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Abstract

Electrical energy and water are two essential resources for the development of society. Fur-

thermore, they are coupled in their production, distribution, and consumption. This complex

relationship is often called the energy-water nexus. In this paper, we provide a distributed algo-

rithm that can find the optimal solution of the economic dispatch problem of the energy-water

nexus. Our convergence analysis shows that the trajectories converge to the optimal solution

regardless of the initial allocation; therefore, we do not need to consider the initial procedure in

detail. Moreover, the proposed algorithm does not require the plants to exchange the gradient

information of cost functions with their neighbors. This means that the proposed algorithm

can protect the plants’ privacy. Finally, we provide a numerical example to demonstrate the

performance and effectiveness of the proposed continuous-time algorithm for the energy-water

nexus.

1 Introduction

Clean energy and water are two essential resources for the development of our society. Tra-

ditionally, the production of potable water and power generation are thought of as separable

problems. However, with the development of technology, they are becoming increasingly corre-

lated. For example, multi-stage flash (MSF) seawater desalination systems are usually coupled

with power plants because they can use the wasted energy of used gas (which exits from gas

turbine cycles) to produce potable water, while the gas turbine generator needs water to produce

energy. With this scheme, it contributes to improving the fuel efficiency of the whole plant [1].

In recent years, a large number of researchers have investigated the energy-water nexus from

various aspects. For example, Wanjiru and Xia [2] developed a model to save the energy and

water by optimally controlling the lawn irrigation. Dubreuil et al. [3] implemented an energy

optimization model with a dedicated water module to assess an optimal “water-energy” mix.

Lubega and Farid [4] developed a quantitative, physics-based model of the energy-water nexus

to optimize the energy and water systems from an engineering system perspective. Nanduri
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et al. [5] developed a competitive Markov decision process model for the energy-water-climate

change nexus and the model was solved by a reinforcement learning algorithm. Tang et al. [6]

established a multi-objective optimization model to study the room and realization path of both

energy and water conservation under the prerequisite of stable economic development. Zhang

and Vesselinov [7] developed an integrated model analysis framework and tool to help predict

and satisfy water, energy, and food demands based on model inputs representing productions

costs, socioeconomic demands, and environmental controls. Although these research efforts are

helpful for solving the energy-water nexus issues, most work adopts centralized methods to

handle the associated optimization problem. It means that these approaches require a control

center to acquire and process all the data from the whole network. As the scale of network

becomes larger and larger, the control center can’t bear so much computation burden.

To overcome the weakness of centralized method, various distributed algorithms have been

developed for large-scale network optimization problem. For example, Hu et al. [8] proposed

a distributed adaptive droop control method for DC micro-grid to optimize power dispatch.

Zhang et al. [9] designed a distributed method based on incremental cost for the conventional

economic dispatch problem (EDP). Yang et al. [10] still adopted the equal incremental cost

criterion to achieve the optimal dispatch, but the proposed algorithm can estimate the mismatch

between demand and total power in a collective sense. Li et al. [11] firstly used the logarithmic

barrier function to reformulate the economic dispatch problem with capacity constraints and

then employed the consensus approach to design the distributed algorithm. Guo et al. [12]

proposed a distributed algorithm on the basis of projected gradient and finite-time average

consensus algorithms for smart grid systems. Xing et al. [13] used the method of bisection and

a consensus-like iterative method to solve the economic dispatch problem (EDP) in a smart

grid. Cherukuri and Cortés [14] proposed a distributed algorithm based on Laplacian-gradient

dynamics for an EDP without and with capacities constraints. Then, Cherukuri and Cortés [15]

extended the initial strategy and presented the algorithm which could converge to the optimal

solution of the dispatch problem starting from any initial power allocation in a distributed

manner. Yang et al. [16] proposed an algorithm which is capable of solving an EDP in a

minimum number of time steps instead of asymptotically. Based on the alternating direction

method of multipliers and finite-time average-consensus control strategy, Li et al. [17] proposed

a distributed algorithm which can ensure that the generator constraints are satisfied during the

whole computation process. Yi et al. [18] provided two classes of continuous-time algorithms to

solve this resource allocation optimization problem in an initialization-free and scalable manner

by adopting either projection or differentiated projection method. Deng et al. [19] developed
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a distributed algorithm for a resource allocation problem with local non-smooth cost function

over weight-balanced digraphs. Zeng et al. [20] adopted a projected output feedback method to

solve the resource allocation problem with uncertain parameters.

In this paper, we present a novel continuous-time distributed algorithm to solve the economic

dispatch problem of the energy-water nexus with local inequality constraints in the framework

of non-smooth analysis and algebraic graph theory. To the best of our knowledge, this is the first

attempt to provide a quantitative solution for the economic dispatch problem of the energy-water

nexus. Firstly, based on the exact penalty function method, we transform the original economic

dispatch problem into an equivalent problem without local constraints. Then we propose a

distributed algorithm to solve the equivalent problem in a distributed manner, which means that

each plant or agent of the network only needs to obtain its neighbors’ information. Therefore,

the proposed algorithm can be effectively applied to the large-scale water and power network

which consists of numerous plants. Compared with many existed algorithms which cannot get

the correct optimal solution if the initial condition has an error, the proposed algorithm in this

paper allows a group of plants to solve the economic dispatch problem for any initial value.

Moreover, in our algorithm, we do not require the agents or plants to share their respective

gradient information with their neighbors. In other words, the proposed algorithm can favorably

protect plants’ privacy.

The remainder of this paper consists of five sections. We provide some preliminaries about

algebraic graph theory, non-smooth analysis, and set-valued dynamical systems in Section 2.

The economic dispatch problem is formulated for the energy-water nexus and the exact penalty

method is presented in Section 3. A distributed continuous-time algorithm is proposed and its

convergence is proved in Section 4, while a simulation example is given in section 5. Finally, we

provide our conclusions in section 6.

Notations: R and Rn represent the set of real numbers and real n-dimensional column vector,

respectively; 1n (or 0n) denotes an n-dimensional column vector whose all elements are 1 (or 0);

for a vector or a matrix x, xT represents its transpose, and ‖ · ‖ represents the Euclidean norm

of a vector or the corresponding induced norm of a matrix; inf(S) represents the greatest lower

bound of the set S; ⊗ denotes the Kronecker product.

2 Preliminaries and Problem Formulation

In this section, some basic concepts about algebraic graph theory are firstly introduced.

Then we review some notions from non-smooth analysis and differential inclusion. Finally, we

formulate the economic dispatch problem of the energy-water nexus.
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2.1 Graph Theory

Now we present some notions from algebraic graph theory [21]. A graph is a triplet G =

(V,E,A) where V denots the vertex set, E ⊆ V ×V represents the edge set and A is the adjacency

matrix. An edge from j to i, denoted by (i, j), means that agent i can receive information from

agent j. An adjacency matrix is defined by A = [aij ] ∈ RN×N , where aij > 0 if (i, j) ∈ E

and aij = 0, otherwise. A graph is undirected if (i, j) ∈ E and (j, i) ∈ E simultaneously. An

undirected graph is connected if there is a path between any pair of vertexes. The Laplacian

matrix is defined by L = D−A where D = diag{d1, · · · ,dN} with di =
N∑
j=1

aij . For the Laplacian

matrix L, at least one of the eigenvalues of L is zero and the rest of them have nonnegative real

parts. If G is an undirected and connected graph, then 0 is a simple eigenvalue of L and the other

eigenvalues are positive numbers. Additionally, the eigenvector corresponding to the eigenvalue

0 is given by ν1N for some constant ν. Throughout this paper, the following assumption is used

for the graph G = (V,E,A).

Assumption 1 The graph G = (V,E,A) is undirected and connected.

2.2 Non-smooth Analysis and Differential Inclusion

We recall some notions from non-smooth analysis [22]. A function f : Rn → R is locally

Lipschitz at x ∈ Rn if there exist positive constants ε and δ, such that for any vectors y, z ∈

B(x, δ), one has |f(y)−f(z)| ≤ ε‖y−z‖. If f is Lipschitz near any point x ∈ Rn, then f is said to

be locally Lipschitz in Rn. If the function f is locally Lipschitz in Rn, then f is differential almost

everywhere (a.e.) in the sense of Lebesgue measure. The generalized directional derivative of f

at x in the direction υ ∈ Rn is defined,

f0(x; υ) = lim sup
y→x,ξ→0+

f(y + ξυ)− f(y)

ξ
.

Furthermore, Clarke’s generalized gradient of f at x is defined by

∂f(x) = {ζ ∈ Rn : f0(x; υ) ≥ 〈ζ, υ〉,∀υ ∈ Rn}.

If f : Rn → R be a convex function, then one knows that ∂f(x) is a nonempty, convex, compact

set of Rn, and ∂f(x) is upper semicontinuous at x.

A time-invariant differential inclusion is given by

ẋ(t) ∈ F (x(t)), x(0) = x0, t ≥ 0, (1)

where F is a set-valued map from Rq to the compact convex subsets of Rq. A solution x(t) :

[0, τ ] → Rq for τ > 0 of the differential inclusion (1) is an absolutely continuous curve almost
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everywhere. A set M is said to be weakly invariant (resp., strongly invariant) with respect to

(1), if for every x0 ∈ M , M contains at least a solution (resp., all the solutions) of (1) starting

from x0. An equilibrium point of (1) is a point xe ∈ Rq with 0q ∈ F (xe). An equilibrium point

z ∈ Rq of (1) is Lyapunov stable if, for every ε > 0, there exists δ = δ(ε) > 0 such that, for every

initial condition x(0) = x0 ∈ B(z; δ), every solution x(t) ∈ B(z; ε) for all t ≥ 0.

Let V : Rq → R be a locally Lipschitz continuous function, and ∂V is the Clarke generalized

gradient of V (x) at x. The set-valued Lie derivative LFV : Rq → B(R) of V with respect to

the differential inclusion (1) is defined by LFV (x) , {a ∈ R : pTυ = a, υ ∈ F (x), p ∈ ∂V (x)}.

In the case when LFV (x) is nonempty, we use maxLFV (x) to denote the largest element in

LFV (x). If φ(·) is a solution to (1) and V : Rq → R is locally Lipschitz and regular, then V̇ (φ(t))

exists almost everywhere, and V̇ (φ(t)) ∈ LFV (φ(t)) almost everywhere. In addition, if V (·) is

continuous differentiable at x, then LFV (x) = {υT∇V (x), υ ∈ F (x)}. Next, an invariance

principle is presented for non-smooth regular functions [23].

Lemma 1 For the differential inclusion (1), assume that F is upper semicontinuous and locally

bounded, and F (x) takes nonempty, compact and convex values. Let V : Rq → R be a locally

Lipschitz and regular function, S ⊂ Rq be compact and strongly invariant for (1), φ(·) be a

solution of (1),

R =
{
x ∈ Rq|0 ∈ LFV (x)

}
,

and M be the largest weakly invariant subset of R∩S, where R is the closure of R. If maxLFV (x) ≤

0 for all x ∈ S, then d(φ(t),M) → 0 as t → +∞ where d(φ(t),M) = inf
{
‖φ(t) − y‖, y ∈ M

}
.

For scalar s, [s]+ = s if s > 0, and [s]+ = 0 otherwise.

2.3 Problem Formulation

We now present a mathematical model for co-optimization of power-water nexus. Let xpi ∈

R, xwj ∈ R denote the power generated by the power plant i and the water produced by a

water plant j respectively. Let xcpk ∈ R and xcwk ∈ R denote the power and water produced

by a coproduction plant k. Let dpi, dwj , dcpk and dcwk denote the resource product demands.

The following notations are introduced to vectorize the formulation: xpi = [xpi, 0]T ,xwj =

[0, xwj ]
T ,xck = [xcpk, xcwk]

T ,dpi = [dpi, 0]T ,dwj = [0, dwj ]
T ,dck = [dcpk, dcwk]

T . Then the co-
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optimization problem of power-water nexus is modeled as follows,

min

Np∑
i=1

fpi(xpi) +

Nw∑
j=1

fwj(xwj) +

Nc∑
k=1

fck(xck),

s.t.

Np∑
i=1

xpi +

Nw∑
j=1

xwj +

Nc∑
k=1

xck =

Np∑
i=1

dpi +

Nw∑
j=1

dwj +

Nc∑
k=1

dck,

xpi ≤ xpi ≤ xpi for i = 1, · · · , Np,

xwj ≤ xwj ≤ xwj for j = 1, · · · , Nw,

xck ≤ xck ≤ xck for k = 1, · · · , Nc.

(2)

where fpi, fwj and fck are respectively the scalar cost functions for the ith power production

facility, the jth water production facility and the kth coproduction facility, Np, Nw and Nc are

the numbers of power, water and coproduction facilities, respectively, xpi,xwj ,xck,xpi,xwj and

xck are positive lower and upper bound vectors, respectively.

Remark 1 The equality constraint is a global constraint which denotes the supply-demand bal-

ance while the inequality constraints represent the reasonable limits of plants’ production capacity.

Assumption 2 The cost functions fpi, fwj and fck are convex and continuous differentiable.

3 Distributed Algorithm for Economic Dispatch Problem

Before a distributed algorithm is proposed to solve the optimization problem (2), we need to

transform the problem by using the exact penalty function method. We ignore the heterogeneity

of the power, water and coproduction plants and define xi ∈ R2 as the concatenation vector

of xpi,xwj and xck, thus the index i ranges from 1 to N = Np + Nw + Nc. Correspondingly,

define fi(xi) as the concatenation vector functions of fpi(xpi), fwj(xwj) and fck(xck) and di as

the demand vector. Based on the optimization problem (2), a transformed model is given as

follows,

minfθ(x) =

N∑
i=1

fθi (xi),

s.t.
N∑
i=1

xi =
N∑
i=1

di, (3)

where fθi (xi) = fi(xi)+ 1
θ

∑2
j=1[(x

j
i −x

j
i )

+ +(xji −x
j
i )

+], xji , x
j
i and xji denote the jth element of

the state variable xi, the lower bound xi and the upper bound xi, respectively. The parameter

θ is a constant and satisfies the following lemma.
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Lemma 2 [14] The solutions to the optimization problems (2) and (3) coincide for θ > 0 such

that

θ <
1

2 max
x∈41

‖∂f(x)‖∞
,

where

41 =

{
x ∈ R2N |

N∑
i=1

xi =

N∑
i=1

di and xi ≤ xi ≤ xi

}
.

The generalized gradient
∂fθi
∂xji

is given as follows,

∂fθi

∂xji
=



∂fi
∂xji
− 1

θ , xji ≤ x
j
i ,

[ ∂fi
∂xji
− 1

θ ,
∂fi
∂xji

], xji = xji ,

∂fi
∂xji

, xji ≤ x
j
i ≤ x̄

j
i ,

[ ∂fi
∂xji

, ∂fi
∂xji

+ 1
θ ], xji = x̄ji ,

∂fi
∂xji

+ 1
θ , xji ≥ x̄

j
i .

Now, a distributed algorithm is provided to solve the problem (3)
ẋi ∈ −∂fθi (xi) + λi,

λ̇i = −
∑N

j=1(λi − λj)−
∑N

j=1(zi − zj) + (di − xi),

żi =
∑N

j=1(λi − λj),

(4)

where λi = (λ1i , λ
2
i )
T , and zi = (z1i , z

2
i )T for i = 1, 2, · · · , N . Equivalently, the algorithm (4) can

be rewritten as the following vector form,
ẋ ∈ −∂fθ(x) + λ,

λ̇ = −(L⊗ I2)λ− (L⊗ I2)z + (d− x),

ż = (L⊗ I2)λ,

(5)

where λ = [λT1 , λ
T
2 , · · · , λTN ]T , z = [zT1 , z

T
2 , · · · , zTN ]T and d = [dT1 ,d

T
2 , · · · ,dTN ]T .

Theorem 1 Under Assumption 1 and Assumption 2, if (x∗, λ∗, z∗) is an equilibrium point of

the distributed algorithm (5), then x∗ is an optimal solution of the problem (3).

Proof. Since (x∗, λ∗, z∗) is an equilibrium point of the algorithm (5), then one has,
0 ∈ −∂fθ(x∗) + λ∗,

0 = −(L⊗ Im)λ∗ − (L⊗ Im)z∗ + (d− x∗),

0 = (L⊗ Im)λ∗.
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Because the graph G is undirected and connected, we have 1TNL = 0. Furthermore, one has

(1TN ⊗ I2)[−(L⊗ I2)λ∗ − (L⊗ I2)z∗ + (d− x∗)]

=− [(1TNL)⊗ I2]λ∗ − [(1TNL)⊗ I2]z∗ + (1TN ⊗ I2)(d− x∗)

=(1TN ⊗ I2)(d− x∗) = 02.

Thus one has
∑N

i=1 x
∗
i =

∑N
i=1 di. Additionally, since (L ⊗ I2)λ∗ = 02, one has λ∗1 = λ∗2 · · · =

λ∗N = µ ∈ R2. Therefore, the equilibrium point (x∗, λ∗, z∗) of the algorithm (5) satisfies

0N×2 ∈ −∂fθ(x∗) + 1N ⊗ µ,
N∑
i=1

x∗i =
N∑
i=1

di,

which is exactly the optimal condition for problem (3). Thus, the equilibrium point x∗ is the

optimal solution of the problem (3). The proof is completed.

Remark 2 From Theorem 1, it is sufficient to show that the algorithm (5) can converge to the

optimal solution x∗ if the algorithm (5) converges to the equilibrium point (x∗, λ∗, z∗). Next, we

show that the algorithm (5) converges to the equilibrium point.

Theorem 2 For any initial point (x(0), λ(0), z(0)), the solutions of the algorithm (5) converge

to the equilibrium point (x∗, λ∗, z∗) under Assumption 1 and Assumption 2.

Proof. Define an energy function

V (x, λ, z) =
1

2
‖x− x∗‖2 +

1

2
‖λ− λ∗‖2 +

1

2
‖z− z∗‖2. (6)

It is noted that, when 0N×2 ∈ −∂fθ(x∗) + λ∗, there exists a vector g∗ ∈ ∂f(x∗) such that

0N×2 = −g∗ + λ∗. Thus, one has

LFV (x, λ, z) =(x− x∗)T (−∂fθ(x) + λ) + (λ− λ∗)T

[−(L⊗ I2)λ− (L⊗ I2)z + d− x] + (z− z∗)T (L⊗ I2)λ

=− (x− x∗)T (g − g∗)− (λ− λ∗)T (L⊗ I2)(λ− λ∗),

for any g ∈ ∂fθ(x). Since fθ(x) is convex and the Laplacian matrix is positive semidefinite, one

has

−(x− x∗)T (g − g∗)− (λ− λ∗)T (L⊗ I2)(λ− λ∗) ≤ 0

Thus, maxLFV (x, λ, z) ≤ 0 and V (x(t), λ(t), z(t)) is non-increasing. It follows that V (x(t), λ(t), z(t)) ≤

V (x(0), λ(0), z(0)). Furthermore, the solution (x(t), λ(t), z(t)) is bounded. Then we know that

F (x, λ, z) =


−∂fθ(x) + λ

−(L⊗ I2)λ− (L⊗ I2)z + (d− x)

(L⊗ I2)λ
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is upper semicontinuous and locally bounded. At the same time, the energy function V (x, λ, z)

is a locally Lipschitz and regular function. Let S = {(x, λ, z)|0 ∈ LFV (x, λ, z)}. Since

LFV (x, λ, z) ≤ 0, S is a compact and strongly invariant set for the algorithm (5). Thus, ac-

cording to Lemma 1, the solution of the algorithm (5) starting from any initial value converges

to the largest weakly positively invariant set M .

Next, we will show that any solution (x, λ, z) ∈ M is an optimal solution of the algorithm

(5). Since 0 ∈ LFV (x, λ, z), then one has(λ− λ∗)T (L⊗ I2)(λ− λ∗) = 0,

(x− x∗)T (g − g∗) = 0.

Due to (L⊗ Im)λ∗ = 0, one has (L⊗ Im)λ = 0. At the same time, it is noted that the Hessian

matrix H(x) of the function f(x) is positive definite, one has

(x− x∗)T (g − g∗) = (x− x∗)TH(τx + (1− τ)x∗)(x− x∗) = 0,

where 0 ≤ τ ≤ 1. Hence, we have x = x∗, which implies that x is an optimal solution of the

problem (3). Due to the arbitrariness of (x, λ, z) in M , we can conclude that the equilibrium

points in M are all the optimal solutions of the problem (3).

Finally, we prove that the solution x(t) to the algorithm (5) will converge to the largest weakly

positively invariant set M . Define φ(t) = (x(t), λ(t), z(t)). Since φ(t) is bounded, according to

Bolzano-Weierstrass theorem [24], there exists φ̂ = (x̂, λ̂, ẑ) and {tk, k = 1, 2, · · · } such that

φ(tk) = (x(tk), λ(tk), z(tk)) → (x̂, λ̂, ẑ) as k → +∞. Since dist(φ(t),M) → 0, then one has

φ̂ ∈M and thus x̂ is an optimal solution of the problem (3). Consider a new Lyapunov function

V̄ (x(t), λ(t), z(t)) defined as V (x(t), λ(t), z(t)) by replacing (x∗, λ∗, z∗) in the equation (6) with

(x̂, λ̂, ẑ). By similar discussion as above for V (x(t), λ(t), z(t)), one has maxLF V̄ (x, λ, z) ≤ 0.

Due to the continuity of V̄ , for any ε > 0, there exists ω > 0 such that V̄ (x, λ, z) ≤ ε when

‖φ− φ̂‖ ≤ ω. Since V̄ is monotonically nonincreasing on interval [0,+∞), there exists a positive

integer T such that when t ≥ tT , there is

1

2
‖x(t)− x̂‖2 ≤ V̄ (x(t), λ(t), z(t)) ≤ V̄ (x(tT ), λ(tT ), z(tT )) < ε (7)

which implies limt→+∞ x(t) = x̂. Furthermore, since V̄ is radially unbounded with respect to

x(t), thus the solution x(t) to the algorithm (5) globally converges to an optimal solution of the

problem (3).

Remark 3 It is noted that the algorithm (4) is a differential inclusion and implemented by

using only the plant’s neighbors information. The gradient information is not shared in the

neighborhood and thus the proposed algorithm can favorably protect the agents privacy.
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4 Simulation

In this section, we apply the algorithm (5) into a energy-water nexus system. It is assumed

that the energy-water nexus system consists of 2 power plants, 2 water plants and 2 co-production

facilities. The communication topology of the system is illustrated in Fig 1. The cost functions

1 2 3

456

Figure 1: The communication network

Table 1: Plant and cost data

Plant type Index
Max power

capacity (MW)

Min power

capacity (MW)

Max water capacity

(m3/h)

Min water capacity

(m3/h)

power i1 200 50 0 0

power i2 80 20 0 0

water j1 0 0 50 15

water j2 0 0 35 10

coproduction k1 80 16 40 10

coproduction k2 60 10 75 20

The cost parameters of power plants The cost parameters of water plants

Ap Bp Kp Aw Bw Kw

0.00375 2 5 0.00625 1.0 7

0.00175 1.75 10 0.00834 3.25 5.8

The cost parameters of coproduction plants

Ac11 Ac12 Ac21 Ac22 Bc1 Bc2 Kc

0.007433 0.03546 0 0.007093 1.106 4.426 57

0.07881 0.06305 0 0.01261 1.475 5.901 57

fpi, fwj , fck of the plants are quadratic functions, i.e.,

fpi = xTpiApixpi +Bpixpi + Cpi,

fwj = xTwjAwjxwj +Bwjxwj + Cwj ,

fck = xTckAckxck +Bckxck + Cck.

The parameters of the plants are given in Table 1. The demand vector is given by d =

[90, 0, 20, 0, 0, 90, 0, 10, 50, 20, 45, 40]T ∈ R12. The parameter θ in the penalty function fθ(x)
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is chosen as 0.1019. The initial condition of the algorithm (5) can be randomly given. It is

noted that the state xi ∈ R2 of each agents has two components (i.e., power and water), thus

we respectively give the evolution of the power and water states of the six plants under the algo-

rithm (5), as shown in Fig. (2) and Fig. (3). In the figures, the black dashed lines denote the
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Figure 2: Evolution of power allocation
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Figure 3: Evolution of water allocation

optimal solution of the algorithm (5), which is given by x∗p1 = 99, x∗p2 = 80, x∗cp1 = 16, x∗cp2 = 10
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for power and x∗w1 = 50, x∗w2 = 35, x∗cw1 = 40, x∗cw2 = 35 for water. It can be found that the

trajectories of the decision variables about power and water asymptotically converge to the op-

timal values. Additionally, Fig. 4 and Fig. 5 show that the proposed algorithm can keep the

balance of supply and demand of power and water, respectively.
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Figure 4: Total mismatch of power
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12



4 Conclusion

In this paper, we have designed a distributed continuous-time algorithm which allows a

group of power, water,and co-production plants to solve the economic dispatch problem with

local inequality constraints starting from any initial allocation. To accomplish this, we have

transformed the original problem by using the exact penalty function method into an equivalent

problem without local inequality constraints. Then a distributed algorithm has been proposed

to solve the equivalent optimization problem. A theoretical analysis has been presented for

the proposed algorithm with the help of algebraic graph theory, Lyapunove function method

and non-smooth analysis. The simulation result indicated that the algorithm is effective and it

will save plenty of production cost for the economic dispatch problem of energy-water nexus.

In the future, we will further investigate the economic dispatch problem of the energy-water

nexus system which not only includes the electricity-storage devices but also the water storage

facilities. Moreover, we will consider the power-water production ratio for the coproduction

plants in the co-optimization model such that the model is more practical
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