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Abstract 

After the Fukushima disaster in 2011, Japan had to halt its nuclear power stations and reform its 

nuclear-reliant energy policy. This shift is increasing their dependence on fossil fuel sources, and 

the nuclear accident likely impacted the cost linkages among the major fossil fuels. This study 

analyzes the dynamics of the linkages among costs of electricity generation via crude oil, natural 

gas, and coal for the periods before and after the Fukushima accident. We find that Markov regime 

switching in the cost spreads between the fossil fuels have become more frequent after the 

Fukushima accident. Johansen and Bierens-Martins cointegration tests also indicate that since the 

accident, the oil and gas relationship has become more evident while the cost relationships 

between coal and other fossil fuels have weakened. These results might reflect changes in 

Japanese energy policy since the accident to promote LNG and compensate for the reduced energy 

supply from closing the nuclear power plants while concurrently coping to meet the requirements 

of the Paris Agreement to reduce CO2 emissions. 
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1. Introduction 

The Great East Japan Earthquake, the largest earthquake ever recorded in Japan 

(Bhattacharya et al. 2011), occurred in March 2011. The earthquake triggered a massive tsunami, 

and the Fukushima Daiichi Nuclear Power Plant (FDNPP) suffered enormous damage from the 

tidal wave. After the plant was hit by the tsunami, the plant lost the entire electricity source used 

to cool down its reactor, leading to a nuclear meltdown.  

This accident motivated Japan to transform its nuclear-reliant energy policy into one 

less dependent on nuclear power. Before the Fukushima disaster, nearly 30% of electricity in 

Japan was generated by nuclear power, but after the accident, nuclear power stations in Japan 

were gradually shut down. By May 2012, Japan had halted all of its nuclear power generation 

(Toudou, 2014). To compensate for the lost electricity from shuttering its nuclear power plants, 

Japan started to increase the use of fossil fuels after the disaster. In 2016, less than 2% of the 

electricity supplied in Japan was generated from nuclear power (FEPC, 2017), and the electricity 

shortage due to stopping nuclear power generation has been mostly filled by increased generation 

from burning crude oil, natural gas, and coal.  

Figure 1 shows the recent shares of total electricity generation in Japan by source. 

Comparing the percentages of electricity generated from crude oil, natural gas, and coal before 

and after 2011 indicates that all the shares of these three major fossil fuel sources expanded 

between 2010 and 2012. The dramatic increase in the combined share of natural gas and coal after 

the Fukushima disaster is especially discernible from Figure 1, and this heightened share persisted 

into 2016. Meanwhile, although dependency on crude oil increased immediately after 2011, 

Figure 1 also shows that by 2014, the share of oil had declined back to the level from before the 

Fukushima accident.  

These changes in the energy mix for electricity generation after the Fukushima disaster 

likely have disturbed the linkages among the costs of electricity from various fuel sources. Many 

studies have investigated how the Japanese energy mix should change (Huenteler, Schmidt, and 

Kanie 2012; Hayashi and Hughes 2013; Hong, Bradshaw, and Brook 2013) or have analyzed 

Japanese people’s preferences regarding energy mixes after the disaster (Murakami et al. 2015; 

Rehdanz et al. 2017). However, until now, few studies have used quantitative methods to analyze 

how electricity prices or costs of electricity generation from various fuel sources have changed 

since the Fukushima disaster.  

To fill this knowledge gap, the objective of this study is to examine the dynamics of the 

linkages among the costs of electricity generation from crude oil, natural gas, and coal before and 

after the Fukushima accident. We consider the following hypotheses: (1) if the Fukushima 

accident influenced the fluctuations in the relationships among the three fossil fuel costs, the cost 

spreads between the fossil fuels should have fluctuated differently before and after the accident, 
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and (2) if the accident affected the cost linkages, the cointegration relationship (i.e., a systematic 

co-movement) between the costs would have changed before and after the accident.1 This study 

investigates the first hypothesis with the Markov regime switching model and tests the second 

hypothesis using the Johansen (1991) and Bierens-Martins (2010) cointegration tests. 

We believe that this investigation is a valuable case study for understanding how phasing 

out nuclear power influences the linkages among the costs of variously sourced electricity 

generation. Uncovering such linkages is important because linked energy markets can be used for 

hedging price and cost risks. This research improves our understanding of how cost linkages can 

be affected by shocks like the Fukushima accident. The study also examines the structural changes 

in fossil fuel costs that occurred after the nuclear stations were shut down. Hence, not only is this 

study valuable for a country like Japan striving to implement effective policies to reduce its 

dependence on nuclear power, but it also provides precious information for other countries that 

are phasing out nuclear power and need to meet their electricity demand by substituting with other 

energy sources. 

In the next section, we review the literature related to this study. In the third section, we 

explain the methods of the study, and the fourth section discusses the results of the quantitative 

analyses. Finally, the fifth section concludes the paper. 

 

2. Related Literature  

This section reviews the relevant literature, including studies investigating shocks on 

energy policies due to the Fukushima accident and those identifying market linkages among 

energy commodities.  

 In one study investigating shocks on energy policies due to the Fukushima disaster, 

Joskow and Parsons (2012) analyzed how the Fukushima accident affected subsequent nuclear 

energy policies in other countries such as the US, the UK, and China. A paper by Hayashi and 

Hughes (2013) is more directly related to our study since they examined how the Fukushima 

accident has influenced the short- and long-term energy policies implemented in Japan to maintain 

its energy security. They explained that the Japanese government expectedly would increase the 

use of fossil fuels for electricity because at the moment, it still would be difficult for Japan to 

replace nuclear power with renewable energy. Vivoda (2012) also studied the consequences of the 

Fukushima disaster for Japanese energy policy and argued that in the short to medium term, the 

shares of imported oil, coal, and liquefied natural gas (LNG) would expand to compensate for the 

reduction in nuclear power generation after the Fukushima accident. 

                                                     
1 A cointegration relationship is sustained between variables when a linear combination of 

nonstationary variables is stationary, which indicates that the test variables move together during the 

test period (Yu and Jin, 1992). 
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Various studies have investigated market linkages among energy commodities, but since 

our study focuses on crude oil, natural gas and coal markets, here we only cover studies that have 

examined market linkages among these three fossil fuels. Batten et al. (2017) tested the causality 

relationships between crude oil and NYMEX Henry Hub Natural Gas futures prices for the 1994 

to 2014 period and provided evidence that the relationship between crude oil and gas was not 

stable during the period investigated. Brigida (2014) also used the NYMEX, natural gas, and oil 

prices but for the 1997:6-2012:9 period to capture the cointegration relationship between these 

markets. Additionally, he applied the Markov regime switching model (MRSM) to analyze the 

switching relationship between natural gas and oil prices and found that these markets did not 

permanently decouple in the early 2000s and that there was a temporary shift in regimes. Finally, 

Bachmeier and Griffin (2006) analyzed market integration in the US crude oil, coal, and natural 

gas markets using daily price data and showed that coal-gas and coal-oil markets have only been 

very superficially linked, whereas oil-gas did exhibit some evidence of market integration.  

  

3. Methods 

The effects of the Fukushima accident on the electricity cost relationships among crude 

oil, natural gas, and coal are analyzed with the Markov regime switching model (MRSM) and 

cointegration tests.  

Markov regime switching model  

 We use the MRSM to analyze the dynamics of the spreads among the costs of electricity 

generated from crude oil, natural gas and coal. Then, we compare the regimes (states) identified 

through the MRSM with the date of the Fukushima accident and analyze whether the duration 

and turning points of the regimes captured by the MRSM are related to the Fukushima accident. 

We apply the MRSM to the rate of change (ROC) of the log cost ratio for pairings of 

crude oil-, natural gas-, and coal-based electricity. Let 𝑌𝑡 be the ROC of the log cost ratio between 

two of the three fossil fuel costs investigated in this study at time t. That is, 𝑌𝑡 = 100 ∙ (ln 𝐶𝑡 −

ln 𝐶𝑡−1)/ ln 𝐶𝑡−1, where 𝐶𝑡 and 𝐶𝑡−1 are the cost ratios between two of the three fossil fuel 

costs at time t and time 𝑡 − 1. Such ROC cost ratio series are used because the MRSM requires 

the sample data used in the model to be stationary (Kuan, 2002).  

The MRSM in this study has the following form: 

𝑌𝑡 = 𝜇𝑆𝑡
+ 𝜀𝑡                               (1) 

where 𝜇𝑠𝑡
is a regime switching intercept in an unobserved state 𝑆𝑡, and 𝜀𝑡 is a random variable 

that is identically and independently distributed N(0,σ𝑆𝑡
) over time.2 Denoting k as the number 

of unobserved states, the Markov switching variable 𝑆𝑡 is a first-order Markov chain with the 

                                                     
2 σ𝑆𝑡

 is the regime switching variance of the random error term 𝜀𝑡. 
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following transition probability matrix: 

              P = (

𝑃11 𝑃12 ⋯ 𝑃1𝑘

𝑃21 𝑃22 ⋯ 𝑃2𝑘

⋮ ⋮ ⋯ ⋮
𝑃𝑘1 𝑃𝑘2 ⋯ 𝑃𝑘𝑘

),                                     (2) 

where 𝑃𝑖𝑗 = Pr(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖)  and ∑ 𝑃𝑖𝑗 = 1𝑘
𝑗=1   for ∀𝑖.  Hence, 𝑃𝑖𝑗   is the probability of 

moving from state i at time 𝑡 − 1 to state j at time t. We set the number of states to two based on 

the Schwarz and Hannan-Quinn criteria. 

 In the two-state MRSM, the coefficients and the transition probability matrix are 

estimated with the maximum likelihood function: 

L(𝜃) = ∑ 𝑓(𝑦𝑡|Ω𝑡−1; 𝜃)𝑇
𝑡=1                                                                  (3) 

where T is the last observation period, Ω𝑡−1is the available information at time 𝑡 − 1, and 𝜃 =

(𝜇1, 𝜇2;  𝜎1, 𝜎2) is the vector of parameters.3 Once 𝜃 and the transaction probability matrix are 

estimated, the regime probabilities Pr (𝑆𝑡 = 𝑗|Ω𝑇 ; 𝜃) of being in state j can be calculated based 

on knowledge of the complete series. Our study uses these regime probabilities, often called 

smoothed probabilities (see Kim and Nelson (1999) for details). We plot these smoothed 

probabilities over our sample period and compare the probabilities before and after March 11, the 

date of the Fukushima accident.  

 We also estimate the constant expected duration (Hamilton, 1989) E(D), which is the 

length of time that the sample data are expected to stay in state j based on the transition 

probabilities. E(D) can be expressed as follows:  

                                                                   E(D) =
1

1−𝑃𝑗𝑗
.                                  (4) 

Cointegration tests 

We perform the cointegration tests on the cost linkages between pairings of the oil, 

natural gas, and coal sample series. For this purpose, we execute the Johansen (1991) and Bierens-

Martins (BM) (2010) tests. We initially test the fossil fuel costs for their cointegration 

relationships using the Johansen test because the BM test requires the test series to be cointegrated. 

Thus, we apply the BM test only if we identify cointegration relationships based on the Johansen 

test. The BM test is useful for examining the time varying cointegration relationships between 

variables. Since the objective of this study is to discover whether cost relationships among the 

fossil fuels used for electricity changed before and after the Fukushima accident, we conduct the 

cointegration tests for three time periods: the whole sample period, the period before March 2011, 

and the period after March 2011. 

                                                     

3 𝜇𝑖 and 𝜎𝑖 for 𝑖 = 1, 2 are the regime switching intercepts and variances of the model 

presented in equation (1). 
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Before performing the Johansen test, we execute the augmented Dickey- Fuller (ADF), 

Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity tests on the 

three fossil fuel costs. To consider the effects of structural breaks in the stationarity tests, we also 

apply the innovational outlier (IO) unit root test (Perron, 1997). The IO unit root test evaluates 

the validity of the stationarity tests in the presence of a break that occurs gradually following a 

dynamic path similar to innovations. Taking 𝑇𝑏 as the time when a structural change in the trend 

function occurs, we use the following regression model for the IO unit root test: 

𝐶𝑡 = 𝜇 + θ𝐷𝑈𝑡 + 𝛿𝐷𝑡(𝑇𝑏) + 𝛼𝐶𝑡−1 + ∑ 𝑐𝑖∆𝐶𝑡−𝑖
𝑘
𝑖=1 + 𝑒𝑡,                   (5) 

where 𝜇 is an intercept term, 𝐶𝑡 is the fossil fuel cost of interest, 𝐷𝑈𝑡 is an intercept break 

variable taking 1 when t >  𝑇𝑏 and 0 otherwise, and 𝐷𝑡(𝑇𝑏) = 1 when t =  𝑇𝑏 and 0 otherwise. 

This model only allows a change in the intercept, and we identify the break date when this change 

occurs by minimizing the t-statistic for the intercept break coefficient. We select the optimal 

number of lags to include in the test equation according to the Schwarz information criteria. We 

apply the above mentioned stationarity tests to the whole sample period and to the samples before 

and after March 2011. 

 After we identify the order of integration for the cost series according to the result of 

the unit root tests, we perform the Johansen cointegration test on the three major fossil fuel costs. 

We implement the Johansen test based on the following vector error correction model (VECM) 

of order p:  

   ∆Ct = ΠCt−1 + ∑ Γi∆Ct−i
p−1
i=1 + εt,    t = 1, . . . , T ,                 (6) 

where 𝐶𝑡 ∈ ℝ𝑘  is the vector of k cost series, 𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁𝑘(0, Ω),  and T is the number of 

observations. Π = αβ′ , where α  and 𝛽  are both fixed 𝑘 × 𝑟  matrices with r cointegrating 

ranks. Both Π and Γi are 𝑘 × 𝑘 fixed matrices and 1 ≤ r < k. We estimate the following trace 

and maximum eigenvalue test statistics with the maximum likelihood function in the Johansen 

test: 

                       𝜆𝑡𝑟𝑎𝑐𝑒(𝑟) = −𝑇log(1 − 𝜆̂𝑖)                              (7) 

                  𝜆𝑀𝑎𝑥(𝑟, 𝑟 + 1) = −𝑇log(1 − 𝜆̂𝑟+1)                            (8) 

where 𝜆̂𝑖 is the ith largest eigenvalue of Π matrix. Following Bierens and Martins (2010), we 

identify the lag order of the Johansen cointegration model by the Schwarz (1978) and Hannan-

Quinn (1979) information criteria. Using these statistics, we verify the order of cointegration 

among the fossil fuel costs. 

 Besides the simple Johansen test, we also apply the recursive cointegration technique 

on the data based on the trace statistic presented in equation (7). In this recursive analysis, the 

trace statistic is initially estimated over an initial sample, and as additional observations are added 

to the sample data, this statistic is re-estimated recursively at each iteration. This recursive 

estimation continues until it covers the full sample period. Then, the result of the test statistics is 
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plotted and evaluated graphically. In our study, the recursive trace statistics are scaled to unity by 

their 5% critical values and the critical values larger than unity in the figure indicate cointegration 

relationships. 

 Finally, if the Johansen test suggests that the cost series are cointegrated, we conduct 

the BM test on the series. The BM test is different from the Johansen test by assuming that the 

VECM shown in equation (6) is a time varying VECM. In the BM test, the 𝛽 of the Johansen 

test is defined as a new cointegrating vector 𝛽𝑡 . Bierens and Martins (2010) specify the 

cointegrating vector by a finite sum of Chebyshev time polynomials 𝑝𝑖,𝑇(𝑡) such that: 

𝑝0,𝑇(𝑡) = 1,  𝑝𝑖,𝑇(𝑡) = √2 cos (
𝑖𝜋(𝑡−0.5)

𝑇
) , 𝑡 = 1, 2, … , 𝑇, and  𝑖 = 1, 2, 3, ….          (9) 

Then, 𝛽𝑡 is can be written as  

𝛽𝑡 = 𝛽𝑚  (
𝑡

𝑇
) = ∑ 𝜉𝑖,𝑇𝑝𝑖,𝑇(𝑡)𝑚

𝑖=0 ,                         (10) 

where 𝜉𝑖,𝑇𝑝𝑖,𝑇 = 1/T ∑ 𝛽𝑡
𝑇
𝑡=1 𝑝𝑖,𝑇(𝑡)  for i = 0, … , T − 1 , and m is the maximum order of 

Chebyshev polynomials. This assumption that 𝛽𝑡 changes gradually over time is different from 

Hansen (2003), which considers the structural change in the VECM as a sudden change. 

Substituting Π = α𝛽𝑡
′ = α(∑ 𝜉𝑖,𝑇𝑝𝑖,𝑇(𝑡)𝑚

𝑖=0 )′  into equation (6), the time varying 

VECM can be presented as 

 ∆Ct = α(∑ 𝜉𝑖,𝑇𝑝𝑖,𝑇(𝑡)𝑚
𝑖=0 )′Ct−1 + ∑ Γi∆Ct−i

p−1
i=1 + εt, t = 1, . . . , T.       (11) 

This equation can be rewritten as 

∆Ct = αξ′𝐶𝑡−1
𝑚 + ∑ Γi∆Ct−i

p−1
i=1 + εt,                               (12) 

where ξ′ = (𝜉0
′ , 𝜉1

′ , … , 𝜉𝑚
′ , ) is an 𝑟 × (𝑚 + 1)𝑘 matrix of rank r. 𝐶𝑡−1

𝑚  is defined as 

𝐶𝑡−1
𝑚 = (𝐶𝑡−1

′ , 𝑝1,𝑇(𝑡)𝐶𝑡−1
′ , 𝑝2,𝑇(𝑡)𝐶𝑡−1

′ , … , 𝑝𝑚,𝑇(𝑡)𝐶𝑡−1
′ ). 

Using equation (12), we test the null hypothesis of time invariant cointegration such that 𝜉′ =

(𝛽′, 𝑂𝑟,𝑘.𝑚) , meaning ξ′𝐶𝑡−1
𝑚 = 𝛽′𝐶𝑡−1

0 = 𝛽′𝐶𝑡−1 , against the alternative hypothesis of time 

varying cointegration. Finally, we set the order of m in the BM test to four, which is similar to 

previous studies (Lucey at al., 2017; Bilgin et al., 2018; Gogolin et al., 2018).  

The data for the costs of electricity generation from crude oil, natural gas, and coal are 

from pps-net.org, a site managed by the General Incorporated Association of Energy Information 

Center in Japan. We use the monthly data for the 2001:1 - 2018:8 period. The unit of the cost 

series used in this study is in yen per kilowatt hour (kWh). For our research purposes, we take the 

natural logarithm of the costs.  

Table 1 reports the summary statistics of the log cost sample series of the study. The 

summary statistics indicate that the mean fossil fuel costs all became higher after the Fukushima 

accident. This outcome suggests that prices of crude oil and natural gas became higher in Japan 

after the accident due to increased fossil fuel imports (Vivoda, 2012). Hence, it is believable that 
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the electricity costs by fossil fuels increased accordingly. Table 1 also indicates that the standard 

deviations for natural gas and coal increased after the accident, while that for crude oil decreased. 

This outcome implies that, compared to the crude oil cost, natural gas and coal costs became more 

volatile after the accident. 

 

4. Results and Discussion 

To analyze the fluctuations in the cost spreads among crude oil, natural gas, and coal 

before and after the Fukushima accident, we apply the MRSM to the ROC of the cost ratios among 

the three fossil fuels. Figure 2 shows the results of the smoothed regime probabilities identified 

by the MRSM for the ROC of the cost ratios. ROC Ln (oil/gas), ROC Ln (oil/coal), and ROC 

Ln (coal/gas) in Figure 2 denote the ROC of the log cost ratios between oil and gas, oil and coal, 

and coal and gas, respectively. Comparing the regime probabilities for the period before and after 

the Fukushima accident, Figure 2 shows that, in all three cost ratios, regime 1 captures sudden 

shocks in the fossil fuel cost ratio. Meanwhile, regime 2 captures stable states from before the 

global financial crisis of 2008 and the Fukushima disaster. Notably, according to all three cost 

ratios, switching from one regime to another has become more frequent since the Fukushima 

accident. Intriguingly, for the oil-gas and coal-gas cost ratios, the regime switching becomes 

observable right after March 2011, whereas the regime switching only becomes apparent in late 

2012 for the ROC of the oil-coal ratio.  

To reveal the dates of changes for the two regimes in the ROC of the cost ratio series 

and compare them with the date of the Fukushima accident, Table 2 illustrates the dates when the 

switching starts and ends.4 It is similar to Table II of Hamilton (1989), but Table 2 of our study 

also shows the expected duration for the two regimes. The results in Table 2 suggest that after the 

Fukushima disaster, the regime switching has become more frequent and the cost spreads between 

the fuel costs have become unstable. The results also indicate that expected durations for regime 

1 are shorter than those for regime 2. As shown in Figure 2, this result is likely due to regime 1 

reflecting sudden shocks in the cost spreads rather than regime 2.  

Table 3 shows the results of the MRSM estimation. The results indicate that the regime 

switching intercept is only significant for the ROC of the cost ratio between oil and coal. The 

positive significance of the intercept for regime 2 suggests that the mean ROC of the oil-coal cost 

ratio is higher for regime 2 than for regime 1. However, this result is supported only at the 10% 

significance level. On the other hand, for all cost ratios, regime switching variances are significant 

                                                     
4 The starting and ending dates in Table 2 only display the turning points based on the 0.5 regime 
probability threshold, but as shown in Figure 2, the actual regime changes become apparent in 

March 2011 for the ROC of the oil-gas and coal-gas cost ratios, which is a little earlier than these 

starting and ending dates. 
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at the 1% level and reveal that regime 1 has higher variances compared to regime 2. This result is 

consistent with the results reported in Figure 2 and Table 2, which show that regime 1 is more 

unstable and has shorter regime durations compared to regime 2. 

 The following discusses the results of the cointegration tests. We conduct the stationarity 

tests on the three fossil fuel cost series prior to performing the cointegration tests. Table 4 shows 

the results of these tests. These results indicate that the PP and IO unit root tests provide evidence 

that all three fossil fuel costs are integrated at order one. This result is consistent in all three time 

periods. Hence, we further test the cointegration relationships among the series. 

Table 5 depicts the results of the Johansen test. The results indicate that all the binary 

cointegration relationships have been impacted since the Fukushima accident. The results in Table 

5 also suggest that although the cointegration relationships are sustained in all cost linkages before 

the accident, coal has lost its relationships with oil and gas since the accident. On the other hand, 

the robustness of the statistical significance for the oil and gas relationship has increased from the 

10% level before the accident to the 1% level after. This result suggests that the cointegration 

relationship between the oil and gas costs has become more evident since the accident. These 

results might imply that as the oil-gas cost relationship has strengthened after the accident, this 

change has interrupted the post-Fukushima coal-oil and coal-gas cost relationships, leading coal 

to lose its linkages with other fossil fuels.  

 The difference in the cointegration relationships between oil-gas versus oil-coal and 

coal-gas can be also detected from the results of the recursive cointegration test. For the period 

before the 2008 financial crisis, all three fossil fuel costs do not have cointegrating relationships, 

but since 2008, oil and gas costs have become cointegrated (Figure 3). In particular, comparing 

the trace statistics for periods before and after the Fukushima accident, Figure 3 shows a large 

gap in the values of the trace statistics between oil-gas versus oil-coal and coal-gas. These results 

also indicate that the oil-gas linkage has become stronger compared to the coal-oil and coal-gas 

linkages since the accident. 

 Finally, we perform the BM time varying cointegration test on the cost series based on 

the results of the Johansen test. Table 6 shows that the null hypothesis of time-invariant 

cointegration is rejected for oil-gas in the entire period case, as well as for oil-gas and oil-coal for 

the period before the Fukushima accident. This result reveals that the cointegration relationship 

between oil and gas costs has fluctuated during the whole sample period, meaning that the 

cointegration relationship between these costs has been unstable throughout the investigated 

period. The results of the oil-gas and oil-coal cost relationships for the period before the accident 

also indicate that for the period before the accident, their cointegration relationships have been 

time-variant. In contrast, the results also suggest that the cointegration relationships for coal-gas 

for the period before the accident and oil-gas for the period after the accident have been time-
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invariant. The time-invariant cointegration relationship for oil-gas for the period after the accident 

probably signifies that the oil-gas cointegration relationship has become more persistent since the 

accident.  

 

5. Conclusions 

The study investigates how shutting down the nuclear power plants in Japan after the 

Fukushima accident has affected the dynamics of the linkages among the costs of electricity 

generation from crude oil, natural gas, and coal.  

First, we find from the MRSM that the Markov regime switching in the cost spreads 

between the fossil fuels have become more frequent for the period after the Fukushima accident. 

Undoubtedly, the accident has altered the dynamics of the fossil fuel cost relationships. This result 

suggests that a flexible energy policy would be more effective than a fixed energy policy after the 

Fukushima accident to adjust the policy to frequent fluctuations in the fossil fuel cost linkages. 

Second, we learn from the cointegration tests that cost linkages between oil-gas, oil-

coal, and coal-gas have all been affected by the Fukushima accident. The cointegration tests 

indicate that the cost relationship between oil and gas has become stronger and more persistent 

while coal has lost its linkages with other fossil fuel costs. This result might reflect the change in 

Japanese energy policy after the accident to promote using more LNG to compensate for the 

reduced energy supply from closing nuclear stations while also coping to meet the requirements 

of the Paris Agreement to reduce CO2 emissions. The cointegration relationship between oil and 

gas costs is compatible with Bachmeier and Griffin (2006) identifying a price linkage for oil and 

gas prices, so the result might suggest that the Japanese oil and gas markets have become more 

dependent on the global oil and gas markets since the Fukushima accident. 
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Figure 1 Share of Japanese electricity generation by source 

Source: FEPC (2017) 
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Figure 2 Markov switching smoothed regime probabilities 
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Figure 3 Recursive plots of Johansen’s trace statistic  

Note: Trace statistics above unity imply rejection of the null hypothesis of rank zero, suggesting 

that the two series are cointegrated (𝑟 = 1). 
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Table 1 Summary statistics 

Entire period (2001:1-2018:8) 

  Mean  Max Min  Std. Dev. Skewness Kurtosis Obs 

Crude oil 3.140 3.619 2.810 0.192 0.088 2.106 212 

Natural gas 2.269 2.778 1.930 0.225 0.347 2.124 212 

Coal 2.430 2.761 2.263 0.097 0.970 3.741 212 
        

Before the accident (2001:1-2011:2) 

  Mean  Max Min  Std. Dev. Skewness Kurtosis Obs 

Crude oil 3.072 3.619 2.810 0.191 0.610 2.673 122 

Natural gas 2.147 2.633 1.930 0.167 0.778 2.975 122 

Coal 2.389 2.635 2.263 0.074 1.007 4.324 122 

        

After the accident (2011:3-2018:8) 

  Mean  Max Min  Std. Dev. Skewness Kurtosis Obs 

Crude oil 3.232 3.476 2.902 0.150 -0.225 2.219 90 

Natural gas 2.433 2.778 2.041 0.185 -0.119 2.225 90 

Coal 2.487 2.761 2.353 0.096 0.946 2.877 90 
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Table 2 Regime classification and its expected duration 

 

Note: Start represents the date when regime probabilities start to exceed 0.5, and end is the date 

when probabilities turn below 0.5. 

 

  

Regime Start End Start End Start End

Regime 1 Sep-08 Aug-09 Sep-08 Aug-09 Oct-07 May-09

Jun-11 Aug-11 Jan-13 Feb-13 May-10 Aug-10

Jun-12 Mar-13 Dec-13 May-14 Jun-11 Mar-13

Nov-13 May-14 Nov-14 Apr-15 Feb-15 May-16

Oct-14 Oct-15 Sep-15 Jul-16 Feb-17 May-17

Feb-16 Jul-16 Jan-17 Nov-17

Mar-17 Jun-17 May-18 Jul-18

Sep-17 Oct-17

Regime 2 Feb-01 Sep-08 Feb-01 Sep-08 Feb-01 Oct-07

Aug-09 Jun-11 Aug-09 Jan-13 May-09 May-10

Aug-11 Jun-12 Feb-13 Dec-13 Aug-10 Jun-11

Mar-13 Nov-13 May-14 Nov-14 Mar-13 Feb-15

May-14 Oct-14 Apr-15 Sep-15 May-16 Feb-17

Oct-15 Feb-16 Jul-16 Jan-17 May-17 na

Jul-16 Mar-17 Nov-17 May-18

Jun-17 Sep-17 Jul-18 na

Oct-17 na

ROC Ln(coal/gas)ROC Ln(oil/gas)

9.996.57

26.1319.20

Expected duration

ROC Ln(oil/coal)

6.01

19.92

Expected durationExpected duration
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Table 3 Markov switching model estimation 

 

Note: *** and * denote significance at the 1% and 10% levels, respectively. The estimation is 

implemented on the 2001:1-2018:8 period.   

  

z-Stat. Prob.  z-Stat. Prob.  z-Stat. Prob.  

0.86 0.43 0.66 -0.76 -0.43 0.67 3.53 0.33 0.74

0.09 0.23 0.67 0.57 * 1.76 0.08 -1.10 -1.42 0.16

2.66 *** 24.87 0.00 2.47 *** 18.14 0.00 4.41 *** 45.54 0.00

0.93 *** 0.07 0.00 1.25 *** 14.79 0.00 2.16 *** 28.36 0.00

CoeffCoeffCoeff

ROC Ln(oil/coal)ROC Ln(oil/gas) ROC Ln(coal/gas)

𝜇1

𝜇2

log𝜎1

log𝜎2
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Table 4 Unit root tests 

 
Note: ADF, PP, and KPSS unit root tests include both constants and trends, and IO unit root tests 

include only a constant. ***, **, and * denote significance at the 1%, 5%, and 10% levels, 

respectively. 

 

  

Entire period (2001:1-2018:8)

Crude oil -3.346 * -2.610 0.267 *** -2.997 -7.620 *** -9.145 *** 0.027 -9.781 ***

Natural gas -2.660 -2.136 0.208 ** -1.895 -6.708 *** -8.404 *** 0.047 -8.313 ***

Coal -2.600 -2.759 0.114 * -1.777 -7.073 *** -11.590 *** 0.040 -7.327 ***

Before the accident (2001:1-2011:2)

ADF PP KPSS ADF PP KPSS

Crude oil -2.486 -2.325 0.181 ** -2.366 -6.199 *** -4.318 *** 0.042 -6.374 ***

Natural gas -2.558 -2.348 0.122 * -1.489 -4.826 *** -7.294 *** 0.052 -7.519 ***

Coal -2.327 -2.084 0.131 * -1.190 -7.486 *** -7.486 *** 0.054 -8.198 ***

After the accident (2011:3-2018:8)

Crude oil -2.702 -2.352 0.144 * -3.846 -7.668 *** -7.031 *** 0.080 -7.010 ***

Natural gas -2.382 -2.050 0.181 ** -3.762 -4.770 *** -4.871 *** 0.134 * -4.862 ***

Coal -3.300 * -2.319 0.137 * -1.614 -5.131 *** -8.199 *** 0.039 -9.551 ***

First differences

Level

KPSSADF PP KPSS ADF PP IO

First differences

IO

ADF PP KPSS ADF PP KPSSIO

Level First differences

IO

IO IO

Level
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Table 5 Johansen tests 

 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

  

Entire period (2001:1-2018:8)

Variables H0: Lag length

r=0 43.565 *** 39.366 ***

r<=1 4.198 4.198

r=0 13.839 9.119

r<=1 4.720 4.720

r=0 8.851 5.593

r<=1 3.259 3.259

Before the accident (2001:1-2011:2)

Variables H0: Trace test Max test Lag length

r=0 19.555 * 15.866 *

r<=1 3.689 3.689

r=0 21.961 ** 17.015 **

r<=1 4.946 4.946

r=0 20.378 ** 16.728 **

r<=1 3.650 3.650

After the accident (2011:3-2018:8)

Variables H0: Trace test Max test Lag length

r=0 30.960 *** 28.582 ***

r<=1 2.378 2.378

r=0 7.962 6.070

r<=1 1.892 1.892

r=0 8.130 7.257

r<=1 0.873 0.873
Coal and Gas

Oil and Gas

Oil and Coal

Coal and Gas

Oil and Gas

Oil and Coal

Coal and Gas

Oil and Gas

Oil and Coal

2

2

2

2

4

2

2

2

1

Trace test Max test
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Table 6 Bierens-Martins tests 

Entire period (2001:1-2018:8)    

Variables 
Chebyshev Time 

Polynomials 
Test statistic P-value 

Oil and Gas 

m=1 6.51 ** 0.039 

m=2 16.06 *** 0.003 

m=4 43.42 *** 0.000 
     

Before the accident (2001:1-2011:2) 
  

Variables 
Chebyshev Time 

Polynomials 
Test statistic P-value 

Oil and Gas 

m=1 7.93 ** 0.019 

m=2 24.53 *** 0.000 

m=4 37.81 *** 0.000 

Oil and Coal 

m=1 12.49 *** 0.002 

m=2 25.96 *** 0.000 

m=4 32.08 *** 0.000 

Coal and Gas 

m=1 3.1   0.212 

m=2 5.68 
 

0.224 

m=4 14.12 ** 0.028 
     

After the accident (2011:3-2018:8) 

Variables 
Chebyshev Time 

Polynomials 
Test statistic P-value 

Oil and Gas 

m=1 1.47   0.481 

m=2 13.54 *** 0.009 

m=4 13.57 ** 0.035 

Note: *** and ** denote significance at the 1% and 5% levels, respectively. 


