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Abstract 

Electric vehicles (EVs) have been recognized as a promising alternative of conventional internal 

combustion engine vehicle. As the global EV market is rapidly growing, the importance of charging 

infrastructure including public charging stations cannot be overstated. In the case of Seoul, since EV users 

cannot install private chargers easily due to the high population density, public charging stations should be 

located properly in order to cover all potential EV charging demand. In this study, we develop the time-

dependent demand estimation model of EV based on purpose Origin-Destination (OD) data and hourly 

traffic flow. We assume that driving purpose has a significant impact on the propensity for charging type. 

So potential demands of slow and fast chargers are estimated by separating the total demand into two types, 

reflecting the driving purpose of EV drivers. Based on the estimated demand for each type of charger, cost 

minimization model is formulated to investigate the optimal location of charging stations designed to 

satisfy all potential demand. The locations of each type of chargers are revealed. The case study of Seoul is 

conducted by using our models. It is shown that the demand for slow charging is concentrated on the 

residential areas and workplaces. Meanwhile, commercial districts show a high level of fast charging 

demand. The optimal locations of slow chargers are concentrated on residential and workplaces, whereas 

fast chargers are quite evenly distributed in the study area, due to the effect of taxis. The study proposes the 

optimal location of public charging stations to cover EV demands and to minimize the installation cost of 

chargers at the same time in the perspective of the entire system.     
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1. Introduction 

As the environmental pollution problem of conventional internal combustion engine vehicles (ICEVs) has 

been pointed out, EVs are regarded as a promising alternative worldwide. EVs use electricity as its main power 

source. This feature enables EVs to emit less GHGs than ICEVs, which combusts fossil fuel to get power, 

except for exceptional case (e.g., oil and coal are dominantly used to generate electric power.) (Elgowainy et al., 

2009). Due to the eco-friendly nature of EVs, many countries, including the United States, China, and Korea, 

are planning and implementing various policies for the introduction and diffusion of EVs (OECD/IEA, 2018). 



However, the limited battery capacity is the biggest factor in interrupting EV adoption. Compared to ICEVs, 

EVs have a shorter driving range and take a relatively long time to be fully charged. Also, the charging 

infrastructure has not yet been fully established. Several studies revealed that the driving range, charging time, 

and charging station accessibility is significantly influential on the consumer preference for EVs (Daziano and 

Chiew, 2012; Jensen et al., 2013; Huang and Qian, 2018). In Korea, as a part of overcoming such disadvantages, 

the government is trying to improve the accessibility of charging stations. The installation of public charging 

stations and the subsidy for home charging equipment are representative examples. Owing to these efforts, the 

EV penetration rate in Korea is rapidly growing, although the market share of EV is still around 1%. 

Accumulated registration number of EVs in Korea has more than doubled from 11,767 in 2016 to 25,593 in 

2017 (Ministry of Environment, 2018). Given this tendency, the EV adoption rate is expected to increase further 

and charging demand for EVs is also expected to skyrocket. As a result, the importance of public charging 

stations is being reinforced to fully meet the soaring charging demand, and the charging infrastructure needs to 

be systemically designed through the optimal charging station location models.  

Meanwhile, there are two types of chargers in public charging stations (Hardman et al., 2018). One is a slow 

charger, which is AC-based and takes 4 ~ 5 hours to charge an EV fully. The other is a fast charger, which is 

DC-based and takes 0.5 ~ 1 hours to charge an EV fully. In selecting the location of the charging stations, it is 

necessary to determine how many slow and fast chargers should be installed in the public charging point. In 

order to manage this issue, it is essential to know how much demand for a specific type of charger will be 

aggregated in a particular time interval in the unit area. This requires the Origin-Destination (OD) information 

and the driving purpose of drivers, and the amount of hourly traffic flow. The reasons are as follows. The total 

amount of driver’s charging demand is directly related to his driving distance, i.e., OD distance. Also, the type 

of charger driver wants to use may vary depending on his driving purpose. It is because of their parking time. 

For example, drivers may prefer slow charging if they are allowed to park their cars for a long period of time, 

such as after going to work and returning home, while they may prefer fast charging if they park a relatively 

short period of time, such as shopping or leisure (Xu et al., 2017). Finally, the peak time demand is revealed in 

detail when we consider the hourly traffic flow. Some previous studies on selecting optimal locations of 

charging stations developed the models using OD information of drivers (Cai et al., 2014; Dong et al., 2014; 

Shahraki et al., 2015) and the model assuming that demand for each type of charger is separated by driving 

purpose of drivers (Kleiner et al., 2018) for the estimation of potential charging demand. However, they didn’t 

estimate the demand for each type of charger by separating driving purposes. Also, previous studies have not yet 

taken into account OD information, driving purpose, and the amount of hourly traffic flow period 

simultaneously. It is a meaningful approach to estimate charging demand through purpose OD data in this 

context. 

Seoul, the capital city Mof Korea, ranked the 1st place in population density among metropolitan cities of 

2016 OECD members (OECD, 2016). 9.77 million people live in Seoul, and more than 25 million people, which 

is half of the Korean population, reside in the adjacent area of Seoul (KOSIS, 2019). It is not easy for the 

citizens living in Seoul to install home charging equipment when they purchase EVs since it is very difficult for 

them to secure the private parking space or garage. Therefore, the importance of public charging stations which 

can cover all demand becomes more significant. Due to the limited budget of the government for installing EV 



charging stations, optimization research is necessary from the perspective of the entire system, which aims to 

minimize installation cost and to cover potential demand at the same time. However, the study for selecting 

optimal locations of charging stations in Seoul has not yet been conducted. Therefore, the research which has an 

objective to optimize the locations of public charging stations considering the cost and the demand coverage in 

Seoul can have a great contribution. 

The objective of this study is to construct an optimal charging station location model which minimizes the 

installation cost while perfectly satisfying potential demand, by estimating demand using purpose OD data of 

drivers in Seoul. To this end, we formulate the hourly demand estimation model for the slow and fast charger in 

the unit area. Also, based on this demand, cost minimization model is formulated to derive the optimal location 

of charging stations and the number of slow and fast chargers. We apply these models to actual data in Seoul and 

conduct a case study on Seoul.  

The rest of the paper is organized as follows. In Section 2, we review the related work on demand estimation 

model and optimal charging facility location model. In Section 3, we describe the data and assumptions used to 

develop our model. In Section 4, we formulate a demand generating model, which combines OD distance, 

driving purpose, and the total movement in the unit time interval. Also, the mathematical formulation of our cost 

minimization model is revealed. In Section 5, we present the data of Seoul and the basic result of our model. In 

Section 6, we conclude the paper with political recommendations to locate charging stations in Seoul and with 

the suggestions for further study.  

 

2. Literature Review 

Much research has been conducted on selecting the optimal location of EV charging stations. The models 

formulated in the research can be divided into demand estimation model, which aims to figure out the potential 

charging demand in the unit area, and optimization model, which aims to find the optimal location of charging 

stations based on the estimated demand. The most of constructed models have been applied to the case study of 

a specific country or city, by using the real data of the region. Through the procedure, the location and the 

number of charging stations in a specific region are revealed. 

 

2.1. Work on demand estimation 

Demand estimation models presented so far can be divided into two types. The first type is a model which 

estimates potential charging demand by reflecting the social, and demographic characteristics of a study area. 

Frade et al. (2011) formulate a demand model for the Lisbon area, Portugal, assuming that the charging demand 

depends on the demographic features of workers during the daytime and depends on those of residents during 

the nighttime. Liu (2012) conduct a case study for Beijing, China, and separate unit demand areas, taking into 

account the distribution of residential areas, gas station locations, parking lot locations, and power station 

locations.  Sathaye and Kelley (2013) estimate the potential charging demand of highway corridor as a function 

of population and the amount of traffic, making a study of the highway of Texas, the United States. Morrissey et 



al. (2016) forecast the future charging demand in the whole area of Ireland based on the real EV driver’s data, 

such as charging location, charging time, and charging type. He et al. (2016) estimate the potential charging 

demand in a specific area through a weighted sum of six socio-demographic components, such as age, sex, 

income level, etc., in Beijing, China. Delphi technique is used to determine the weight of each component in the 

research. Kleiner et al. (2018) separate German area into metropolitan, urban, and rural area. The average 

distance traveled in each area is calculated by the features of the area. (e.g., vehicle type ratio, commute 

distance) and it becomes a potential demand. In this model, they assume that drivers use a slow charger when 

they commute and use fast charger during long journeys. 

A second type is an approach to estimate demand based on measuring the traffic flow of real vehicles. Xi et al. 

(2013) estimate the number of EV in the study area through EV penetration rate. The potential charging demand 

is generated by assigning tour direction to each EV randomly, based on real tour record data of conventional 

cars. Riemann et al. (2015) set each OD pair as a flow pattern, and generate EV charging demand, reflecting the 

routing choice behaviors of EV drivers. A numerical study is conducted instead of a case study of the real world 

in the research. Meanwhile, several studies estimate EV demand by using GPS OD data of real vehicles. Dong 

et al. (2014) make the daily driving route of EV by using the tour record of conventional cars in Seattle, the 

United States. The potential demand occurs when drivers arrive at the destination and need to charge to finish 

the remaining route of the day. Cai et al. (2014) and Shahraki et al (2015) estimate the traffic flow in the city 

through the driving data of taxis in Beijing, China. Based on it, EV traffic flow and its charging demand are 

calculated. 

In this study, the potential demand is estimated based on the driving distance of passenger cars, using purpose 

OD data. However, we consider not the route of the individual, but the total amount of vehicles which move 

from specific origin to a specific destination. Also, we distinguish the demand by its driving purpose. Therefore, 

the demographic information, such as whether an area is a workplace or a residential area, is implicitly reflected 

in our model. 

 

2.2. Work on optimal location of charging stations 

Optimization methodology is the most prevalent in the research related to selecting optimal locations of 

charging stations. Most research formulates models containing objective function and several constraints which 

represents the circumstances they want to analyze. Wang and Wang (2010) formulate the model to optimize the 

location of charging stations for alternative fuel vehicle (AFV). Mixed-integer program is used, whose objective 

function is composed of the weighted sum of cost minimization factor and demand coverage maximization 

factor. Frade et al. (2011) fix the number of charging stations, and formulate maximal coverage location problem 

(MCLP) is implemented as MIP, which select the location of potential charging stations that can cover the 

demand as possible. Sathaye and Kelley (2013) construct convex optimization model to minimize the total 

distance of deviation which occurs when drivers try to charge in their driving route. The constraints are a budget 

limit for installation and service level above a certain level. Dong et al. (2014) formulate the model which focus 

on the minimization of missing trips of drivers due to the lack of battery charging under the budget constraint. 



Chung and Kwon (2015) present a multi-period optimization model, whose objective is coverage maximization 

of the flow in the planning horizon. The subject of the study is the highway in Korea. Riemann et al., (2015) and 

He et al. (2018) develop a network model to capture the maximum flow under a traffic network. Numerical 

studies are conducted to evaluate these network flow model. He et al. (2016) develop a set covering problem 

(SCP) to minimize the number of charging stations which guarantees to cover the potential demand. MCLP and 

P-median model are also formulated, which has an objective to maximize the demand coverage when the 

number of charging stations is fixed. They compare these 3 models in various viewpoint and show that P-

median model is the most effective. Yang et al. (2017) analyze electric taxis in Changsha, China, by formulating 

the MIP model of cost minimization while ensuring service quality above a certain level.  

In this study, we develop a MIP model which combines SCP and cost minimization model. We try to find the 

optimal location of charging stations which minimize the installation cost of slow and fast chargers while 

covering all potential demand. We focus on how charging stations should be located to relax battery anxiety of 

EV drivers and to make use of the minimum budget in the viewpoint of government.   

 

3. Background 

3.1. Data and assumptions 

This study is conducted based on the OD data of “passenger transmission nationwide and future demand 

forecast” by Ministry of Land, Infrastructure, and Transport of Korea (Korea Transport Database, 2017). Two 

types of OD data are used in the study. The first is the purpose OD data. This data classified each OD data 

between administrative districts by travel purposes which includes going to work, returning home, shopping, etc. 

It indicates the number of people who move a particular OD for a particular purpose during the day. The second 

is transportation OD data, which classifies the OD data based on the means of transportation such as bus, car, 

taxi, etc. This data is required to estimate the amount of EV traffic flow since purpose OD data which we’ve 

obtained did not distinguish people by means of transportations. Transportation OD data also indicates the 

number of people who move a particular OD using particular transportation during the day. We also use the 

hourly traffic flow of Seoul grouped by travel purposes, since it is necessary to distribute the amount of daily 

travel into hourly travel, according to the purpose. 

The OD data is divided into two parts: purpose and transportation. Since we need the number of EV with each 

purpose, we should combine these two data. So, it is assumed that those two data are independent. Also by 

assuming that hourly traffic flow data sorted by travel purposes is independent OD data, we can get hourly 

demand sorted by each travel purpose and transportation. For further simplification, we grouped travel 11 

purposes into 3 groups (Going to work, Returning home, Others). The reason why we divide purposes into these 

3 groups is that each group has a distinct difference in the degree of concentration in hourly traffic flow. Also, 

21 transportations into 3 groups (Private car, Taxi, Others) from the OD data. This is because we only focus on 

EV charging stations for passenger cars. Due to economic reasons, taxis prefer fast charging in order to do more 

work and has no home charger. Therefore, we divide the passenger car type as private car and taxi. The details 

of the grouping are shown in Table 1. 



Table 1 | Grouping details in purpose and transportation types 

Purpose group Transportation group 

Purpose 1 (p1): Going to work Transportation 1 (v1): private car 

Going to work Private car (self-drive) 

Going to school Private car (drive by others) 

  

Purpose 2 (p2): Returning home Transportation 2 (v2): Taxi 

Returning home Taxi 

  

Purpose 3 (p3): Others  Transportation 3 (v3): Others 

Send-off Bus (city, town, wide area, intercity, express, others) 

Going to academy Rail (light, high speed, general, subway) 

Business Cargo (small, medium and large) 

Shopping Bicycle 

Returning workplace Motorcycle 

Leisure Air transportation 

Dining Ship 

Visiting relatives Walk 

 Etc 

  

 

Also, as mentioned earlier, purposes are grouped as 3 types. Hourly traffic flow of each travel purposes has 

significantly different characteristics. Figure 1 depicts the hourly traffic flow of each purpose in a day. P1, 

which implies going to the workplace, has a quite high rate in the morning hours (6-9), while P2, which implies 

returning home, shows high rate in the evening time (18-21). At the same time, the rate of P3, which includes all 

other than commuting traffic, distribute relatively evenly in all time period except for late night hours.  

 

Figure 1 | Traffic flow ratio of each purpose in a day 

 

3.2. Study area 

The OD data represents the moving amount of people between Dong across Korea. Dong is the smallest 

administrative district of Korea. To reduce the complexity of the problem, we only focus on the traffic flow 

arriving in Seoul. It is assumed that all EVs are fully charged before entering Seoul, which allows us to focus on 

the public charging stations in Seoul. Therefore, OD data with a destination in Seoul are used only. Meanwhile, 



we consider data with the origin of Seoul and the adjacent areas, i.e., Incheon and Gyeonggi-do. This is because 

there is a huge traffic flow from these adjacent areas to Seoul for the commute or other purposes, and its scale is 

not ignorable. Also, it is assumed that demand is generated automatically at the end of the travel (destination) 

occurring hourly. In this study, we are interested in the demand from the perspective of the whole system, not 

each passage point of view. Thus, there is no need to consider the usage schedule of the charging station.  

In more detail, there are 424 Dong in Seoul, which are the smallest administrative districts in Seoul. We 

assume that those are the unit area. It is assumed that all travels are to move between the centers of the unit areas. 

The distance between Dong is measured as the distance between their centers. For the distance parameter, we 

use the Manhattan distance system to measure the distance between the centers. The centers of unit regions are 

called as “demand point”, which implies that all potential demand which occurs in the unit area is aggregated to 

the demand point. The 424 demand point of Seoul is pointed in Figure 2.  

 

Figure 2 | Demand points of Seoul 

 

For the location of potential public EV charging stations, we consider public parking lots in Seoul. Public 

parking lots are considered as candidates of EV charging stations in much research (Frade et al., 2011; Sadeghi-

Barzani et al., 2014; He et al., 2016). The public car park is a good example of how charging stations should be 

distributed because it is highly accessible and evenly distributed in the study area. Each public car park has 

parking lots which have limited capacity and we assumed only 10% is available for EV charger installation. The 

838 public parking lots, which has more than 10 parking lots in Seoul are considered as candidates of EV 

charging stations. The location of potential charging stations is depicted in Figure 3. 

  One traffic flow starts from the origin and ends in the destination. It then requests charging to potential EV 

charging stations nearby. During the process, we assume there will be a maximum desirable distance, which 

people will drive just for EV charging. To simplify the model, we also assumed that people with the home 

charger do not use the public charger and taxis only use the public charger.  

 



 

Figure 3 | Location of potential EV charging stations in Seoul 

 

4. The models 

In this section, we develop a model for demand estimation for each type of chargers based on the data and 

assumptions in Section 3. Furthermore, after estimating the demand for each charger at each demand point, we 

formulate cost minimization model to ensure for public charging stations to cover all potential demand which 

occurs hourly, considering the capacity of a parking lot.  

 

4.1. Demand estimation model 

The objective of this section is to get hourly demand for fast and slow EV public charger in each demand 

point.   Set and parameter notations used for demand generating model is described in Table 2 and Table 3. 

Table 2 | Notation of sets 

Notation               Description 

O  set of all origins  

D  set of all destinations  

L  set of potential EV charging stations  

P  set of all travel purposes  

V  set of all travel transportations  

T   24-hour time / 0,1,2, ,23  T    

 



Table 3 | Notation of parameters  

Notation               Description 

vH  EV home charger adoption rate of transportation v V  

vEVPR  EV penetration rate of transportation v  

,p v  
percentage of people who want to use a slow charger 

after the travel by transportation  with purpose v V p P 
 

p

ijn  number of travels from origin  to destination with purpose i O j D p P    

v

ijn  number of travels from origin  to destination  by transportation i O j D v V    

t

jn  number of travels to destination  at time j D t T   

v

ijr  
ratio of the number of travels from origin  to destination  by trasportation  

to the total number of travels from origin  to destination ,  where , 

i j v V

i j i O j D



 
 

ijd  distance between district  and district i A j S   

t

pq  ratio of the demand with purpose p P at time  to the total demand with purpose p Pt T    

,p v

ijN  
number of travels from origin  to destination  

taking EV transportation  with purpose 

i O j D

v V p P

 

 
 

,p v

jtD  demand in destination  at time ,  caused by transportation  with purpose j D t T v V p P     

S

jtD  demand for slow charger in destination  at time j D t T   

F

jtD  demand for fast charger in destination  at time j D t T   

 

  To estimate charging demand, the first mission is to know the number of EV of each transportation arrived in 

a certain hour, with a specific purpose. Two parameters 
p

ijn , 
v

ijn  are used to represent each for the purpose, 

transportation OD data. Each parameter means the number of people whose origin is i and the destination is j , 

with the purpose p  or with the transportation v . In order to know the number of each type of transportation 

moving from i  to j with a certain purpose in a day, which is represented as 
,p v

ijN , transportation usage rate 

is multiplied to purpose OD value as in (1). Then, the number of EV traveling specific OD in a day is revealed 

by multiplying EV penetration rate of each vehicle type (
vEVPR ) as in (2). 

 

v

ijv

ij x

ij

x V

n
r

n





 (1) 

 
,p v p v

ij v ij ijN EVPR n r    (2) 

  The second mission is to distribute daily traffic of EV to each time period and to calculate total demand in 



each demand point. As shown in Figure 1, the hourly demand rate generated by each purpose is calculated from 

purpose OD data as in (3). Lastly, charging demand in a certain time period t  at the destination j  is derived 

in the measure of distance as in (4). Since only the vehicles who don’t have home charger request public 

charging, the home charging parameter is also multiplied.   

 

t

pt

p x

p

x P

n
q

n





 (3) 

    , , 1p v p v t

jt ij ij p v

i O

D N d q H


      (4) 

  Now that we have hourly demand for each travel purpose and transportation used, we need to separate the 

demand with the choice between slow and fast charger as in (5) and (6). 
,p v  is a measure of the propensity 

to the slow charger of drivers traveling with a purpose p , whose vehicle time is v .    

  , ,

,

S p v p v

jt jt

v V p P

D D
 

   (5) 

   , ,

,

1F p v p v

jt jt

v V p P

D D
 

    (6) 

  From the model, the total potential demand for each type of charger in each demand point can be calculated in 

the hour unit. The unit of demand is represented as distance. Therefore, in this study, all units related to the 

amount of charging is converted into distance.   

 

4.2. Optimization model 

Additional notations used for the optimization model is described in Table 4 and Table 5. The formulation of 

the optimization model is as follows. There exists a driver’s maximum desirable charging distance, which means 

that if the charging station is away from this distance, drivers won’t go to charge their EVs. 

Table 4 | Notation of sets and parameters  

Notation               Description 

jB  
set of all potential charging stations whose distance is less 

than maximum desirable distance from destination j D
 

SCOST  cost of a slow EV charger  

FCOST  cost of a fast EV charger  

SCAPA  capacity of a slow EV charger per hour  

FCAPA  capacity of a fast EV charger per hour  

lSPACE  number of available installation spaces in potential EV charging station l L  



 

Table 5 | Notation of decision variables  

Notation               Description 

S

jlty  flow quantity for a slow charger from demand point  to charging station  at time j S l L t T    

F

jlty  flow quantity for a fast charger from demand point  to charging station  at time j S l L t T    

S

l  optimal number of slow chargers in location l L  

F

l  optimal number of fast chargers in location l L  

 

  min S F

S l F l

l L

COST COST


    (7) 

 . . ,
j

S S

jlt jt

l B

s t y D j J t T


     (8) 

 ,
j

F F

jlt jt

l B

y D j D t T


     (9) 

 ,S S

jlt S l

j D

y CAPA l L t T


      (10) 

 ,F F

jlt F l

j D

y CAPA l L t T


      (11) 

 
S F

l l lSPACE l L      (12) 

 , 0 , ,S F

jlt jlty y j D l L t T      (13) 

 ,S F

l l Z l L      (14) 

   The objective function (7) is minimizing the installation cost of the EV charging stations. Setting the 

installation cost of fast and slow EV chargers as constants (
SCOST ,

FCOST ), we made two decision variables 

( S

l , F

l ) as numbers of EV chargers needed in each district so that the objective function can be linear. Two 

additional decision variables(
S

jlty ,
F

jlty ) are used to calculate the traffic flow between demand points and 

potential EV charging stations. (8) and (9) state that the sum of traffic flow which goes to charge EV from the 

demand point should be equal to the demand of each type of charger. Moreover, it states traffic flow is only 

made under the maximum desirable distance limit. (10) and (11) states that hourly traffic flow to charge 

aggregated at the potential EV charging station should not be larger than the capacity of EV chargers installed. 

Constraints (12) states that the number of the EV charging station cannot be installed above the possible 

parking lot of potential EV charging station. (13) states non-negativity condition of traffic flow. Finally, (14) 



states the number of EV chargers should be nonnegative integers, making this model MIP formulation.      

 

5. Result and discussion 

5.1. Demand estimation 

There are several sets and parameters to be determined before starting the analysis. As mentioned earlier, the 

study focus on the installation of charging stations in Seoul. Also, the volume of traffic flow from the adjacent 

areas of Seoul cannot be ignorable. Therefore, the origin and destination set used in the study are determined as 

follows. 

 centers of Dong in Seoul, Incheon, and Gyeonggi-doO  ,  centers of Dong in SeoulD   

Note that destination set represents demand point, since charging demand occurs in the destination. Further, the 

subjects of the study are passenger cars, not bus, cargo, rail, etc. Therefore, we set EV penetration of 

transportations other than passenger cars (private cars and taxis) as 0%, while setting the EV penetration rate of 

passenger cars at 1%. i.e., 

 1 2
0.01 if ,

0 . .
v

v v v
EVPR

o w


 


 

Also, it is assumed that a taxi cannot use the home charger. We set 10% of EV users to have their own home 

charger, which means they don’t use a public charging station, i.e.,  

10.1 if 

0 . .
v

v v
H

o w


 


 

Lastly, the most critical issue is to determine the propensity to slow charger of each purpose, 
,p v . In terms of 

private car users whose driving purposes are going to work or returning home, EV drivers can park their cars 

relatively long time. They might prefer slow charging over fast charging. Meanwhile, private car users whose 

driving purposes are shopping, business, etc., they might prefer fast charging, since they cannot charge a long 

time. We set the propensity to slow charger when going to work and returning home as 0.8, and others as 0.2. 

Regarding taxis, they always request fast charging. It is not necessary to define the propensity of other 

transportations since there is no electric-based transportation except for passenger cars in our model. Then the 

propensity to the slow charger can be written as 

1 1 2,

3

,0.8

0.2

p v
p p p

p p



 


,  2,

1,
p v

p P     

  The estimated time-dependent demand in each demand point is calculated through the model presented in 

Section 4.1. and the parameters determined above. Figure 4 describes the time-dependent potential demand 

toward slow charger. To see the variance of time-dependent demand more simply, we separate time period in 4 



sections: (1) morning (6~9), (2) afternoon (10~18), (3) evening (18~21), (4) night (22~5). It is easy to see that 

the areas where demand is high become different depending on time period. In the morning, the southern and 

central areas of Seoul show higher demand comparing to others. This is because workplaces are concentrated in 

these areas. At the same time, it is shown that demand in outer areas of Seoul rise sharply and demand in central 

areas drop significantly in the evening time, compared to morning. This trend can be interpreted as residential 

areas of Seoul are mainly distributed in outer regions. However, southern parts continue to show a high level of 

demand, since residential and workplace coexist in these parts.     

 

Figure 4 | Time-dependent demand for the slow charger 

(Top-Left: 6~9, Top-Right:9~18, Bottom-Left:18~21, Bottom-Right: 21~5) 

  

 Figure 5 describes the time-dependent potential demand toward fast charger. Surprisingly, compared to the 

distribution of demand for the slow charger, it seems to show quite similar distribution regardless of time. 

Except for the central areas, whose demand is mainly concentrated in the morning time. The southern areas 

show a high level of fast charging demand in all time period since the areas are the center of the commercial 

district of Seoul. People travel these areas for many purposes, such as shopping or visiting, etc. However, the 

northern areas show a low level of demand. It is because these areas don’t have many commercial places, and 

people reside there less than in other regions.  
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Figure 5 | Time-dependent demand for the fast charger 

(Top-Left: 6~9, Top-Right:9~18, Bottom-Left:18~21, Bottom-Right: 21~5) 

 

The totally estimated hourly charging demand for EV is shown in Figure 6. The peak time of both types of 

charging is 8 a.m. but demand for fast charging shows more flat shape. Commuting is the most influential in 

charging demand.   

 

 

Figure 6 | Total estimated hourly demand  
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5.2. Optimal locations of charging stations 

From the demand of each type of charger, which is estimated in the demand estimation model, the 

optimization model is applied to figure out the optimal number of chargers and their locations. We set the 

maximum desirable distance as 2km (He et al., 2016), which means the drivers in a certain demand point won’t 

go to charging station far away more than 2km to charge their EVs. It is assumed that all of EVs have the same 

battery capacity, whose operation range is 300km if fully charged. Further, it is assumed that it takes 4h 30min 

for the slow charger to fully charge a perfectly discharged battery, and 30 min for the fast charger to charge a 

perfectly discharged battery to 80% level. Since we estimate demand unit as kilometers, the capacity of each 

type of charger calculated in the unit of kilometers per hour is 

200
km/hour

3
SCAPA  , 480km/hourFCAPA   

The unit cost of each type of charger is $3,000 for a slow charger and $40,000 for a fast charger. Also, only 

10% of the total parking lot of potential charging stations can be used to install chargers. For the computational 

experiment, we used X-press of FICO®  as a solver of our MIP model. Since the problem is NP-hard, we 

stopped the computation when the gap of LP bound and IP solution goes below 3%. The model is performed on 

the personal computer with Intel® Core™ i7-6700 3.40GHz CPU and 16.0GB of RAM.    

  From the model and parameters, the optimization results are obtained. A total of 1610 slow chargers and 113 

fast chargers are needed to cover the estimated demand. The minimized cost is $935,000. The optimal locations 

of each type of chargers are depicted in Figure 7 and Figure 8.  

 

Figure 7 | Optimal location of slow chargers 

 



 

Figure 8 | Optimal location of fast chargers 

 

The distributions of slow and fast chargers are quite different. In terms of slow chargers, due to EV users who 

travel with the purpose of going work, there is a tendency to be a considerable concentration of charging stations 

in the work areas, i.e., central and southern regions. Charging stations in the workplace are distributed evenly, 

and many chargers are installed at each charging station. Meanwhile, the outer region of Seoul has charging 

stations whose sizes are small compared to that of the work area, although the charging stations are highly 

distributed. This is because the outer regions are mostly residential areas, and people’s time to get home are 

usually less crowded than the time to go to work. So, a small number of chargers can fully cover the hourly 

demand for slow charging in evening and night time.  

In terms of fast chargers, not many of them are installed in one place. This is because that fast charger has a 

good capacity and peak time demand for fast chargers is not that big compared to slow chargers. So, it is not 

necessary to build expensive fast chargers in the same charging stations. Meanwhile, the locations of fast 

chargers are quite evenly distributed all over Seoul. The results appear to have been made by the traffic flow of 

electric taxis. Since taxis travel a wide range of Seoul and request fast charging demand at each destination.     

 

6. Conclusion 

In this study, we argued that the travel purposes matter in the hourly demand estimation for the two 

types of EV chargers, slow and fast. Our first objective was to construct a new demand model for the 

EV charging station by incorporating the OD data, travel purpose, and hourly traffic flow at the same 

time. Our second objective was to generate an optimization model which minimizes the installation 

cost of EV charging station while covering the total demand with consideration of travel purposes. 



With the purpose-oriented demand and optimization model, we carried out a case study of Seoul, 

Korea. Dealing with particular characteristics of Seoul, such as high population density and spatial 

difficulty for home charger installation, we suggested an optimal plan for the EV charger distribution 

including charger types, locations, and number to install.  

In the case of Seoul, hourly EV charging demand showed a certain proclivity depending on the 

characteristics of districts, such as residential areas, commercial areas, workplaces. In the morning 

time, slow charger demands at workplaces got higher compared to other areas. As time goes by, slow 

charger demands at night were concentrated on residential areas, which also includes some parts of 

workplaces. For the fast charger, the demand was quite time-independent with a slight peak on 

morning and evening periods. It has seemed as commercial areas have high needs for the fast charger 

due to the high traffic concentration caused by purposes such as shopping or visiting. From the 

optimization result of EV charging station distribution, we could see fast chargers are located evenly 

throughout Seoul. This is because of high capacity so that there is no need to install a large number of 

fast chargers. Accordingly, slow chargers should be located mainly on workplaces rather than 

residential areas which are less crowded.  

This study can be further improved in many respects. By examining the utilization rate of installed 

chargers, we can suggest a policy-relevant EV charging station installation plan. Also, we can develop 

the study by executing propensity survey for a certain type of charger usage getting a more reliable 

result for the case study of Seoul. By carrying out a sensitivity test for parameters, we can check 

which parameter affects the installation plan the most. Furthermore, implementing various 

optimization models such as maximum coverage model can help optimization model be more 

practical.    
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