
1 
 

Applying Best–Worst Scaling to Assess Consumer Preferences for 
Electric Vehicles in Japan 

 
by 

 

Kentaro Yoshida, Professor 

Platform of Inter/Transdisciplinary Energy Research, Kyushu University 

744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan 

Phone & Fax: 81-92-802-6892/Email: yoshida.kentaro.302@m.kyushu-u.ac.jp 

 
Abstract 

The shift to electric vehicles (EV) is drawing attention globally. Widespread adoption of 
alternative-fuel vehicles may contribute to the alleviation of climate change and air pollution 
(Liao et al. 2017). In China, strong public policies have been implemented to promote 
new-energy vehicles to mitigate air pollution in urban areas. In Japan, although Nissan has sold 
a globally bestselling electric car called LEAF, the yearly sales of new 100% EVs were 0.4% in 
2016. By contrast, the yearly sales of hybrid vehicles such as the PRIUS were 30.8% in the 
same year. Japanese consumers remain hesitant about purchasing EVs even though central and 
local governments offer subsidies and tax-exemption schemes to achieve alternative-fuel vehicle 
goals by 2030. Choice modelling approaches are useful for revealing consumer preferences for a 
new commodity. In this study, best–worst scaling (BWS) was applied to investigate consumer 
preferences for EVs. Although most Japanese consumers are unfamiliar with EVs, BWS can 
help obtain rich information and data on consumer preferences by identifying the “best” and 
“worst” options for each respondent. An online questionnaire survey was conducted in 2018, 
and 448 responses from Japanese consumers were collected. Both object case and multi-profile 
case BWS were applied in the survey. The results of the object case BWS revealed purchase 
price to be the most important factor in changing consumers’ attitude toward EVs. In addition, 
the operation cost and driving range were similarly important. Conversely, it was demonstrated 
that CO2 and air pollutant reduction were far less appealing. Multi-profile case BWS revealed 
that two different scenarios for operation cost, yen/100 km and annual saving, were both 
significant considerations when purchasing EVs. Random parameter logit estimates of both 
object case and multi-profile case BWS demonstrated the preference heterogeneity of every EV 
attribute. The results suggest that consumer preferences and purchase behaviors are diverse. 
Thus, more public programs that reduce the vehicle price and adequately disseminate the 
environmental advantages are necessary to promote the shift to EVs in Japan. 
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1 Introduction 
 

In this study, Japanese consumer preferences for electric vehicles (EVs) were evaluated by 
applying two types of best–worst scaling (BWS) approaches to consider the future direction of a 
shift toward EVs in Japan. BWS is a type of stated-preference method that enables the 
assessment of the relative importance of and consumer preferences for multiple EV items. 
Whereas choice experiments take the form of choosing the best from multiple choices, BWS 
takes the form of choosing the best and the worst. The penetration of EVs in the Japanese 
market is still limited. These vehicles accounted for only 1% of the number of new-car sales in 
Japan in 2017. Many consumers are unfamiliar with EV characteristics. Therefore, 
stated-preference methods based on hypothetical scenarios were adopted to estimate consumer 
preferences. BWS makes it possible to obtain more information on the preferences of 
consumers who have not actually purchased EVs because it captures information on the most 
undesirable options as well. 

There are a variety of EVs, such as hybrid electric vehicles (HEVs) and clean diesel vehicles 
(CDVs) among the next generation of cars. The major types of EVs being promoted by various 
programs include battery electric vehicles (BEVs), plug-in hybrid vehicles (PHEVs), and fuel 
cell vehicles (FCVs). The shift to EVs is being promoted by various programs such as the Zero 
Emission Vehicle (ZEV) program of the state of California, the Chinese government’s New 
Energy Vehicle (NEV) policy, and CO2 regulation in the EU. Under the ZEV and NEV 
initiatives, it is obligatory, within the state and country, respectively, for automobile companies 
to sell EVs at a certain rate. If they cannot achieve the target, a fine is imposed, and credits must 
be purchased from another automobile company. The share of emerging EV manufacturers, such 
as Tesla in the USA and BYD in China, are increasing. Global initiatives for CASE (Connected, 
Autonomous, Shared, Electric) pioneered by Daimler are being implemented by various players 
such as Apple, Waymo, and Uber, in addition to the existing major automobile companies. 

The International Energy Agency global EV outlook 2018 (IEA 2018) provides a 
comprehensive look at the state and projection of EVs. The development of EVs aims at 
increasing energy security, improving air quality, reducing noise pollution, and reducing 
greenhouse gas emissions. EVs had record sales in 2017; over 1 million electric cars were sold 
with more than half of global sales in China. In terms of share, Norway was the most advanced 
market for electric car sales, with over 39% of new sales in 2017. Iceland follows at 11.7%, 
Sweden at 6.3%, China at 2.2%, Germany at 1.6%, the USA at 1.2%, and then Japan at 1.0%. 
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The EV shift and CASE are drawing a lot of attention in Asian countries. Widespread adoption 
of alternative-fuel vehicles (AFV) may contribute to the alleviation of climate change and air 
pollution (Liao et al. 2017). In China, strong public policies, such as subsidy and lottery waiver 
programs, have been implemented to promote new energy and zero emission vehicles to 
mitigate serious air pollution in urban areas. In Japan, the i-MiEV of Mitsubishi Motors was 
sold for corporate users in July 2009, and was sold as a mass-produced automobile in April 
2010. Nissan's LEAF was launched in October 2010. Then, in Japan, the nuclear power plants 
stopped operating because of the severe accident at Fukushima Daiichi Nuclear Power Plant in 
March 2011. It seemed as if the business model of EVs that depended on cheap nighttime 
electric power had collapsed. However, after Volkswagen's exhaust gas fraud, which was 
discovered in 2015, the so-called “diesel-gate” incident, European automobile manufacturers are 
switching from diesel vehicles to EVs. In 2019, LEAF, sold by Nissan, had a cumulative sales 
volume of over 400,000 units globally and 100,000 units in Japan. The second-generation LEAF 
which was fully remodeled in September 2017 has a battery capacity of 40 kWh, and the catalog 
states that it can run for 400 km with full charge. EVs were 0.5% of new Japanese car sales in 
2016, but this increased to 1% in 2017. 

Choice modelling approaches are useful tools to reveal consumer preferences for a new 
commodity. Many case studies have applied choice experiments in the context of EVs and other 
next-generation models. Liao et al. (2017) conducted a comprehensive review of 26 choice 
modeling studies and considered the factors affecting consumer preferences. Nienhueser & Qiu 
(2016) demonstrated that willingness to pay (WTP) was higher in the USA when charging 
stations used renewable energies. Tanaka et al. (2014) demonstrated that government subsidies 
that lowered purchase prices also effectively increased Japanese and American consumers’ 
selection of EVs. Ito, Takeuchi & Managi (2018) estimated the WTP for a battery-switching 
system. Ito & Managi (2015) conducted a cost-benefit analysis of FCVs and EVs. Ito, Takeuchi 
& Managi (2013) conducted a WTP survey for improvements of facilities related to AFVs. 

In this study, BWS is applied to investigate consumer preferences for EVs. Although most 
Japanese consumers are unfamiliar with EVs, BWS has certain advantages in obtaining rich 
information and data on consumer preferences by identifying the best and worst options for 
each respondent. Based on an online questionnaire survey, both object and multi-profile case 
BWS methods were applied in this study. Object case BWS can reveal the relative importance 
of EV characteristics. Multi-profile case BWS elicits marginal willingness to pay (MWTP) for 
each EV attribute. Two different scenarios for the operation cost of charging the EV’s battery 
installed were used for the multi-profile case BWS. 
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2 Methods 
2-1 Best–Worst Scaling 
 
The BWS is a relatively new analytical method formulated in the late 1980s, and officially 
reported in 1992 (Louviere, Flynn & Marley 2015). It has three categories: the object case (case 
1), profile case (case 2), and multi-profile case (case 3). Although BWS is a type of choice 
modeling, it characteristically obtains the best and worst (or most and least) answers at the same 
time. This research applies two types of BWS, the object and multi-profile cases. These two 
BWS types ask about the respondent’s preferences for specific EV characteristics. 
 

Table 1: EV attributes/items for object case BWS 

Attributes/Items Details 

Purchase price Actual payment including subsidies and eco-car tax reduction 

Operation cost Cost for battery charging 

Driving range Maximum driving range of a fully charged battery 

Charging availability The number of charging stations for daily use 

Charging time The length of time for quick charge (outside) and normal charge (home) 

Reduction of CO2 More than 50% reduction of CO2 emissions 

Reduction of air pollutants 100% reduction of air pollutants 

Driving performance Equivalent acceleration, horsepower and torque, advanced control system 

Battery life and warranty Low deterioration, 8 years or 160,000 km warranty, roadside assistance 

 

 
 Purchase price Driving range Reduction of CO2 
Most important ✔   
Least important   ✔ 

Figure 1: Example of an object case best–worst question 

 
 

2-2 Object case BWS 
 

The object case BWS presents multiple questions for respondents, and encourages them to 
choose “best/most” and “worst/least” options. As shown in Table 1, nine items (attributes) 
which are characteristic of EVs were used with reference to Liao et al. (2017) and Tanaka et al. 
(2014): (1) purchase price; (2) operation cost; (3) driving range; (4) charging availability 
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(infrastructure); (5) charging time; (6) reduction of CO2; (7) reduction of air pollutants; (8) 
driving performance; and (9) battery life and warranty. Balanced incomplete block designs were 
applied for the above nine items. 12 choice sets were prepared, each comprising three items. 
These were presented to each respondent, with the form noted in Figure 1. They were presented 
in a set order such that they randomly changed when presented to each respondent. 

Prior to the object case BWS questions in Figure 1, the following 12 warm-up questions were 
presented to give information on each item. The answer options for individual questions are: 1. 
quite influential, 2. influential, 3. somewhat influential, 4. not influential at all. 

 

(Question) 

“When comparing electric and conventional gasoline-powered vehicles, there are the following 
distinctive features: Please answer assuming scenes where you would consider buying an 
electric vehicle in the near future. When deciding whether you buy an electric vehicle or not, 
how much do you think the characteristics described in the following questions influence your 
decision?” 

 

(1) The purchase price of electric vehicles is about several hundred thousand to 1.5 million yen 
higher than conventional gasoline vehicles. 

(2) Government clean-energy subsidies, eco-car tax reduction, and local government subsidies 
at the time of purchase reduce the purchase price by 500,000 yen or more.  

(3) For the same mileage, the electricity cost for charging will be cheaper than that of petrol. 
Electricity charges vary depending on conditions. However, as an example, if you are 
mainly using a quick charger, other than one in your home, and traveling 1,000 km a month 
(12,000 km a year), you will be able to save 5,000 yen a month (about 60,000 yen a year) 
compared with gasoline cars. 

(4) The maximum driving distance after full charge is shorter than that of gasoline or hybrid 
vehicles. For example, the new Nissan LEAF catalog claims a 400 km driving distance. 
However, according to the US EPA standard, which is said to be closer to the actual 
mileage, approximately 240 km is possible. 

(5) The available charging facility is installed in the parking place that you are using. In addition, 
if you have already built a house, you can install it at a budget of 20,000 to 100,000 yen. 
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For apartment houses that have already been built, 0.5 to 1.5 million yen is required for 
installation, and building consensus from residents is also required. 

(6) When traveling, charging facilities are available in many places. Currently, charging 
facilities are being constructed all over the country. 7,100 quick-charging facilities and 
20,000 normal-charging facilities have already been installed on highways, in convenience 
stores, shopping centers, road stations, and so on. There are approximately 31,000 gas 
stations nationwide. In conjunction with car navigation systems and smartphones, it is 
possible to find charging facilities for your destination quickly. 

(7) The charging time for the car is approximately 40 minutes (approximately 80% of the full 
charge) with quick-charging equipment; it takes about 8 hours to fully charge the vehicle 
with normal-charging equipment. In addition, during a long-distance drive, you can 
prolong the driving distance by performing a short charge (10 to 20 minutes). 

(8) The deterioration of the battery life is small, and the free repair guarantee in case of 
failure/malfunction is sufficiently substantial. 

(9) Road-side assistance for “running out of charge” on the street corresponds to that for 
running out of gasoline. Drivers do not have to worry about long-distance drives. 

(10) The vehicle is equipped with advanced automobile control technology for electric motors 
and superior driving performance; for example, its acceleration and power are equal to or 
better than that of gasoline cars. 

(11) When renewable energy is used to charge an electric vehicle, greenhouse gas (such as CO2) 
reduction of between 50 to 100% is achieved, which is effective for combating climate 
change. 

(12) Because an electric vehicle runs with an electric motor only, discharge of air pollutants 
(nitrogen oxides, particulate matter, etc.) during driving is almost zero, thereby preventing 
air pollution. 
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2-3 Multi-profile case BWS 

 

The multi-profile case BWS encourages respondents to choose the “best/most” and “worst/least” 
profiles. In normal choice experiments, respondents only choose the “best/most” option. Thus, 
only information on the “best/most” profile is obtained. The BWS is analytically advantageous, 
in that it obtains information on the best as well as the worst profiles. The orthogonal fractional 
factorial designs in the multi-profile case BWS allowed us to prepare 16 choice sets, each 
comprising four profile types with six attributes and four levels (Table 2). Respondents were 
presented with the form of the choice sets as noted in Figure 2. Each respondent was given 
eight different choice sets; these were divided into two groups. As the hypothetical scenario 
proposed by the BWS requires respondents (car drivers) to bear an additional financial burden 
to purchase an EV, the purchase price was established at up to an additional 1,250,000 yen, at 
250,000-yen intervals. 

Two hypothetical scenarios were prepared for the multi-profile case BWS, and comparative 
experiments were performed. The hypothetical scenarios differed in operation cost. For the 
multi-profile case BWS, hypothetical scenario A (electricity charge when driving 100 km) and 
hypothetical scenario B (fuel savings amount when driving for 10,000 km) are set for the 
electricity charge. As for the hypothetical scenarios, only A (electricity charge) and B (savings) 
were changed; the same sentences were used for the other scenarios. Prior to the choice set 
shown in Figure 2, the following sentences are presented. “There are four types of electric 
vehicles sold by the four automobile manufacturers. Which are the most attractive and the most 
unattractive vehicles when you consider buying? Please select one by one.” 

 

Table 2: Attributes and levels 
Attribute Level 1 Level 2 Level 3 Level 4 

Purchase price (plus thousand JPY) 500 750 1000 1250 
A. Operation cost (JPY/100 km) 250 200 150 100 
B. Operation cost (annual savings amount, 
thousand JPY) 

40 60 80 100 

Driving range 200 300 400 500 
Charging availability of quick charge stations 
(% of existing gas stations) 

25 50 75 100 

Charging time (minutes, quick) 5 10 20 40 
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 Car A Car B Car C Car D 

Purchase price (plus thousand JPY) + 750 +1250 +1250 +1000 
A. Operation cost (JPY/100 km) 200 100 250 100 
B. Operation cost (annual saving, thousand JPY) 60 100 40 100 
Driving range 300 km 500 km 400 km 200 km 
Charging availability of quick charge station (% of 
existing gas stations) 

50% 100% 50% 75% 

Charging time (minutes, quick) 5 5 40 10 
I am most likely to choose ✔    

I am least likely to choose   ✔  

Figure 2: Example of a multi-profile case best–worst question with Scenarios A & B 
 

 

(Question) 

“Please imagine yourself thinking about purchasing an electric vehicle. Purchase price, 
electricity charging fee (operation cost), maximum driving distance, availability of quick charge 
facilities, and time required for quick charging are different.” 

 

(1) “Purchase price” is the actual purchase price (thousands of yen higher than the 
gasoline-powered equivalent) after subtracting the government/local government subsidy 
and eco-car tax reduction from the manufacturer selling price. Because purchase choice 
varies from person to person, it is a price setting that thousands of yen is higher if the 
power source is electric, compared with the gasoline-powered equivalent to the car you are 
going to purchase. 

(2A) “Operation cost” is a standard electricity cost for driving 100 km. 

(2B) “Operation cost” shows how much electricity costs when driving 10,000 km per year, 
which is the average mileage, and can save thousands of yen compared with 
gasoline-powered vehicles. 

(3) “Driving distance” is not the numerical value in the catalog, but is the average driving 
distance after full charge in a situation close to actual driving such as using the air 
conditioning. 

(4) “Charging availability” means how many quick charging facilities are installed compared 
with the number of gas stations. If it is 100%, it means that there are the same numbers of 
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facilities as gas stations and 50% means that there is half the number of facilities. 

(5) “Charging time” indicates the time required to quickly charge from the empty state to 80% 
of full charge in the quick charging facility on the go. 

 

(Features common to all vehicles) 

Driving performance (acceleration, power, etc.) is equivalent to gasoline cars. 

The battery comes with a guarantee of 160,000 km or eight years, during which time 
malfunctioning batteries are repaired free of charge. 

The purchaser can select the service contents of the warranty system for road-side assistance 
when running out of electricity at an annual fixed amount 

In addition, the reduction level of greenhouse gas and air pollutant emissions during driving are 
the same for all vehicles. 

 

 

2-4 Data collection 
 
Data collection for BWS was conducted by means of an online questionnaire survey in January 
2018. When conducting the online survey, 448 samples were selected by pre-screening. 
Specifically, the conditions of “driving with a certain frequency (about once in 2 weeks or more, 
etc.),” “car license holder,” “car owning household (not personal ownership, but possession by 
family members).” Only respondents who satisfied all these requirements were selected to 
continue answering questions in this survey. 

A sample of the online questionnaire survey (448 samples) assigned an equal ratio of male and 
female. Regions in which respondents live are distributed nationwide, including 31 in Osaka 
(6.9%), 29 in Hokkaido (6.5%), 28 in Aichi (6.3%), 25 in Kanagawa (5.6%), 24 in Tokyo 
(5.4%) in this order. The age groups were: teens (4.5%), 20s (15.2%), 30s (18.7%), 40s (21.6%), 
50s (18.5%), and 60s and older (21.4%). Regarding the car engine type, there were 381 gasoline 
cars (85.0%), 56 hybrid cars (12.5%), 2 plug-in hybrid cars (0.4%), and 5 electric cars (1.1%). 
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3 Method of object case BWS and results 
3-1 Object case BWS 
 
Table 3 shows the simple aggregate result before performing an econometric analysis with the 
object case BWS. The difference between the best and worst options (B–W) was aggregated. 
The results revealed that purchase price was valued the most, operation costs for charging was 
the second most valued; driving range, charging availability, and battery life and warranty were 
positively valued. The items that received negative values included charging time and driving 
performance. Reduction of CO2 and air pollutants were the least valued. An analytical 
framework using a random parameter logit model will be constructed based on these results. 
 

Table 3: Best and worst choice counts of object case BWS 

Items  Best Worst B–W Rank 

Purchase price 1381 181 1200 1 

Operation cost 804 409 395 2 

Driving range 811 424 387 3 

Charging availability 673 421 252 4 

Charging time 556 561 －5 6 

Reduction of CO2 115 1236 －1121 9 

Reduction of air pollutants 111 1147 －1036 8 

Driving performance 432 584 －152 7 

Battery life and warranty 493 413 80 5 

 

 
3-2 Model 
 

Based on the simple aggregate results of the BWS, as illustrated in Table 3, the data obtained 
from the object case BWS is analyzed with the random parameter logit model (Train 2003), and 
coefficients are estimated. The model is generally referred to as the maximum-difference 
(maxdiff) model (Marley & Louviere 2005). If a choice set includes a total of J items, the 
combination of the best and worst choices totals is J (J − 1). In this study design, the equation 
for this combination can be represented as 3 × 2 = 6. If λ is the parameter indicating each item’s 
importance, the probability that individuals will choose j as the best option and k as the worst 
option can be illustrated in Equation (1), which can be analyzed using the conditional logit 
model (Louviere, Flynn, & Marley, 2015). 
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𝑃𝑃𝑗𝑗𝑗𝑗 = exp (𝜆𝜆𝑗𝑗−𝜆𝜆𝑘𝑘)

∑ ∑ exp(𝜆𝜆𝑙𝑙−𝜆𝜆𝑚𝑚)𝐽𝐽
𝑚𝑚=1

𝐽𝐽
𝑙𝑙=1

                                                 (1) 

 

If η is a random parameter, the probability that respondents will choose j as the best option and k 
as the worst is Ljk (η), the probability density function of η is ƒ(η|Ω), and Ω is the fixed 
parameter of this distribution; thus, the selection probability of the random parameter logit 
model Pjk is formulated as Equation (2). 

 

𝑃𝑃𝑗𝑗𝑗𝑗 = ∫𝐿𝐿𝑗𝑗𝑗𝑗(𝜂𝜂)𝑓𝑓(𝜂𝜂|Ω)𝑑𝑑𝜂𝜂                                                 (2) 

 

The data obtained from the object case BWS and analyzed with the conditional or random 
parameter logit models is of particular importance. Further, one arbitrary variable should be 
excluded from the analysis in estimating the coefficient. The relative importance of the other 
variables is then evaluated based on the variable excluded from the analysis. In analyzing the 
maxdiff model, the estimated results must be interpreted considering that the signs and absolute 
values of the coefficient and t-values vary depending on the selection of the base variable. 

 

 

3-3 Results of the object case BWS 
 
The data obtained from the object case BWS was analyzed with the random parameter logit 
model, and Table 4 illustrates the results. When the data in the object case BWS is estimated 
using the above models, one option must be excluded from the independent variables. Each of 
the options was excluded in turn, and the results were estimated. Table 4 indicates only the 
estimated results excluding charging time, with the value of B - W closest to 0. The results from 
the estimation with the random parameter logit model demonstrated that all the mean 
parameters, excluding battery life and warranty, were statistically significant. The standard 
deviation parameters were also statistically significant at 1% excluding driving performance and 
battery life and warranty. These results showed that individual preferences varied over all 
variables.  
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Table 4: Estimation results of object case BWS by random parameter logit model 
Variables Mean parameter S. D. parameter 

Coefficient t-value Coefficient t-value 

Purchase price 2.856*** 10.74 2.624*** 9.25 

Operation cost 0.550*** 6.98 1.085*** 5.78 

Driving range 0.563*** 6.85 1.224*** 6.60 

Charging availability 0.293*** 4.54 0.882*** 4.31 

Charging time － － － － 

Reduction of CO2 －1.668*** －9.63 0.969*** 4.86 

Reduction of air pollutants －1.420*** －10.50 0.662*** 3.29 

Driving performance －0.321*** －5.31 0.409**  2.02 

Battery life and warranty 0.047  0.89 0.406* 1.78 

Number of observations 5376 

Pseudo-R2 0.190 
Note: ***, **, * denote significance at the 1%, 5%, 10% levels, respectively. 

 
 

4 Method of multi-profile case BWS and results 

4-1 Model 

 

In the multi-profile case BWS, the equation representing the combination of the best and worst 
options can be described as 4 × 3 = 12. The common choice experiment has a form that 
encourages respondents to choose one of four profile types. Meanwhile, the BWS must be 
formulated to choose one out of 12 combinations of the best and worst options. If β is a 
parameter representing each item’s importance, the probability of individuals’ choosing i as the 
best profile and i’ as the worst among the choice set X is indicated as Equation (3), which can 
be analyzed with a conditional logit model in the case of i ≠ i’ (Louviere, Flynn & Marley, 
2015). The data was analyzed by using the random parameter logit model which enabled an 
assessment of preference heterogeneity. 

 

𝑃𝑃𝐵𝐵𝐵𝐵(𝑖𝑖𝑖𝑖′|𝑋𝑋) =
exp𝛽𝛽′(𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖′)

∑ exp𝛽𝛽′(𝑥𝑥𝑗𝑗−𝑥𝑥𝑗𝑗′)𝑗𝑗,𝑗𝑗′∈𝑋𝑋
𝑗𝑗′≠𝑗𝑗

                                               (3) 
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4-2 Results 

 

Table 5 and Table 6 are the results of the analysis of the data obtained from the multi-profile 
case BWS using the random parameter logit model. Different results were obtained between 
scenarios A and B, consistent with the predicted results. All the mean and standard deviation 
parameters were statistically significant in both scenarios. 

Table 6 illustrates the MWTP and 90% confidence intervals, calculated with the estimated 
results of the random parameter logit models. A comparison using the MWTP can visualize 
individual evaluations. A comparison using MWTP will also be made between the scenarios. 
The point estimates and the confidence interval of the MWTPs were compared with the use of 
overlapping criteria, which indicated a statistically significant difference in the MWTPs of 
charging time and availability from both scenarios. A high MWTP was observed in scenario B. 

 
 

Table 5: Estimation results of multi-profile case BWS by the random parameters logit model 
Variable Scenario A 

(cost/100 km) 
Scenario B 

(annual savings amount) 
Coefficient t-value Coefficient t-value 

Purchase price －0.0230*** －14.82 －0.0230*** －14.62 

Operation cost －0.00649*** －10.53 0.112*** 7.68 

Driving range 0.00385*** 12.11 0.00426*** 12.57 

Charging availability 0.0144*** 12.14 0.0174*** 13.36 

Charging time －0.0367*** －11.84 －0.0298*** －10.46 

s. d. parameter     

sd_Price 0.0206*** 6.92 0.0242*** 8.82 

sd_Cost 0.00792*** 5.57 0.207*** 5.78 

sd_Range 0.00389*** 5.71 0.00458*** 7.16 

sd_Availability 0.0179*** 7.27 0.0185*** 6.90 

sd_Time 0.0513*** 9.00 0.0450*** 7.55 

Number of observations 1792 1792 

Pseudo-R2 0.150 0.140 
Note: *** denote significance at the 1% level. 
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Table 6: Marginal willingness to pay estimates 
Attribute Scenario A Scenario B 

MWTP 90% C I MWTP 90% CI 

Driving range (km) 1,672 JPY [ 1468, 1911] 1,851 JPY [ 1601, 2128] 

Charging availability (%) 6,248 JPY [ 5482, 7234] 7,554 JPY [ 6683, 8539] 

Charging time (minute) －15,948 JPY  [－18294,－13793] －12,924 JPY [－15127,－10861] 
Note: 90% CI (confidence interval) [lower bound, upper bound] calculated using Krinsky & Robb (1986) procedures. 
 
 
 

5 Conclusions 
 

In this study, object and multi-profile case BWS methods were applied to assess Japanese 
consumers’ preferences for EVs. As a result of the relative importance of items characteristic to 
EVs in the object case BWS, the purchase price was given the highest importance. Although 
there was a big difference, the operation cost, the maximum driving distance, and the 
availability of the charging facility were the next. By contrast, the importance of the reduction 
of greenhouse gas and air pollutants, which is an important social benefit of EVs, was evaluated 
to be rather low. In Japan, there was little interest in social benefits from the introduction of EVs, 
and the result showed that emphasis was placed on the high purchase price of the vehicle. 
Consumers were likely to value cost attributes, whereas the alleviation of environmental 
damages were emphasized for incentive programs targeting consumers. This is a suggestive 

result for public policy encouraging the future shift to EVs and automobile company strategy. 

Considering a low evaluation on reduction of greenhouse gas and air pollutants, the 
multi-profile case BWS analyzed 5 attributes such as purchase price. The results show that both 
the mean parameter and the standard deviation parameter were statistically significant for all 
attributes. Although respondents emphasized all the attributes applied in this study, it was 
confirmed that consumer preferences for those attributes were diverse. 

As shown in Liao et al. (2017) and Tanaka et al. (2014), analysis of environmental attributes 
such as reduction of greenhouse gases is an important subject to be studied. However, with 
regard to Japanese consumers, it is inferred from the results of this study that consciousness 
concerning greenhouse gases and air pollution is still low and they are exploring possibility of 
purchasing EVs from a practical perspective. In addition, Lutsey and Hall (2018) point out that 
the effect of reducing greenhouse gas emissions through the introduction of EVs depends on the 
power supply configuration of each country as a result of life cycle assessment research. In 
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countries where support and incentive programs to increase the share of EVs are implemented, 
it will be necessary to consider the direction of the shift to EVs, including changing power 
supply configuration, by continually improving the ratio of renewable energy. 

The current Japanese EV market is only 0.1% of the number of domestic passenger vehicles 
owned, it is still at the innovation stage. The market share of next-generation models including 
HEVs is 11.6% and is still at the early-adopter stage. The EV shift to the early-adopter stage 
may be the next milestone in Japan. However, of the total volume of domestic new-car sales in 
2017 (4,386,377 cars), HEVs accounted for 31.6% of the sales, while PHEVs, EVs, and CDVs 
accounted for 0.82%, 0.41%, and 0.02%, respectively. Further, the proportion of HEVs in the 
total sales of ordinary vehicles (1,548,214) and small vehicles (1,394,796) is 47.1%. Thus, the 
HEV market has already reached the majority even under the present circumstances. It is 
difficult to verify whether EVs will proliferate in the same way as HEVs. EVs should be 
combined with autonomous self-driving technology to stimulate different types of consumer 
demand, such as car sharing. To deepen knowledge about the possibility of a future shift to EVs 
and the direction of development, it is necessary to continue research efforts by considering 
experiments combining various policy options and consumer preferences. 
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