝜌1, implying that the fall in 𝜌1 due to increased �̅� is steeper under high 

values of 𝐿2. Another significant interaction can be seen for 𝜌2, where �̅� 𝑥 𝐿3 is negative, and the 

negative �̅� 𝑥 𝐿2 effect on 𝜌3.  
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Figure 6. Variation in supplier revenue  

 

Figure 7a. Variation in average probability of choice of contract 1 
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Figure 7b. Variation in average probability of choice of contract 2 

 

 

Figure 7c. Variation in average probability of choice of contract 3 
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Figure 8a. Variation in percentage of households fully covered 

 

Figure 8b. Variation in percentage of households with binding budget constraints and coverage limits 
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Discussion  
This paper tests the viability of creating an energy insurance market for energy self-sufficient 

households with contract prices according to their preferences for risk, allowing utilities to 

continue generating revenue from households that no longer rely on electricity bought from the 

grid. The utility serves the purpose of an insurance provider that supplies a menu of contracts, and 

the households select the appropriate product based on expected loss, risk profile and budget. In 

essence, this business model is a long-term contract between the utility and self-sufficient 

households that helps the utility to reduce the volatility of its revenues, given that their profit 

margins are unlikely to increase in the future. This is a reflection of new technologies lowering 

barriers to entry and therefore increasing the possibility of consumers obtaining electricity from 

other sources. 

The static model illustrates the possible nature of new insurance products, the profile of households 

that purchase them, and the pricing policies set by the utility who have perfect information about 

the households and operate in one period only. Being uninsured can be a rational choice, even for 

people who are risk-averse, and is not just an outcome of unaffordability. Individuals may choose 

to eschew market insurance because of its price relative to that of other goods and services, 

subjective assessments of personal risk and risk tolerance (Ehrlich and Yin 2017). 

The dynamic model, implemented as an agent-based model (ABM), extends the static model to 

incorporate imperfect information on the part of the utility, as well as the bounded rational nature 

of households (who may choose to over or under insure), and the role of dynamic learning 

mechanisms in driving the long-term trajectory of the market. We find that under the general 

relaxed assumptions of the dynamic model, a stable market can exist, where prices converge to a 

long-run equilibrium, and the distribution of choices made by households becomes stationary 

(within limits).  

Expected utility theory predicts that people buy insurance that features large deductible and very 

deep coverage. Myopic loss averters, however, may find it reasonable to pay to mitigate isolated 

risks for a proportional exorbitant price inconsistent with expected utility theory. Hence in an 

economy of myopic loss averters, there would be a number of small-scale insurance contracts sold 

at high premiums, as well as many households left uninsured (Rabin and Thaler 2001). The use of 

an ABM model allows us to test this anomaly. We find that the coverage limits seem to most 
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influence the choice of contracts at the household level and the final market prices. This would 

imply that there could be a sizeable market for this service, concurring with the finding that the 

revenue of the utility-insurer depends mostly on the coverage limits of the contracts and 

households’ potential energy needs. Thus, the utility has a degree of control over its revenues by 

choosing the coverage limits or, in other words, the riskiness of the contracts available, as well as 

the nature of the price adjustments it carries out in the market. At the same time, the long-term 

choices made by households may be influenced by the riskiness associated with the contracts as 

well as the possible losses they may face.  

This proposal is in line with the general trend in regulatory governance that moves towards more 

flexible, incentive-based and indirect regulation (Parmet 2013). Self-regulation and decentralized 

mechanisms would be a natural fit in the distributed power generation based sector. We showed 

that the insurance market proposed in this paper would help to internalize the risk to a great extent, 

reducing blackouts significantly. However, there may be households unable to cover their full 

energy needs due to budgetary considerations or the extreme nature of their risk profiles. Our 

simulations show that, on average, between 1 to 15 percent of those households that would 

otherwise experience a complete loss of power can fully cover their excess energy needs through 

insurance. From those households that would otherwise experience a complete loss of power, 

between 50 to 70 percent are budget constrained and would still be able to partially cover their 

excess energy needs. Further, the convergence results imply that, at least in theory, such markets 

can be stable in the medium- to long-run. This means that regulators and utilities could include 

this as a long-term scenario when exploring business models should distributed power systems 

become more widely used. This paper shows a feasible way forward for both utilities and 

regulators in the event of widespread distributed power systems. 

The model throws up several interesting points and directions for future research. The current 

model does not restrict the possible prices, nor does it restrict the nature of updates of prices and 

coverage limits. Such constraints may change the evolutionary trajectory of the market 

significantly, especially given the interactions we saw between the relevant parameters.  

The second crucial point for regulation would be in the nature of competition in the model. The 

current model only allows for one utility. However, we can easily envisage scenarios where 
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utilities compete in the market to provide coverage. Allowing for competition between utilities 

will certainly generate interesting insights on how market shares evolve under various conditions. 

Conclusion  

 

In central electricity systems, planners invest in capacity higher than the peak load in order to have 

reserve margins that can deliver almost perfect coverage, as they can spread this cost across all 

customers. This approach was more feasible when technology options were limited, and the 

underlying assumption was that blackouts have an infinite negative value. 

In a decentralized and distributed power system, however, this approach seems unnecessarily 

expensive and unfair, as all customers pay in equal terms regardless of their risk preferences. It 

also has the potential to be self-defeating for utilities as they would no longer be able to spread 

fixed reliability costs across a large base of customers if a growing share of them decide to leave 

the grid. 

To deal with security of supply in this context, this paper tested the creation of a reliability 

insurance market where households can decide their level of protection according to their 

preferences and pay accordingly. We find it is more efficient for households to transfer the ‘last 

mile’ of risk to the utility rather than bear the disutility of a blackout. We find that an insurance 

market can act as an indirect regulatory mechanism to manage reliability in a distributed power 

market. 
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Technical appendix 
 

Static model 

The household 
We first examine a representative household’s choice of insurance coverage from an energy 

supplier. We consider a simple one-period model of a representative electricity market, with 𝑁 

households and a single supplier 𝑆. Each household 𝑛 ∈ 𝑁 has installed energy generation capacity 

which provides a fixed 𝐶�̅� units of energy at any given period. A representative household’s energy 

demand 𝐶𝑛 is assumed to be stochastic, such that 𝐶𝑛 ≤ 𝐶�̅� with probability 1 − 𝜋 and 𝐶𝑛 > 𝐶�̅� 

with probability 𝜋.  

Each household is characterized by a ‘dis-utility’ function 𝑈(𝐿𝑛) where 𝐿𝑛 is the energy loss or 

shortfall faced by a household 𝑛, defined as: 

𝐿𝑛 = {
0,                     𝑖𝑓 𝐶𝑛 ≤ 𝐶�̅� 

𝐶𝑛 − 𝐶�̅�, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

Households are considered to be risk-averse. We define the (dis-)utility of loss 𝐿𝑛 for household 

𝑛 as a monotonically decreasing strictly concave function: 

𝑈(𝐿𝑛; 𝛼𝑛) = �̅� − 𝑒
𝛼𝑛𝐿𝑛 (2) 

𝑤ℎ𝑒𝑟𝑒, �̅� > 1 𝑎𝑛𝑑 𝛼𝑛 > 0.  

Note that the first and second derivatives of the utility function specified above are 𝑈′(𝐿𝑛) =

 −𝛼𝑒𝛼𝐿𝑛 < 0 and 𝑈′′(𝐿𝑛) =  −𝛼
2𝑒𝛼𝐿𝑛 < 0, respectively. The above specification implies that the 

household specific coefficient of absolute risk aversion (CARA) in our model is given by: 

 
𝑈′′(𝐿𝑛)

𝑈′(𝐿𝑛)
= 𝛼𝑛 (3) 

Each household produces energy at full capacity at every period, but its energy demand may 

exceed installed capacity with probability 𝜋 as specified above. If the demand exceeds installed 

capacity, the household has the option of purchasing energy from the supplier at a contracted two-

part tariff (𝑝, 𝐹), where 𝑝 is the per unit price of energy bought, and 𝐹 is the lump-sum ‘standing 
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charge.’ Each household is endowed with a specific budget 𝐵𝑛 dedicated for additional energy 

needs (including insurance coverage), and hence faces a budget constraint: 

𝑝(𝐿𝑛 − 𝐿𝑛
∗ ) ≤ 𝐵 − 𝐹 (4) 

where (𝐿𝑛 − 𝐿𝑛
∗ ) is the ‘coverage’ provided by the supplier to household 𝑛 in case of a shortfall in 

its domestic production. Consequently, 𝐿𝑛
∗  is the level of shortfall or loss in energy that the 

household is willing to face, given its budget constraint and utility specification. In other words, 

𝐿𝑛
∗  is the household specific loss not covered by the insurance contract with the supplier. This 

specification allows the household to draw as much energy as it wants from the supplier, provided 

it pays the requisite price5. 

Unlike the standard microeconomic choice specification of ‘energy’ versus ‘all other goods,’ we 

adopt a more straightforward approach where the household has already decided to allocate a 

budget. This makes the model more tractable without any loss of generality, as the central question 

is on how insurance contracts should be structured rather than on deriving a household’s energy 

demand. Also, it is increasingly being recognized that energy demand exists not for its own sake, 

but as it acts as a medium to consume other goods and services (heating/cooling, lighting and so 

forth)6.  Thus, modeling energy (derived) demand needs to explicitly consider the trade-off 

between the consumption of goods and services using this energy against all others. However, 

using such a specification needlessly complicates the model, given that the demand for insurance 

is itself a second order derived demand based on the demand for energy. Thus henceforth, 

household-specific budgets for insurance or additional energy needs are assumed to be 

exogenously fixed at 𝐵.  

Given that households are symmetric, we drop the subscript 𝑛 from the analysis which follows. 

For the sake of simplicity, assume that households are aware of the exact level of loss that they 

can incur in case installed capacity falls short of demand and there is no insurance coverage. This 

implies, ex ante, households have full knowledge of the level of loss that they might incur (say, 

𝐿 > 0) and the probability of such an outcome (𝜋), but not whether the outcome will actually take 

                                                           
5 We relax this assumption with a coverage limit in the dynamic model, in the next section. The presence or 
absence of this additional constraint has no influence on main results in the static framework. 
6 See Hunt and Ryan (2015), Walker and Wirl (1993), Goerlich and Wirl (2012), who argue among similar lines. 



 

28 
 

place. Note that this is qualitatively similar to the general situation where any positive level of loss 

can be incurred with a known continuous probability over the support (-𝐶̅, 𝐿).  

Figure 1. Exponentially decreasing utility function and the certainty equivalent. 

 

We are now ready to state the main results of this section pertaining to the equilibrium decisions 

of a representative household and the supplier. 

Lemma 1: A rational household characterized by risk aversion 𝛼 and potential loss 𝐿  will be 

willing to accept an insurance contract offering a cover of 𝜅 only if   

𝜅 ≥ 𝐿 −
1

𝛼
log [(1 − 𝜋) + 𝜋𝑒𝛼𝐿] 

Proof: Let 𝐿𝑐 be the ‘certainty equivalent’ amount of loss for the household. Hence by definition, 

𝑈(𝐿𝑐) = (1 − 𝜋)𝑈(0) + 𝜋𝑈(𝐿) 

or,   𝑈 − 𝑒𝛼𝐿
𝑐
= (1 − 𝜋)(𝑈 − 1) + 𝜋(𝑈 − 𝑒𝛼𝐿) 

Solving the above for 𝐿𝑐, we get  
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𝐿𝑐 =
1

𝛼
log[(1 − 𝜋) + 𝜋𝑒𝛼𝐿], (5) 

which is the level of ‘certain’ loss that makes a risk-averse household indifferent to either accepting 

or rejecting the random loss (see Figure 1). 

If an insurance contract provides a cover 𝜅, the household will either face a loss of 0 (with 

probability 1 − 𝜋) or a loss of 𝐿 − 𝜅 (with probability 𝜋). If 𝐿 − 𝜅 > 𝐿𝑐, then for a monotonic 

utility function 𝑈(𝐿 − 𝜅) < 𝑈(𝐿𝑐). In other words, the expected utility from the contract is less 

than the expected utility of a household that does not accept the contract and takes on the full risk. 

Hence, for a rational household to accept an insurance contract, 𝐿 − 𝜅 ≤ 𝐿𝑐 =
1

𝛼
log[(1 − 𝜋) +

𝜋𝑒𝛼𝐿]. The proof follows. 

Thus Lemma 1 introduces a lower bound on the loss that a household will be willing to accept in 

the case where the household has insurance cover. The next proposition defines the equilibrium 

level of cover that the household purchases.   

Proposition 1: Facing an insurance cost of (𝑝, 𝐹), where 𝐵 > 𝐹, a rational utility maximizing 

household will opt for an equilibrium level of coverage 𝜅∗, such that, 

𝜅∗ = {

𝐵 − 𝐹

𝑝
, 𝑖𝑓  𝐿 − 𝜅∗ ≤ 𝐿𝑐

   0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof: The single period optimization problem faced by the household is the following: 

max 
𝐿

 (1 − 𝜋)𝑈(0) + 𝜋𝑈(𝐿) 𝑠. 𝑡.  𝐿 ≤ 𝐿𝑐   𝑎𝑛𝑑 𝑝(𝐿 − 𝐿) ≤ 𝐵 − 𝐹 

Since 𝑈(0) =  �̅� − 1, which is a constant, the problem reduces to maximizing 𝜋𝑈(𝐿) wrt 𝐿 subject 

to the incentive and budget constraints, respectively. Now as 𝑈′(𝐿) < 0 for all 𝐿 ≥ 0, and as the 

budget 𝐵 is specific to energy consumption only, we must have (𝐿 − 𝐿∗(𝑝, 𝐹)) =  
𝐵−𝐹

𝑝
, as long as 

the incentive constraint 𝐿∗(𝑝, 𝐹) ≤ 𝐿𝑐 holds (Lemma 1). Replacing 𝜅∗ = 𝐿 − 𝐿∗(𝑝, 𝐹) above, proof 

of the first part follows. Now suppose the incentive constraint does not hold, that is, 𝐿 − 𝜅∗ > 𝐿𝑐. 

In this situation, the household would be better off facing the risk without any insurance cover 

(Lemma 1), implying 𝜅∗ = 0. The proof follows. 
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Proposition 1 implies that the household uses up the entire allocated budget to purchase the 

optimum level of cover. However, as a corollary to Proposition 1, this implies that the price of 

insurance (𝑝, 𝐹) should not be too high, causing 𝜅∗ to be so low that 𝐿− 𝜅∗ > 𝐿𝑐, in which case 

the household would prefer not to buy the insurance contract. 

The supplier 

The results above explore the choices made by households with respect to the level of coverage 

they buy from the supplier. The households themselves are characterized by the energy budget 

(𝐵), risk aversion (𝛼), the probability of facing a loss (𝜋), and the shortfall in energy supply they 

can potentially face (𝐿). In this section, we identify what the ‘ideal’ contract is for a household, 

from the perspective of the supplier.  

Suppose that the supplier faces a constant marginal cost 𝑐 and a fixed cost Φ of including a 

household within the grid and supplying it with energy. The following proposition characterises 

the optimum pricing strategy for the supplier for a specific household where the supplier posseses 

full and complete information about the household.  

Proposition 2: Suppose that the supplier possesses full and complete information about a 

household’s energy budget (𝐵), risk aversion (𝛼), the probability of facing a loss (𝜋), and the 

potential shortfall in supply (𝐿). In equilibrium, the supplier can maximize its profit from this 

household by offering it a contract (𝑝∗, 𝐹∗), where 

𝑝∗ = 
𝐵 − 𝐹∗

𝐿 − 𝐿𝑐
, 

𝐹∗ = {
𝜙,           𝑖𝑓 𝜙 < 𝐵
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐿𝑐 =
1

𝛼
𝑙𝑜𝑔[(1 − 𝜋) + 𝜋𝑒𝛼𝐿], 

as long as, 𝑝∗ > 𝑐. A rational utility maximizing household will accept such a contract as it satisfies 

both the budget and incentive constraints. 

Proof: For any given contract (𝑝, 𝐹) being offered by the supplier, the expected demand from a 

household for the supplier’s energy is: 
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𝜋(𝐵 − 𝐹)

𝑝
 

If the contract is accepted, the expected profit Π𝑠 for the supplier from this household, given 

marginal cost 𝑐 and fixed cost Φ, is: 

Π𝑠 = (𝑝 − 𝑐)𝜋
(𝐵 − 𝐹)

𝑝
− Φ+ F 

The supplier’s optimization problem is to max
p,F

Π𝑠. Now, 

𝜕Π𝑢
𝜕𝑝

=
𝑐𝜋(𝐵 − 𝐹)

𝑝2
> 0 

Hence, the supplier should raise its per unit price 𝑝 as long as either the budget or the incentive 

constraint of the household becomes binding.  

In equilibrium,  

𝐿∗(𝑝, 𝐹) ≤ 𝐿𝑐                    (from Lemma 1), 

and (𝐿 − 𝐿∗(𝑝, 𝐹)) =  
𝐵−𝐹

𝑝
      (from Proposition 1), 

where,  𝐿𝑐 =
1

𝛼
log[(1 − 𝜋) + 𝜋𝑒𝛼𝐿]. 

Substituting 𝐿∗ = 𝐿 −
𝐵−𝐹

𝑝
 from the second expression into the first, we have 

𝑝 ≤
𝐵 − 𝐹

𝐿 − 𝐿𝑐
 

As 
𝜕Π𝑢

𝜕𝑝
> 0, the profit maximizing price given any 𝐹 is, 

𝑝∗ =
𝐵 − 𝐹

𝐿 − 𝐿𝑐
 

Given that 
𝜕Π𝑢

𝜕𝐹
= −

𝑝−𝑐

𝑝
< 0 if 𝑝 > 𝑐, 𝐹 can then be benchmarked to the fixed cost 𝜙 of supplying 

energy to the household with budget 𝐵. If the household has a sufficient budget to cover the fixed 

costs, set 𝐹∗ = 𝜙, otherewise set 𝐹∗ = 0. In both cases, the equilibrium profit Π∗ = 𝐵 − 𝜙 −
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𝑐(𝐿 − 𝐿𝑐), and hence the supplier is indifferent between a positive or a zero lump sum component. 

This completes the proof. 

Figure 2 illustrates the optimum price setting principle. The optimum unit price is higher for 

households that do not pay the lump sum (𝐹∗ = 0), and lower for households that pay a positive 

lump sum (𝐹∗ = 𝜙). 

Note that the above analysis assumes that the supplier has full knowledge of a household’s 

characteristics such as its budget, levels of risk aversion and the probability of loss. In the more 

realistic case where it does not and is only aware of the probability distribution of each of these 

characteristics in the market, the above result on optimum pricing strategy may be modified to 

reflect the expected values of these characteristics in the market. In such a case, the supplier cannot 

fully discriminate between households but may offer a single contract which only eligible 

households (for whom the constraints are satisfied) will choose. Alternatively, it can offer a menu 

of contracts, each with a different level of per unit price and lump sum, and households will select 

the contract which maximizes their utility. In both cases, it is possible that some households do 

not purchase any contract, thus choosing to stay ‘dark’ when there is a shortfall in their self-

generated energy supply. 

Figure 2. Plot of Π𝑢 as a function of 𝑝, given the budget and incentive constraints of a household. The 

optimum 𝑝∗ is also indicated under the condition 𝑝∗ > 𝑐.  
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Dynamic Model 
We assume that time extends from 0 to 𝑇, where 𝑇 is sufficiently large so that the supplier and the 

households are not able to factor it explicitly into their optimization. We also assume that 

households have complete information about the past and no information about the future. Their 

energy demand for period 𝑡 is uniquely determined in 𝑡 and is unconditional on any previous 

period’s usage (no seasonality or autocorrelation). The supplier also only provides energy coverage 

for a single period. All assumptions regarding household behaviour hold true in this model for any 

specific period 𝑡 ∈ 𝑇. To start, we only consider rational households and suppliers with no learning 

or adaptation capabilities. 

Given that the period-specific conditions for a household remain the same as in the static 

framework, and the insurance coverage provided by the utility is essentially for a single period 

(and cannot spill over into the future), the household’s rational equilibrium demand 𝜅∗(𝑡) in period 

𝑡 is identical to that characterised in Proposition 1.  

𝜅𝑡
∗ = {

𝐵 − 𝐹𝑡
𝑝𝑡

, 𝑖𝑓  𝐿 − 𝜅𝑡
∗ ≤ 𝐿𝑐

   0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The supplier’s problem is to maximize the discounted sum of period profits Π𝑡(𝑝𝑡, 𝐹𝑡) over 𝑡 ∈ 𝑇, 

where 𝑇 → ∞. Given that there are no inter-temporal constraints or spill-overs in the model, the 

inter-temporal maximization is equivalent to the period maximization problem, implying that the 

supplier maximizes per period profit in the dynamic model as well. Hence, in this version of the 

dynamic model, the equilibrium 𝑝𝑡
∗ and 𝐹𝑡

∗ are identical to the static equilibrium values expressed 

in Proposition 2.  

Adaptation and learning 
We now introduce an alternative dynamic specification, where both the supplier and the 

households are allowed to learn from past behavior and outcomes and adapt their behaviour over 

time. This is specifically done in order to reduce the rationality burden on both, as is required by 

the economic model specified earlier. This allows households to make ‘mistakes’ in their choice 

of insurance contract (in terms of coverage purchased) and the ability of the utility to change the 

tariff charged in each contract offered based on demand. This makes the modeling less restrictive 

and provides us with a more flexible implementation of the agent-based model.   

In this specification, neither the supplier nor the households are assumed to be rational, but 

alternative characterizations of behavior are benchmarked against the rational equilibrium 

outcome. We make the following adjustments to the model to incorporate learning behavior.  

First, we introduce a coverage limit in the contract, which acts as an additional constraint for 

households in the model. This implies that an energy insurance contract is now of the form 

(𝑝, 𝐹, 𝐿), where 𝑝 and 𝐹 represent the per unit and lump sum prices respectively, as before. The 

additional 𝐿 represents the maximum coverage allowed within the contract at the given prices.  

Second, we allow for the possibility of multiple insurance contracts being made available by the 

supplier to the households. In this scenario, the supplier provides a menu of alternative 𝐾 contracts 

{(𝑝𝑡
1, 𝐹1, 𝐿1), … , (𝑝𝑡

𝐾, 𝐹𝐾, 𝐿𝐾)} from which a household has to select one.  

Third, we introduce an adaptation rate parameter 𝜏, which represents how quickly households and 

the supplier are allowed to change their demand and supply behaviours, respectively. At time 𝑡 =

0, the supplier offers the contracts {(𝑝0
1, 𝐹1, 𝐿1), … , (𝑝0

𝐾, 𝐹𝐾, 𝐿𝐾)}, from which each household 

selects one. We assume that the supplier updates the contracts every 𝜏 periods, and the households, 

once they have chosen a contract, are contractually bound to it for 𝜏 periods as well. After every 𝜏 
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periods, the supplier has the option to modify its offerings and the households have the option to 

update their choices. These sets of contracts and choices once again remain fixed for the next 𝜏 

periods. Thus the parameter 𝜏 indicates the rate at which actors in the market are able to update 

their decisions, with a smaller value indicating a faster update7. We now define the updated rules 

of this framework that households and the supplier follow. 

The households choose from the menu probabilistically. Hence, household 𝑛 is characterised by a 

probability distribution (𝜌1(𝑡),… , 𝜌𝑘(𝑡))𝑛 in period 𝑡, such that in every 𝜏 periods it selects 

contract 𝑘 ∈ {1,… , 𝐾} with probability 𝜌𝑡
𝑘. While a household chooses a contract once every 𝜏 

periods, the probability distribution is updated in every period 𝑡. Hence, at the time of choosing 

the next contract, the household faces a potentially new probability distribution over the choices 

representing the cumulative effect of the last 𝜏 periods. The dynamic update of a household’s 

probability distribution over the available menu of contracts at period 𝑡 is assumed to follow a 

simple reinforcement learning algorithm based on which of the three constraints had been binding 

in period 𝑡 − 1. These are summarized as follows: 

(Rule 1H) If the budget constraint was binding in period 𝑡, in period 𝑡 + 1 reduce the probability 

weights on contracts with relatively higher per unit prices and increase the probability weights on 

contracts with relatively lower per unit prices. 

 (Rule 2H) If the incentive constraint was binding in period 𝑡, in period 𝑡 + 1 reduce the 

probability weights on contracts with relatively lower coverage limits and increase probability 

weights on contracts with relatively higher coverage limits. 

(Rule 3H) If the coverage limit constraint was binding in period 𝑡, in period 𝑡 + 1 reduce the 

probability weights on contracts with relatively lower coverage limits and increase probability 

weights on contracts with the highest coverage limits. 

Note that while Rules 2 and 3 are qualitatively similar, applicable under the general condition of 

insufficient coverage in the previously chosen contracts, Rule 3 encourages a faster movement 

                                                           
7 As an example, one can consider each period to be a month and if 𝜏 = 12, each contract lasts for 12 months. 
Households choose a new contract annually.  Note that the annual nature of contracts is just an example, and the 
model update can happen faster or slower as desired. 



 

36 
 

than Rule 2 towards contracts with the highest coverage limits. Exactly how Rules 1-3 are 

operationalized depends on the number of contracts 𝐾, and will be discussed in the next subsection. 

The supplier is allowed to adjust the unit prices offered in the contracts every 𝜏 periods, reflecting 

changing demand conditions. Let 𝐷𝑘
∗(𝑡) be the total number of households subscribing to contract 

𝑘 in period 𝑡, and let 0 < 𝜃 < 1 be a threshold parameter defined exogenously. The update rule 

for any contract 𝑘 ∈ {1,… , 𝐾} can then be stated as: 

(Rule 1S) Every 𝜏 periods, change unit price of contract 𝑘 from 𝑝𝑘 to 𝑝𝑘(1 + 𝛥𝑝𝑘), where 𝛥𝑝𝑘 is 

defined as: 

Δ𝑝𝑘 = {

𝐷𝑘
∗(𝑡) − 𝐷𝑘

∗(𝑡 − 𝜏)

𝐷𝑘
∗(𝑡 − 𝜏)

                  𝑖𝑓, |
𝐷𝑘
∗(𝑡) − 𝐷𝑘

∗(𝑡 − 𝜏)

𝐷𝑘
∗(𝑡 − 𝜏)

| > 𝜃

0,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

. 

The above rule makes price adjustments in the dynamic model demand driven, where existing per 

unit price is increased (or decreased) in the same proportion as the change in cumulative demand 

over 𝜏 periods, provided the change is large enough, as determined by the parameter 𝜃. Note that 

a higher 𝜃 implies a less frequent price update than a lower 𝜃, but each update is by a greater 

amount. On the other hand, a smaller 𝜃 implies more frequent updates than a higher 𝜃 but by a 

smaller proportion. This rule internalises the update amount and makes it completely demand 

driven.  

Agent-based framework 
Each household agent has the following parameters: 𝛼, �̅�, 𝐵, 𝜋, randomly drawn from uniform 

distributions: 𝛼 ∈ (0, �̅�), �̅� ∈ (0, �̿�), 𝐵 ∈ (0, �̅�), 𝜋 ∈ (0, �̅�). The upper limits of the supports are 

parameters in the simulations, details of which are provided in Table 1. The supplier provides three 

alternative contracts for households to select from, i.e., 𝐾 = 3. The households choose a contract 

and the menu of contracts is updated every 12 steps within the simulation (𝜏 = 12). A household 

at 𝑡 = 0 starts with an even probability distribution (0.33, 0.33, 0.33) across all contracts in the 

menu.  

By default, we set contract 1 to be a ‘spot’ contract with no pre-specified energy limit, i.e., 

potentially 𝐿1 → ∞.  Contracts 2 and 3 set upper limits on how much energy a household can draw. 

We impose the following constraints on the contracts: 𝐿1 > 𝐿2 > 𝐿3 and 𝑝1 >  𝑝2 > 𝑝3. Thus the 
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spot contract is the risk-less contract but with the highest per unit price, while contract 3 is the 

riskiest contract but with the lowest per unit price. Contract 2 is an intermediate one, providing a 

balance between risk and cost. 

As described above, the choice probabilities are updated by the household at the end of period 

𝑡 based on which of the three constraints are binding on the household in the same period. For any 

given household, let the actual contract chosen in period 𝑡 be denoted by 𝑘∗(𝑡). Let 𝛿 be an 

adjustment parameter, which is the amount households adjust their choice probabilities every 

period. In such a case, Rules 1H, 2H, 3H are operationalized in the following manner: 

Rule 1H - Budget constraint binds in period 𝑡 − 1 

a. If 𝑘∗(𝑡 − 1) = 1 → 

{
 

 
𝜌1(𝑡) =  𝜌1(𝑡 − 1) − 𝛿,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) +
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) +
𝛿

2 }
 

 

 

b. If 𝑘∗(𝑡 − 1) = 2 → 

{
 

 𝜌
1(𝑡) =  𝜌1(𝑡 − 1) −

𝛿

2
,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) −
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) + 𝛿 }
 

 

 

c. If 𝑘∗(𝑡 − 1) = 3 → 

{
 

 𝜌
1(𝑡) =  𝜌1(𝑡 − 1) −

𝛿

2
,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) −
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) + 𝛿 }
 

 

 

Rule 2H – Incentive constraint binds in period 𝑡 − 1 

a. If 𝑘∗(𝑡 − 1) = 1 → 

{
 

 
𝜌1(𝑡) =  𝜌1(𝑡 − 1) + 𝛿,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) −
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) −
𝛿

2 }
 

 

 

b. If 𝑘∗(𝑡 − 1) = 2 → 

{
 

 𝜌
1(𝑡) =  𝜌1(𝑡 − 1) +

𝛿

2
,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) +
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) − 𝛿 }
 

 

 

c. If 𝑘∗(𝑡 − 1) = 3 → {

𝜌1(𝑡) =  𝜌1(𝑡 − 1)

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) + 𝛿  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) − 𝛿

} 
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Rule 3H – Coverage limit constraint binds in period 𝑡 − 1 

a. If 𝑘∗(𝑡 − 1) = 1 → 

{
 

 
𝜌1(𝑡) =  𝜌1(𝑡 − 1) + 𝛿,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) −
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) −
𝛿

2 }
 

 

 

b. If 𝑘∗(𝑡 − 1) = 2 → 

{
 

 
𝜌1(𝑡) =  𝜌1(𝑡 − 1) + 𝛿,

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) −
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) −
𝛿

2 }
 

 

 

c. If 𝑘∗(𝑡 − 1) = 3 → 

{
 

 𝜌1(𝑡) =  𝜌1(𝑡 − 1) +
𝛿

2

 𝜌2(𝑡) =  𝜌2(𝑡 − 1) +
𝛿

2
  

𝜌3(𝑡) =  𝜌3(𝑡 − 1) − 𝛿 }
 

 

 

Both Rules 2H and 3H are similar in that they both add weight on contracts with higher coverage. 

The only distinction between them is in the rate at which they shift the households’ choice towards 

the spot contract: Rule 3H shifts the probability weights in favor of the spot contract at a higher 

rate than 2H, while Rule 1H shifts the weights in favor of cheaper contracts. The adjustment 

parameter 𝛿 is fixed exogenously at 0.05. Once the updates have taken place, the probabilities are 

rebased to ensure that they are bounded within the [0, 1] interval.  


