

Engineering and Physical Sciences Research Council

COOKING FUELS AND ECONOMIC DEVELOPMENT IN DEVELOPING COUNTRIES: CASE OF SUB-SAHARAN AFRICA

BY

IFEOLUWA GARBA

AIMS AND OBJECTIVES

• Establish existing gaps in literature on energy poverty in developing countries

• Provide empirical evidences of the impact of energy poverty on economic development in developing countries

• Recommend energy policies aimed at effectively addressing the issue.

• Access to energy is vital in tackling global development issues

• Absence of energy in developing countries has several key aspects: lack to clean fuels for cooking and/or heating is an overlooked aspect

• More people in the world lack access to clean cooking fuel (2.7 billion) than to electricity (1.2 billion)

1^{ST} STAGE – UNIT ROOT ANALYSIS

• Examine presence (non-stationary) or absence (stationary) of unit root in variables

- Stationarity means some variable statistics are constant over time: means behaviour prediction can be more accurate
- Variables must be stationary when integrated at 1st order for cointegration tests to be considered.

1^{ST} stage – Unit root analysis

		Null: Unit r	oot				Null: No	unit root
	Tests	Levin, Lin - and Chu	Im, Pesaran and Shin	Breitung	ADF - Fisher Chi	PP - Fisher	Hadri	z-stat
	Variable	(LLC)	(IPS)		square	Chi square		2.000
	GDP	-1.1212	0.8918	_	2.5593	0.9222	3.7246	3.7883
T1		(0.1311)	(0.8137)		(0.8618)	(0.9884)	(0.0001)	(0.0001)
Level	GDP	1.2035	0.8443	1.8563	4.1453	5.4072	2.3169	2.3335
	(trend)	(0.8856)	(0.8007)	(0.9683)	(0.6570)	(0.4927)	(0.0103)	(0.0098)
	SOLID	3.0007	4.4253	_	0.2544	3.5888	4.1189	4.1257
		(0.9987)	(1.0000)		(0.9997)	(0.7321)	(0.0000)	(0.0000)
	SOLID	1.0347	0.7132	2.2630	10.3157	22.7917	2.3967	8.1739
	(trend)	(0.8496)	(0.7621)	(0.9882)	(0.1120)	(0.0009)	(0.0083)	(0.0000)
	GDP	-1.7974	-1.8103	_	13.4810	20.0668	0.4403	0.7129
First		(0.0361)	(0.0351)		(0.0360)	(0.0027)	(0.3299)	(0.2379)
difference	GDP	-2.5189	-0.4539	0.6455	7.3869	9.9007	3.6883	5.0667
	(trend)	(0.0059)	(0.3249)	(0.7535)	(0.2865)	(0.1289)	(0.0001)	(0.0000)
	SOLID	-3.0472	-2.6253	-	22.7102	21.9717	0.7658	2.8634
		(0.0012)	(0.0043)		(0.0043)	(0.0012)	(0.2219)	(0.0021)
	SOLID	-3.8279	-2.4380	-	20.4387	25.0760	4.4272	8.0983
	(trend)	(0.0001)	(0.0074)	1.1177	(0.0023)	(0.0003)	(0.0000)	(0.0000)
				(0.1319)				

Table 1: Results for panel unit root tests for GDP and Solid.

2ND STAGE – COINTEGRATION ANALYSES

• Pedroni tests for cointegration between variables using heterogeneous panel and group mean test statistics

Teata	Within panel statistics			Between panel statistics		
lests	Туре	Statistic	p-value	Туре	Statistic	p-value
CDD SOLID	panel v- statistic	1.4016	0.0805	group rho-statistic	0.3668	0.6431
GDP, SOLID	panel rho- statistic	-0.4226	0.3363	group PP-statistic	-1.6914	0.0454
	panel PP- statistic	-2.2655	0.0117	group ADF- statistic	-1.9650	0.0247
	panel ADF- statistic	-2.9228	0.0017			
GDP, SOLID	panel v- statistic	0.6680	0.2521	_		
(weighted statistic)	panel rho- statistic	-0.2901	0.3859			
	panel PP- statistic	-1.8934	0.0292			
	panel ADF- statistic	-1.9883	0.0234			

Table 2: Results for Pedroni residual cointegration tests.

2ND STAGE – COINTEGRATION ANALYSES

• Kao and Fisher tests to consider cross-sectional dependency and spillage across groups

Table 3: Results for Kao's residual cointegration test.

Model	ADF	p-value
GDP, SOLID	-0.6996	0.2421

Table 4: Results for Fisher-type cointegration tests.

Null hypothesis	Fisher stat* (trace test)	p-value	Fisher stat* (max- eigen test)	p-value
ce = 0	27.61	0.0001	24.68	0.0004
$ce \le 1$	10.29	0.1130	10.29	0.1130

3RD STAGE – LONG-RUN RELATIONSHIP ESTIMATION

- The long-run relationship between the two variables is assessed.
- The panel DOLS and FMOLS tests are applied at this stage

	Models		
	DOLS	FMOLS	
Co-efficient	-61.0918	49.8929	
Std.Error	3.0834	8.2559	
t-statistic	-2.0307	6.0433	
p-value	0.0515	0.0000	

Table 5: Results from DOLS and FMOLS tests.

FINAL STAGE – CAUSALITY ANALYSES

• Long-run causality

Table 6: Results for Granger causality test (L = lags).

Independent variable	f-statistic p-value		Sense of causality			
independent variable	GDP					
SOLID $(L = 1)$	1.2340	0.2729				
SOLID $(L = 2)$	1.7639	0.1855	$SOLID \rightarrow GDP$			
SOLID $(L = 5)$	1.3122	0.2952				
		SOLID				
GDP(L = 1)	39.2465	2e-07				
GDP(L = 2)	6.7489	0.0032	$GDP \rightarrow SOLID$			
GDP(L = 5)	2.8013	0.0418				

• Short-run causality

Table 7: Short-run causality results.

Dependent variable	Chi-square	p-value	Sense of causality
SOLID	14.4803	0.0007	$GDP \rightarrow SOLID$
GDP	0.7798	0.6771	SOLID $\rightarrow GDP$

SUMMARY OF EMPIRICAL FINDINGS

- Panel unit root analyses confirm the absence of unit root across all tests after first differencing. Variables are differenced stationary fulfilling conditions for cointegration analyses
- 3 out of 4 cointegration tests confirm variables Solid and GDP are cointegrated
- Cointegration elasticities with GDP as dependent variable confirms negative and significant long-run relationship
- Long-run causality test with Solid as dependent variable confirms causality for optimal lag (1) and further lags
- Long-run causality with GDP as dependent variable shows no causality
- Short-run with Solid as dependent variable shows causalityShort-run with GDP as dependent variable shows no causality

IMPLICATIONS OF FINDING

- Energy consumption and economic development hypotheses: neutrality, conservation, growth and feedback hypotheses.
- Uni-directional causality relationship running from GDP per Capita to Solid observed.
- Findings strongly support the energy-economy conservation hypothesis for sub-Saharan Africa.
- In long-run, economic developments influence household usage of solid fuels
- In short-run, economic developments influence household usage of solid fuels

POLICY IMPLICATION AND CONCLUSIONS

• Energy conservative policies such as traditionalfuel use reduction strategies, demand management measures, amongst others, might positively impact on the economic development.

• To conclude:

- To address general poverty, developing countries need to address energy poverty as an aspect of the issue.
- All in all, as a part of improving general economic development and addressing general poverty, it would be beneficial for countries to continue to progress from traditional cooking fuels to modern cooking alternatives.

