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Abstract

The installed capacity of distributed solar PV in the distribution network has been growing over
the past years resulting from the implementation of renewable policies and technological development.
However, the current approach for transmission and generation expansion planning does not account
for distribution network constraints. Also, the risk of uncertainty caused by economic, regulatory and
technology development are often not considered in a deterministic least cost optimization grid planning
model. As a consequence, we do not know the impact of distribution network constraints on grid ex-
pansion planning and how uncertainty may influence the transmission and distribution level investment
decisions. This paper presents a novel stochastic integrated grid planning approach considering distribu-
tion network constraints, combining a two-stage optimization grid expansion model with a distribution
network hosting capacity (HC) assessment for a stylized representation of the Malaysian grid. Our result
shows that omitting distribution constraints and ignoring uncertainty in grid investment planning has a
significant impact on the optimal solution and quantifiable economic consequences. We also evaluate
the benefit of hosting capacity (HC) enhancement, which, as we show can lead to potential savings of
0.86% ($2.37billion) of the expected cost. Finally, our proposed model is more generally applicable for
transition planning to reinforce current grids and integrate sustainable generation capacity.

1 Introduction

Renewable generation capacity is growing significantly as a result of technology advancement and policies
that aim to reduce the CO2 emissions, including carbon prices and renewable targets. Solar photovoltaic
(PV) generation capacity has increased particularly quickly, and in many places it is now among the cheapest
forms of electricity generation. Solar PV capacity comes in different forms. Large solar photovaltaic (LPV)
plants may be connected to transmission networks, as other types of renewable capacity, including wind,
tends to be. However, in most markets, a large fraction of solar PV capacity is connected to distribution
networks (distributed solar photovoltaic, DPV), beyond the transmission system operator’s control.

This presents a challenge to grid planners, operators, and investors in other types of generation capacity,
which will only increase as the amount of DPV grows. Electrical infrastructure will need to be expanded
or rearranged to accomodate variable renewable generation. However, the current approach for transmis-
sion and generation expansion planning does not generally account for distribution network constraints.
Also, separately, risk and uncertainty are not always properly accounted for, as many planning models are
deterministic. As a consequence, we do not know the impact of distribution network constraints on grid
expansion planning and how uncertainty may influence transmission and distribution level investment deci-
sions. Energy storage presents a similar challenge. Storage can play a vital role in accommodating variable
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renewable generation into the electricity system, but, like solar PV, a large amount of storage capacity is
connected to distribution networks, and therefore invisible to transmission system opeartors.

In light of these issues, a new modeling framework for optimizing system expansion is needed, that
must satisfy several requirements. First, it should be able to jointly model transmission and distribution
networks; in the latter, detailed distribution grid operating constraints should be included to accurately
model distribution network issues resulting from DPV and storage installations. Second, it should properly
account for long-run uncertainties. Third, it should account for the fact that expansion decisions can de
delayed to future periods in which more information on, among others, PV costs, are available.

This is a significant challenge. Distribution network constrains are nonlinear, so the framework pro-
posed above would be a large-scale multi-stage stochastic optimization problem. In this paper, we present
a first attempt to formulate and solve such a framework. We combine a two-stage stochastic optimization
transmission and generation expansion model with a detailed distribution network hosting capacity (HC)
assessment, solving these two models iteratively to heuristically find a fixed point. We apply this model to a
stylized representation of the Malaysian grid, which is expected to have to integrate a large amount of DPV
capacity over the coming decade

We find that, first of all, distribution network constraints are important and including them changes
optimal transmission and generation capacities, not just in distribution networks but also at the transmission
level. Distribution network hosting capacity (HC) enhancement techniques, using distribution connected
storage, could significantly reduce the overall costs of meeting a renewable target, and increase distributed
solar PV (DPV) penetration in the distribution network. However, the correct mix of distribution-connected
and transmission-connected storage is crucial. Moreover, investing in battery storage after grid investment
has been finalized is more economical if this is an option. Finally, this paper demonstrates that combined
transmission and distribution network modelling is possible practical to assist with transition planning for
future grids.

2 Methodology

2.1 Notation

2.1.1 Set and indices

L Corridors l
LD Corridors, l connected to distribution node, ND

N Nodes, n
K Generator types, k
E Model stages e
T Years, t
P Intra-annual ime blocks, p
S Scenarios, s
ND Distribution nodes, n
KC Conventional generator types, k
KS Solar PV generators, k
KDS Distributed solar PV generator, k
B Energy storage (ESS) facilities, b
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2.1.2 Parameters

CYesk Capital cost of new generation k, e = 1, 2 ($/MW), scenario s
CXes Transmission investment cost e = 1, 2 ($/MW/km), scenario s
CVesk Generation cost type k, stage e = 1, 2 (USD/MWH), scenario s
CZesb Capital cost of new ESS b, e = 1, 2 ($/MW), scenario s
CDesb ESS discharge cost type b, stage e = 1, 2 (USD/MWH), scenario s
Esk Carbon emission by plant type k (t/MWH), scenario s
CPes Carbon price per year stage e = 2, 3 scenario s $/t)
i Discount rate per year (1/yr)
N Sample size (hours)
Qsenp Electricity demand at node n, stage e = 2, 3 (MW), scenario s
γesl Susceptance of corridor l
Xl Initial transmission capacity (MW)
Ynk Initial generators at node n (MW)
Znb Initial battery storage at node n (MW)
LFk Load (demand) factor for each generator type k
SPp Hourly solar pattern (per unit)
REse Renewable target (%) stage e = 1, 2, scenario s
SMn Allowed DPV penetration level at node n = ND

SBn Allowed ESS level at node n = ND

Vn Voltage limits at distribution node n = ND

RLk Ramping limit by plant technology k (MW/hour)
RTb Roundtrip efficiency of battery storage type b
Hb Energy capacity of battery storage b measured in hour at full capacity
ρs Probability of scenario s

2.1.3 Variables

tcse Total cost at stage e ($)
xsel New transmission investment e = 1, 2 (MW)
ysenk Capacity of new plant stage e = 1, 2 (MW)
zesnb Capacity of new ESS stage e = 1, 2 (MW)
gesnpk Generation of plant stage e = 2, 3, period p (MW)
gSesnpk Generation of Solar plant stage e = 2, 3, period p (MW)
rdesnpb Discharging of ESS stage e = 2, 3 at bus n, period p (MWH)
rcesnpb Charging of ESS stage e = 2, 3 at bus n, period p (MWH)
fselp Reactive power flow stage e = 2, 3 (MW)
θsnp Voltage angle between nodes (radian)
nsesenp Not supplied energy node n at period e (MW)
spillsenpk Solar energy spillage (MW)

2.2 Model Overview

The model combines a stochastic two-stage optimization-based grid expansion model with a distribution
network hosting (HC) capacity assessment. We develop six scenarios which generally represent economic,
regulatory and technology uncertainty. Together, they capture different anticipated relationships among
model parameters such as capital costs, operational cost, demand growth, renewable targets and carbon
tax. First, the transmission and generation expansion model calculates an optimal solution considering only
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Figure 1: Stochastic integrated grid planning model flowchart

Figure 2: Model timeline on decision stages

transmission grid constraints. Then, at the distribution level, the proposed capacity of distributed solar PV
(DPV) energy mix is assessed subject to distribution network hosting capacity (HC) limits that consider
reverse power flow and voltage constraints. This cycle iterates until the proposed optimal solution satisfies
the transmission level constraints and distribution network constraints as depicted in figure 1.

The optimization model is established based on linearized DC power flows, while the distribution network
hosting capacity is assessed using non-linear steady state power flow analysis. To evaluate the effects of
distributed solar PV (DPV) in lower level network, we introduce a distribution corridor that connects the
transmission and distribution nodes. Also, we consider two distinct types of solar PV in the case study;
dispatchable large-scale solar (LPV), which is connected to the transmission network, non-distpatchable
distributed solar (DPV) which is connected to the distribution network. In addition, we include three battery
storage types in this model; grid scale, controllable Distribution Service Operator (DSO) operated storage,
and uncontrollable distribution-connected domestic storage. We conduct a sensitivity analysis for different
configurations of battery types in the network.

2.3 Timeline and Model Objective
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There are two decision points for investment and three periods of energy market operations as depicted in
figure 2. In 2015, the planner decides on transmission investment and the generators commit to building new
plants which are assumed to be fully commissioned starting 2025. The second point of investment decisions
occur in the year 2025 and the built assets will come into operation in year 2035. Note that, after the second
stage decision in 2025, only dispatch decisions are made for the next 25 years until 2050, so the model has
combined planning horizon of 35 years.

The model minimizes the total expected cost of grid investment and operations taking into account grid
network constraints, build constraints, resource limitations, and solar generation target. The total expected
cost includes capital expenses for new transmission, generation, and battery storage investment and also
grid operation cost including generation margin, battery discharge cost and carbon tax. The overall model
objective function is formulated in (1) consist of total cost for each stage, e, defined in (2), (3) and (4).

min

{
tc1 +

∑
s

ρs

[(
1

1 + i

)10

tc2s +

(
1

1 + i

)10

tc3s

]}
(1)

tc1 =
∑

CX1x1 +
∑
nk

CY1ky1nk +
∑
nb

CZ1bz1nb (2)

tc2 =
∑

CX2sx2s +
∑
nk

CY2skx2snk +
∑
nb

CZ2sbz1snb

+
8760

N

10∑
t=1

(
1

1 + i

)t−1∑
npk

(CV2sk + EskCP2s)g2snpk +
∑
nkp

CD2sbr
d
2snpb

(3)

tc3 =
8760

N

15∑
t=1

(
1

1 + i

)t−1∑
npk

(CV3sk + EskCP3s)g3npk +
∑
nkp

CD3sbr
d
3snpb (4)

2.4 Model constraints

2.4.1 Transmission network and generation

The transmission nodes are connected in mesh and each transmission line is represented by a single bidi-
rectional corridor l, where the active power flow is limited to the total available capacity at each period.
Using a linearized DC approximation of power flows, Kirchoff’s current law (KCL) and Kirchoff’s voltage
law (KVL) are defined in (5) and (6). The reference or slack node angle is set to 0, and transmission and
generation investments are non-negative.∑

k/∈Ks

gesnpk +
∑
k∈Ks

(gesnpk − spillesnpk) +
∑
b∈B

rdesnpb

−
∑
l

fesp −Qenp −
∑
b∈B

rcesnpb + nseesnp = 0 (5)

fespl − γesl(θesnp − θesmp) = 0 (6)
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−(Xl + x1l) ≤ f2slp ≤ (Xl + x1l)∀l, p (7)

−(Xl + x1l + x2slp) ≤ f3slp ≤ (Xl + x1l + x2slp)∀l, p (8)

The electricity output generated by non-solar generators are limited by the available plant capacities at each
stage taking into account the generators’ efficiency or load factor, LF in (9) and (10).

0 ≤ g2snpk ≤ (Ynk + y1nk)LF k∀n, p, k ∈ KC (9)

0 ≤ g3snpk ≤ (Ynk + y1nk + y2snk)LFk∀n, p, k ∈ KC (10)

We include a security or reserve margin in equation (11) and equation (12) to ensure enough reserve capacitiy
is installed; this is a common approximation of more detailed security constraints which would complicate
the model unnecessarily. ∑

nk

(Ynk + y1nf ) ≥
∑

Q2snp(1 +RM)∀s, p = peak (11)

∑
nk

(Ynk + y1nf + y2nf ) ≥
∑

Q3snp=peak(1 +RM)∀s, p = peak (12)

In addition, to evaluate the effect of the intermittent energy generated by solar PV generators, ramping limits
(13), (14), energy spillage (15) and load shedding (16) are also considered.

gesnpk − gesn,p−1,k ≤ RLk∀e, s, p, n, k (13)

gesn,p−1k − gesn,p−1,k ≤ RLk∀e, s, p, n, k (14)

0 ≤ spillesnpk ≤ gesnpk∀e, s, p, n, k ∈ Ks (15)

0 ≤ nseesnp ≤ Qesnp∀e, s, n, p (16)

Finally, constraint (17) defines a solar generation target at every stage e.∑
npk

gesnpk ≥ REes

∑
np

Qesnp∀e, k ∈ Ks (17)

For all types of generators including solar PV and battery storage, those technologies are limited to the
availability of resources, siting and built constraints.
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2.4.2 Solar photovaltaic (PV)

We consider two types of solar PV; dispatchable large solar PV (LPV) and non-dispatchable distributed
solar PV (DPV). The grid operator has the ability to control the energy generated by the LPV but the
energy generated from DPV will flow into the distribution network without any control. These distinct
characteristics of the two solar PV technologies are reflected in (18), (19), (20) and (21). In this model, LPV
is connected to the transmission grid and DPV is installed only in the distribution network.

0 ≤ gS2npk ≤ (Ynk + y1nk)SPep∀n, p, k ∈ Ks (18)

0 ≤ gS3npk ≤ (Ynk + y1nk + y2nk)SPesp∀n, p, k ∈ Ks (19)

0 ≤ gS2npk = (Ynk + y1nk)SPep∀n, p, k ∈ Ks (20)

0 ≤ gS3npk = (Ynk + y1nk + y2nk)SPep∀n, p, k ∈ Ks (21)

2.4.3 Battery storage

Next, we add battery storage modeling components and for practical reasons, we consider only Li-Ion bat-
tery storage which is one of the most commonly used technology. There are three battery storage types
used in this model to represent grid scale battery storage, which is fully dispatchable in a similar way
as transmission-connected generation capacity; controllable Distribution Service Operator (DSO) operated
storage, which is dispatchable by the DSO but connected to the distribution network, and uncontrollable
distribution-connected domestic storage. We use a generic representation of an ESS, with the energy capac-
ity (MWh stored) and power conversion (MW input/output) components decoupled [10, 4, 6]. In general,
ESS can provide intra-day energy arbitrage services to improve load factors, discharging during peak peri-
ods to minimize the utilization of expensive peaker generators, and charging during high renewable resoure
periods, provide inter-seasonal storage, and provide a number of ancillary services, among a number of
other uses[5, 1]. For the purpose of this study, all types of battery are only utilized for peak shaving and load
shifting while minimizing costs. The characteristic of ESS are modeled in 22, 24, 25, 26, 27. Please note
that battery storage is not constrained by ramp rates, as it is sufficiently flexible at our temporal resolution.

resnpb = rdesnpb − rcesnpb (22)

−(Znb + z1nb) ≤ r2snpb ≤ Znb + z1nb (23)

−(Znb + z1nb + z2snb) ≤ r3snpb ≤ Znb + z1nb + z2snb (24)

rsesnpb = rsesnp−1b − rdesnpb +RTbr
c
esnpb (25)

rs2snpb ≤ (Znb + z1nb)Hb (26)

rs3snpb ≤ (Znb + z1nb + z2snb)Hb (27)

2.4.4 Distribution network hosting capacity (HC) assessment

As depicted in figure 1, the proposed DPV capacity at each distribution node from the high-level grid
planning model is further analyzed using a distribution network hosting capacity (HC) assessment. Reactive
power flow and voltage at each bus within the network is evaluated using a steady state AC power flow
analysis. The hosting capacity is measured using the solar penetration level, SMn and home storage level
SBn subject to reverse power flow constraints and voltage limits in the distribution network.
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Figure 3: Mathematical representation of grid network

To evaluate the firm level effect of DPV and small scale storage, we introduce an additional corridor that
connect the transmission and distribution nodes as shown in figure 3. The negative effects caused by high
levels of distribution-connected solar generation includes voltage violations and back-feed to the trans-
mission source, which could create instability within the systems. Thus, we set zero reverse flows to the
transmission node in equation (28) and impose low voltage limits are set at 0.95 pu and maximum limits set
at 1.05 pu (29); these are common regulatory constraints in current distribition networks.

feslp ≤ 0, l ∈ LD (28)

0.95pu ≤ Vn=ND ≤ 1.05pu (29)

The allowable home storage and distributed solar penetration in distribution nodes is specified in (30). Rel-
evant assumptions and parameters applied for the established distribution network are detailed in the next
section. ∑

npk

gesnpk ≥ SMn

∑
np

Qenp∀e, n ∈ ND, k ∈ KDS (30)

∑
npb

rdesnpb ≥ SBn

∑
np

Qenp∀e, n ∈ ND, k ∈ KDS (31)

In our model, hosting capacity assessment is done iteratively until the DPV and home storage levels satisfy
distribution network constraints (i.e., reverse power flow and voltage limits). If the proposed DPV and home
storage level exceed the constraints, the model will successively reduce DPV and home storage level which
will set a new limit for both distributed PV and home storage in the upper level optimization model as shown
in figure 4.

2.5 Model Outputs

The above model has calculate the optimal stochastic solution by minimizing the total cost of transmission
and generation investment and usage. Using this model, we will first establish how including a distribution
system HC analysis affects the optimal solution. Then, the effect of uncertainty is analyzed based on two
economic metrics: expected value of perfect information (EVPI) and expected cost of ignoring uncertainty
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Figure 4: Hosting capacity assessment model
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(ECIU). Finally, we examine a case where battery storage investment is sequential to grid investment and
takes place after the uncertainty is resolved.

2.5.1 Impact of hosting capacity (HC) constraints on grid investment

We have previously shown that in a deterministic integrated planning model, distribution network constraints
have a significant impact on the overall investment. The current model combines a stochastic two-stage plan-
ning model and distribution hosting capacity (HC) assessment. Depending on the problem, HC enhancement
techniques varies from, active network management (ANM), network reinforcement, application of on load
tap changer (OLTC), energy storage and harmonics mitigation. In this paper, we apply hosting capacity
(HC) enhancement techniques by connecting small scale Li-Ion battery storage in the distribution network;
controllable Distribution Service Operator (DSO) owned storage, and uncontrollable distribution-connected
domestic storage. In this way, distribution network HC limits will increase to allow higher penetrations of
distributed solar PV (DPV). The model is used to evaluate HC enhancement techniques on grid investments
under uncertainty.

2.5.2 Expected Value of Perfect Information

In decision theory, the EVPI is the price that one would be willing to pay for perfect information, and
therefore the upper bound to the value of an improved forecast [13]. It also demonstrates the economic
impact caused by uncertainty. The EVPI is calculated by comparing the total cost of the stochastic model to
a model where both transmission system operators (TSOs) and generators have perfect information. After
solving the stochastic model, a perfect foresight deterministic model is used to obtain a minimum cost for
each scenario independently. The EVPI is then calculated as the difference between the total expected
cost from stochastic solution and the probability weighted average of the scenarios’ deterministic cost. In
addition, we calculate EVPI without considering the distribution network constraint to determine the value
of detailed information about distribution network, which is managed by the distribution service operator
(DSO).

2.5.3 Expected Cost of Ignoring Uncertainty

The expected cost of uncertainty (ECIU) is calculated by comparing the optimal solution from a naive first
stage decision and the stochastic solution. Before calculating the ECIU, one selected naive scenario is
solved using the deterministic model to obtain the first stage transmission investment. Then, the first stage
transmission investment is imposed as a constraint in a full stochastic model to obtain the optimal solution.
This represents a situation in which planners decide in the first stage based on only one specific scenario
even though there are other possible scenarios that could occur. In the second stage, the expansion plan is
made according to the scenario that has occurred. In this paper, similar approach to the previous literature,
we consider the average of the expected for each naive scenario as the overall ECIU. The ECIU is calculated
as the expected cost increase when the first stage stochastic model is constrained to adhere the first stage
naive decision. This metric critically depends on the selection of the naive scenario. If the ECIU is zero,
a deterministic model can be used but if the value of ECIU is significant, the two stage stochastic model is
expected to save costs.

2.5.4 Co-optimized and sequential approach

We consider two different approaches for battery storage investment planning [4]. First, a co-optimized
approach where battery storage investment is planned together with grid investment planning in the first
stage and similar lead time is assumed. In the second case, battery storage is planned and constructed during
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the operational period, after grid investment is finalized, and we refer this as a sequential approach. This
could potentially reduce the expected cost because the decision to invest in battery storage is made after the
uncertainty is resolved. In this case, the the total cost formulation and battery storage investment constraints
are given in 32, 33, 34, 35, and 36.

tc3 =
∑
nb

CZ2sbz1snb +
8760

N

15∑
t=1

(
1

1 + i

)t−1∑
npk

(CV3sk + EskCP3s)g3npk +
∑
nkp

CD3sbr
d
3snpb (32)

−(Znb + z2snb) ≤ r2snpb ≤ Znb + z2snb (33)

−(Znb + z2snb + z3snb) ≤ r3snpb ≤ Znb + z2snb + z3snb (34)

rs2snpb ≤ (Znb + z2snb)Hb (35)

rs3snpb ≤ (Znb + z2snb + z3snb)Hb (36)

Note that one significant difference between both cases is the assumed lead time. In the co-optimized case, a
10 years lead time is assumed, which is similar to transmission line and generator lead time. In the sequential
approach the lead time for battery storage is less than a year.

3 Assumptions and Data

3.1 Transmission and generation characteristics

The transmission network in Malaysia is operated at 132kV, 275kV and 500kV, but for simplicity we for-
mulate a high level network model based on the 275kV and 500kV network. 13 transmission nodes are
modeled; these represent the main cities in Malaysia. The same representation is commonly used by the
Malaysian regulators and utilities [7, 9, 8]. Transmission line losses and the effect of aggregating the
transmission lines and generators are not considered in this paper. To demonstrate the interactions be-
tween transmission and distribution network, we establish a corridor that connects a distribution node to
each transmission node. This corridor represent the lines or cables connecting distribution substations and
transmission main intake. However, as congestion on these lines is unlikely, detailed parameters of both
connecting points are not considered and unlike the transmission corridor, the distribution corridor is not
subject to thermal constraints.

All generators are allocated to the nearest nodes, using data on actual generation capacities. The distance
between the nodes are calculated based on the location of the main cities in Figure 5. In reality, tramission
corridors may not be straight lines, but this is unlikely to affect the intended objective of this paper. Generator
efficiency, technical and cost parameters are obtained from [2, 13] and own assumptions which are listed in
1. Zero carbon emissions are assumed for all hydro and solar generators. Capital costs of new transmission
and generation capacity are overnight investment costs; i.e. net present values of construction costs and
other fixed costs. Only solar, hydro and biomass plants are considered to be renewable and both types of
solar PV can count towards the solar target. As hydro capacity in Malaysia is largely controlable, instead of
run of river, and the amount of wind generation is negligible, the only source of intermittency is solar PV
capacity.
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Figure 5: Malaysia Grid Network Model

Plant Type Load Factor

(%)

CO2 Emission

(tonne/MWh)

Operation Cost

(USD/MWH)

Capital Cost

($/MW)

Ramping Rate

(MW/hr)

Biomass 38 0.093 4.2 4060000 240

CCGT 59 0.353 2.97 1014000 960

Coal 46 0.748 4.15 2264000 240

Diesel 55 0.8 7 1139000 420

Hydro 64 0 2.46 2493000 9000

OCGT 32 0.53 4.17 699000 3000

LPV 17 0 1 1436000 N/A

DPV 17 0 0 2297000 N/A

Table 1: Power plant cost and technical characteristic - 2015
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Node
Installed Capacity (MW)

Bio CCGT Coal Diesel Hydro OCGT LPV DPV

1 650

2 5.41

3 3.95

4 14.13 660 3080 9.77

5 14.39 1943 1486 900 820 54.02

6 23.4 1584 1400 2.2 436.4 34.41

7 1411 434 15.57

8 17.85 1042 2100 210 10.4

9 16.83 275 7.31

10 6.38 20.89

11 1029 650 5.62

12 44.3 480 171.96 614.8 867.6 0.3

13 54.19 1034.2 332.8 97.86 18.14

Table 2: Generator installed capacity

The list of existing generators taken from [8] and [9] is summarised in table 2. As a result of the current
Malaysian Feed in Tariff (FiT), most solar capacity is scattered throughout distribution networks, and in
many cases, consists of rooftop solar installed in residential areas, at the point of final electricity consump-
tion. To represent solar output variability in the upper level optimization model, we use MERRA2 solar
generation data extracted from [11] for all major cities in Malaysia and normalised to a per unit value. So-
lar generation starts after 7.30 am and reaches its peak between 12pm to 3pm, which is similar to solar
generation patterns used in previous research in [12][14]. To assess the impact of different levels of solar
penetration on the distribution network, the lower-level model uses the built-in Open Distribution Simula-
tion Software (OpenDSS) solar PV module to represent a cluster of solar PV connected within distribution
network. Because Malaysian weather patterns are very stable and only vary from the dry to the rainy sea-
son, we use two 24-hour solar and demand patterns that capture the highest weekly average and the lowest
weekly average in a year.

3.2 11kV Distribution

Using OpenDSS [3], we formulate a ten-bus network model based on typical settings of a 11kV distribution
network in Malaysia. Distribution networks in Malaysia are operated at three voltage levels: 33kV, 11kV
and 400V (the latter is also referred to as low-voltage). Most Malasyian customers are connected to the
distribution network, and a majority of the residential customers are connected to low-voltage network.
However, the aggregation and equivalent impedance of the 33kV transformer, 11kV feeders, distribution
transformers and low-voltage networks are not required for our purposes. In contrast, time series simulation
is required to evaluate the distribution network hosting capacity. Our ten-bus network model based is shown
graphically in figure 6.
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Characteristic Quantity

Power Transformer Rating 30MVA

Total Load 17.1MW

Power Factor 0.97

Average Cable Length 1km - 2km

Table 3: Network Characteristic

Generally, there will be two 33/11kV power transformers operating in parallel in most 33kV substations in
peninsular Malaysia. For operational reasons, the system planner would plan for peak demand to be capped
at 50% to 75% of the network total capacity. The reason for this is to ensure demand is fully or at least
partially transferable to another transformer within the same substation in case of a failure in one power
transformer. That will ensure fast restorations of supply and contributes to prudent asset management by
having a longer lifespan of power transformers. However, for simplicity, and because we do not consider
outages here, this typical configuration is omitted in the network model used for this paper. Thus, we assume
that only one power transformer is connected to the modeled network.

For the 11kV outgoing feeder, we model a single radial feeder to further simplify the analysis; actual feed-
ers are usually inter-connected in mesh, although connections between feeders are mostly redundant and
used during outages or maintenance only. At each 11kV substation, voltages will be stepped down from
11kV to 400V by distribution transformers. The effects of aggregation for each case of reverse power flow,
voltage rises and network losses are validated at the preliminary stage of this research, showing minimal
and insignificant differences between the simplified model and a more complex, realistic model, giving
confidence that our results are not affected by these simplifications.

The network is modeled based on a 11kV distribution network in a highly populated area in Malaysia where
the average distance between substations is 1km to 2km. Therefore, it is assumed that all buses are connected
by 300mmp Three-Core 11kV Armoured Cables (Aluminium Conductor) and the distance between buses
is set to 2km. Due to data limitations, electrical properties of the power transformer and cables are set
according to technical specification manuals from major suppliers of those equipment in Malaysia. The
final network model in figure 6 is based on the characteristic summarised in table 3.

3.3 Demand

Peak demand for each node is extracted from [9] and disaggregated based on own assumptions to calculate
peak demand data for each transmission and distribution node. Then, each node is assigned to a demand
pattern based on three typical demand categories identified in Malaysia. Demand aggregations and classi-
fications are established based on the economic and demographic of each state. We then use three sets of
actual hourly demand data from a representative day (5thSeptember 2016) extracted from energy meters
installed at the major substations in Klang Valley, Malaysia, to generate demand time series for residen-
tial, commercial and industrial loads, representing the three typical demand types in Malaysia depicted in
figure 7.

The main characteristic of residential demand is the low energy consumption between 7am until 6.30pm
during working hours and rush hours. Energy usage starts to increase after 7.00pm and gradually decreases
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Figure 6: Distribution Network in Peninsular Malaysia

Figure 7: Demand patterns
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around 10.30pm. In contrast, commercial demand patterns will reach their peak consistently for a few hours
after 10am where most business transactions take place and are subsequently reduced after 6.30pm. On the
other hand, industrial demand patterns appear to be flat with minor fluctuations within 0.75 - 1 per unit value;
this data was extracted from the main substation which supplies an area of heavy industries that operates 24
hours a day. It is possible that other industrial areas will have different demand patterns, but it is impossible
to consider all of those. We therefore focus on this representative case study.

Node
Peak Demand (MW) Demand

Category

Availability

Total Tx

Node

Dx

Node

Tx

Node

Dx

Node

Bio CCGT Coal Diesel Hydro OCGT LPV DPV

1 92.29 4.61 87.67 I R 1 1 1 1

2 1033.18 103.32 929.86 I R 1 1

3 1633.90 490.17 1143.73 I R 1 1

4 1464.51 366.13 1098.38 I R 1 1 1 1 1 1 1

5 7291.07 2916.43 4374.64 C R 1 1 1 1 1 1

6 769.92 115.49 654.43 I R 1 1 1 1 1 1

7 697.09 34.85 662.24 I R 1 1 1 1

8 2927.71 731.93 2195.78 I R 1 1 1 1 1 1

9 720.41 144.08 576.33 I R 1 1 1

10 402.73 60.41 342.32 I R 1 1 1 1 1

11 428.20 42.82 385.38 R R 1 1 1

12 2288.00 343.20 1944.80 C R 1 1 1 1 1 1 1 1

13 914 91.40 822.60 C R 1 1 1 1 1 1 1
Tx− Transmission
Dx−Distribution
I − Industrial
C − Commercial
R−Residential
1−Available
Blank −Not Available

Table 4: Demand and resource availability

In the distribution network hosting capacity (HC) assessment model, total peak demand is assumed to be
evenly distributed at each phase and node, for lack of more detailed information about the distribution of de-
mand over the network. The total demand is set at 17.1 MW or 60% of the total transformer capacity which,
as explained above, is a realistic level. Also, residential demand patterns are assigned to all distribution
nodes and buses with an average power factor of 0.97, corresponding to the actual demand data mentioned
above. Resource availability and demand parameters for each node is are listed in table 4.
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3.4 Scenarios

We establish six scenarios s, defined by the cost parameters, demand growth, renewable targets and carbon
prices to represent regulatory, technological, and economic uncertainty. In the ’Status Quo’ scenario, there
are no major changes in any parameter that influences transmission and generation planning. The gas price
is expected to increase resulting in moderate escalation of thermal generation costs and capital costs. In
this scenario, demand growth is set at its current rate of 40 - 50%, solar targets are unambitious and carbon
prices are not enforced.

In the ’Off-grid’ scenario, system-level demand is expected to reduce due to the increased amount of self-
consumption in the distribution network. The capital and operational costs for distributed generation and
battery storage are low, making them more attractive. Transmission investment is assumed uneconomical in
this scenario and ambitious renewable objectives are implemented.

The third scenario, ’Decarbonization’, favours renewable generation, with conventional generation costs in-
creasing significantly while the cost of renewable generation reduces as a result of government subsidies and
decarbonization policies. Ambitious renewable targets and high carbon prices are will eventually remove
thermal generators like coal plant from the merit order altogether. However, there is a residual need for
flexible generators, which is reflected in a moderate cost increase for this technology.

In the fourth scenario, ’No storage’, investment in any type of energy storage system (ESS) is uneconomical
due to the absence of supporting policies or regulation to encourage the development of battery storage
which could potentially drive down costs. Unlike ESS technology, conditions for renewable generators
are favorable as a result of simultaneous reduction in prices, implementation of renewable targets and high
carbon prices, similar to the ’Decarbonization’ scenario.

The ’Technology’ scenario emphasizes on cost decreases resulting from technological advancement and
industrialization, which also translate into higher demand growth (50 - 70%). Consequently, the projected
cost for all generating plants and transmission investments are significantly reduced. However, as compared
to the conventional generators, this scenario favors of new technologies including biomass, solar PV and
battery storage.

Finally, the ’Low cost conventional’ scenario also features a higher demand growth. In term of cost, this
scenario simulates a favorable environment for conventional generators, with a simultaneous decrease in gas
prices and thermal plant capital costs. However, high carbon prices are imposed by the regulator, but with
low renewable targets and an unchanged cost for renewable technologies.

4 Result and discussion

4.1 Hosting capacity assessment

First, we consider the added value of including a distribution network HC assessment in a high-level trans-
mission and generation expansion model. Table 7 summarizes the total cots of transmission and generation
expansion planning over the modeled time horizon for the upper-level model only (without HC), for the
combined model (with HC), and the combined model where DSOs actively manage their network using
energy storage. As this table shows, accounting for distribution network constraints has increased the total
discounted system cost by 0.91% or $2.47 billion. Note for the first two cases, only grid size battery storage
is considered.
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Scenario Operating Cost Capital Cost Transmission

investment

cost

Demand

growth

Carbon Price

(USD/tonne)

RE Target

(% of total

electricity

production)

Status Quo Conv +20% Conv +20% 40% None 10%

Off-grid Conv +20%, RE -25%

LPV -25%, DPV -40%

LBS -25%, DBS -40%

Home -40%

Conv +15%, RE -25%
LPV -25%, DPV -50%
LBS -25%, DBS -50%

Home -50%

N/A 40% 15 30%

Decarbonization Conv +20%, RE -25%
LPV -25%, DPV -25%

LBS -25%, DBS -25%

Conv -15%, RE -25%
LPV -25%, DPV -25%
LBS -25%, DBS -25%

Home -25%

5% 40% 30 40%

No-ESS Conv +20%, RE -25%
LPV -25%, DPV -25%

Conv -15%, RE -25%

LPV -25%, DPV -25%

5% 40% 30 40%

Technology Conv & Hydro -15%

Bio -30%, LPV -30%
DPV -30%, LBS -30%

DBS -30%

Conv & Hydro -10%

Bio -20%, LPV -20%
DPV -30%, LBS -20%

DBS -30%, Home -35%

-30% 50% 15 20%

Low cost

conventional

Conv &

Hydro -15%

Conv &

Hydro -10%

5% 50% 30 10%

Conv - conventional plant
RE - renewable plant
LPV - Large PV
DPV - Distributed PV
LBS - Grid size battery storage
DBS - DSO owned battery storage
Home - Domestic battery storage

Table 5: Stage 1 scenarios (change from 2015)
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Scenario Operating Cost Capital Cost Transmission

investment

cost

Demand

growth

Carbon Price

(/tonne)

RE Target

(% of total

electricity

production)

Status Quo Conv +25% Conv +15% 50% None 20%

Off-grid Conv +25%, RE -30%
LPV -30%, DPV -60%
LBS -30%, DBS -60%

Home -60%

Conv +15%, RE -25%
LPV -30%, DPV -70%
LBS -30%, DBS -70%

Home -70%

N/A 50% 30 60%

Decarbonization Conv +25%, RE -30%
LPV -30%, DPV -30%

LBS -30%, DBS -30%

Conv +15%, RE -30%
LPV -30%, DPV -30%
LBS -30%, DBS -30%

Home -30%

7% 50% 60 80%

No-ESS Conv +25%RE -30%
LPV -30%DPV -30%

Conv +15%RE -30%

LPV -30%DPV -30%

5% 60% 60 80%

Technology Conv & Hydro -20%

Bio -35%, LPV -35%
DPV -40%, LBS -35%

DBS -40%

Conv & Hydro -15%

Bio -25%, LPV -30%,
DPV -50%, LBS -30%

DBS -50%, Home -55%

-50% 70% 30 40%

Low cost

conventional

Conv &

Hydro -20%

Conv &

Hydro -15%

7% 70% 60 20%

Conv - conventional plant
RE - renewable plant
LPV - Large PV
DPV - Distributed PV
LBS - Grid size battery storage
DBS - DSO owned battery storage
Home - Domestic battery storage

Table 6: Stage 2 scenarios (change from 2015)
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Without HC With HC HC Enhanced

Stage 1 Line Investment (GW) 9.19 6.05 6.98

Stage 1 Cost ($ bil) 148.57 149.79 150.25

Expected cost ($ bil) 271.62 274.09 271.72

Table 7: First stage investment and expected cost

Figure 8: Solar generation mix

Without considering distribution network constraints, the model proposes a significant amount of transmis-
sion line investment in the first stage decision to fully utilize the cheaper energy generated by both large solar
PV (LPV) and distributed solar PV (DPV) in the second period of operation after the year 2025. As figure 8
shows, higher DPV investment is proposed to reduce the net demand at the distribution level so the energy
generated from LPV can be utilized within the transmission network. When HC constraints are imposed,
the overall amount of DPV is significantly reduced at some distribution nodes where, in otherwise HC limits
would be exceeded. However, due to the fixed solar target, some of this DPV investment is shifted to other
distribution nodes, including those with lower solar resources. Also, due to the non-dispatchable character-
istic of DPV and in the absence of small scale battery storage to mitigate this problem, larger LPV capacity
is required, which is more expensive than DPV. Therefore, investing more in transmission reinforcement is
not economical.

In this paper, we consider distribution service operator (DSO) owned storage and home storage to study
the effect of distribution network HC enhancement techniques. There are other commonly applied HC
enhancement technique such as power quality mitigation, active network management, and distribution
network reinforcement to increase DPV penetrations - we do not consider these explicitly, but we would
expect very similar results. In our model, HC enhancement leads to cost reductions of nearly $2.37 billion
in NPV terms. Anticipating a higher solar penetration and lower generation costs resulting from higher
utilization of small scale battery storage (DSO owned and home storage), 6.98GW of line investment is
proposed in the first stage.
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Figure 9: New Investment

4.2 Optimal stochastic solution and scenario analysis

We now present the results of the integrated model in more detail. In the stochastic optimal solution, we
observe a significant amount of transmission investment in the first stage that connects generation sources
to high demand nodes. Almost half of the total line investment takes place in the first stage. This can be
explained in two ways. First, decisions taken in year 2015 will take into account all possible scenario that
could occur in year 2025 due to the 10 year lead time of transmission investment. Due to ambitious solar
target in three scenarios, the construction of solar generators must start earlier, in the first stage, if these
constraints are to be met. Similarly, high demand growth requires new generators to be built in the first
stage. Even if it is unlikely that both an ambitious solar target and high demand growth will occur, even a
small chance of occurrence will require generators to be built earlier, in the first stage. Hence, transmission
investment is chosen to transport the generated power and satisfy all constraints, including in the extreme
scenario. This also includes distribution network constraints, which are evaluated using HC assessment.
Secondly, it may be optimal to invest earlier, anticipating the needs for future line investment. In this way,
the generation cost is be reduced while renewable objectives are met.

Note that in our model, battery storage technology is only used for load shifting and peak shaving. No
grid size battery storage and DSO owned battery storage is used in the first stage, because the first-stage
solar target is low and can be achieved by integrating LPV, DPV and home storage in the network. In the
second stage decision, additional DSO owned storage and home storage is constructed in the ’Off-grid’
scenario to allow higher DPV penetrations. As shown in figure 9, grid battery storage only comes in in the
’Decarbonization’ scenario.

In all scenarios, CCGT and hydro is utilized for base load as depicted in figure 10 and CCGT dominates
in only three scenarios; ’No storage’, ’Technology’ and ’Low conventional cost’. It is interesting to note
that OCGT is not utilized after 2035 in the ’Off-Grid’ and ’Decarbonization’ scenarios which are designed
to favour renewables through ambitious solar targets and higher carbon prices. In both scenarios, DSO
owned storage and home storage are used to mitigate the non-dispatchable characteristic of DPV in the
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Figure 10: Energy Mix

distribution network. Furthermore, in the ’Decarbonization’ scenario, large battery storage facilities are
utilized to replace OCGT, as a result of the higher carbon price. For the same reason, the utilization of coal
plant is at its minimum in this scenario.

Unsurprisingly, we observe the highest DPV mix in the ’Off-grid’ scenario, which increases self-consumption
and reduces dependency on larger generation facilities.This approach could reduce the overall cost of elec-
tricity generation, but that is not necessarily the case due to price and technology uncertainty. Despite this,
the first stage investment decision provides an indicative transition plan to be implemented accounting for
future uncertainty. We observe a higher utilization rate of some technologies in the third operational period
(2035), which means that investments made in the first stage are being used only after 2035 as in 8.

Table 8show how the average capacity factor varies for each scenario. In StatusQuo, thermal and hydro
are used as base load plant. In Off-grid, capacity factors decrease significantly, except for DPV and home
storage. In the Decarbonisation scenario, coal utilisation drops even lower because of the high carbon price;
the No Storage scenario is similar. In the Technology and Low Cost conventional scenarios capacity factors
are higher, particularly for coal.

4.3 Uncertainty

4.3.1 Expected value of perfect information (EVPI)

We now calculate transmission-generation EVPIs. Table 9 list the costs of each scenario obtained from the
deterministic planning model assuming both transmission planners and generators have perfect foresight.
The EVPI of 9.13% is calculated as a percentage difference between the expected cost from the stochastic
model and a probability weighted average of the total deterministic cost in each scenario. This represent
the upper bound to the value of an improved forecast. This EVPI is large, especially compared to previous
studies, indicating that uncertainty has a significant effect in our model.
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Scenario Biomass CCGT Coal Diesel Hydro OCGT LPV DPV

Period 2 (2025)

Status Quo 0 0.38 0.45 0.06 0.64 0.04 0.03 0.17

Off Grid 0 0.28 0.31 0.06 0.58 0.05 0.12 0.17

Decarbonization 0 0.28 0.29 0.06 0.57 0.06 0.17 0.17

No storage 0 0.28 0.29 0.06 0.57 0.06 0.17 0.17

Technology 0 0.33 0.46 0.11 0.64 0.14 0.08 0.17

Low Cost Conventional 0 0.42 0.46 0.11 0.64 0.14 0.03 0.17

Period 3 (2035)

Status Quo 0 0.33 0.46 0.11 0.64 0.14 0.08 0.17

Off Grid 0 0.29 0.25 0.00 0.54 0.00 0.17 0.15

Decarbonization 0 0.32 0.14 0.09 0.49 0.00 0.17 0.16

No storage 0 0.32 0.15 0.10 0.50 0.16 0.17 0.16

Technology 0 0.34 0.34 0.17 0.58 0.25 0.17 0.16

Low Cost Conventional 0 0.46 0.23 0.21 0.64 0.20 0.09 0.17

Table 8: Average capacity factor (ACF)

Scenario Total Cost (USD

Billion)

Savings from perfect

info (USD Million)

Stochastic 271.72

StatusQuo 159.11 112.61

Off Grid 237.43 34.29

Decarb 312.26 -40.54

No-ESS 318.72 -47.00

Techno 209.60 62.12

LCC 195.69 76.03

EVPI 24.81 (26.71)

EVPI (% Stochastic cost) 9.13% (9.88%)

Table 9: Expected Value of Perfect Information
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Scenario Total Cost (USD

billion)

Cost of Ignoring

Uncertainty (USD

billion)

Stochastic 271.72

StatusQuo 272.80 1.08

Off Grid 271.74 0.02

Decarb 271.74 0.02

No-ESS 271.78 0.06

Techno 271.79 0.07

LCC 272.62 0.90

ECIU 0.36 (0.13%)

Table 10: Expected Cost of Ignoring Uncertainty

Using the same metric, we calculate the EVPI without accounting for distribution network constraints or
hosting capacity (HC) limits to calculate the upper bound value of information related to the distribution
network. Then, we calculate the difference between both EPVI; with and without HC limits. The EVPI for
both cases differs by nearly $1.9 billion or 0.75%. This indicates that uncertainty is especially important in
a model that considers distribution network constraints.

4.3.2 Expected value of ignoring uncertainty (ECIU)

In this section, we calculate a transmission-only ECIU. Each scenario is solved using deterministic model to
determine the native first stage transmission decision. Then, the first stage naive decision is imposed on the
stochastic model as an additional first stage constraint. This demonstrates how the naive decision made by
the planner in the first stage will impact the decision in the second stage where the uncertainty starts to have
an effect The result obtained from this exercise is compared against the expected cost from the stochastic
model as in table (10).

From table 10, the resulting ECIU, 0.13% of the stochastic cost indicates the cost of ignoring the uncertain-
ties. However, the scenario-dependent CIU depends to a large extent on the selection of naive scenario. Two
scenarios jump out in particular: ’Status Quo’ and ’Low cost conventional’. The cost of ignoring uncertainty
are significantly higher for both scenarios due to its low transmission and generation investment in the first
stage resulting in a larger investments requiremenmt in second stage. Hence, if a deterministic model is
used, making sure that this captures future renewable development is crucial.

4.4 Comparison between co-optimized and sequential approach

In this case study, we compare two different battery storage planning approaches; co-optimized and sequen-
tial. The former optimizes battery storage investment together with transmission and generation investment
while the latter optimizes battery storage later during the operational period after transmission and genera-
tion investments are finalized. This is perhaps more consistent with current practice, in which battery storage
investment, including home storage investment, takes place as part of distribution network hosting capacity
enhancement.
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Table 11: Energy mix for co-optimized and sequential approach

The expected cost is reduced by 0.63% ($1.7 billion) in the sequential approach, which can be explained in
several ways. First, in the co-optimized approach, a 10 year lead time is assumed for all types of battery
storage, similar to generation and transmission project lead times. In the sequential approach, the model
assumes that all types of battery storage will be in operation within a year. All other parameters are similar
throughout. Second, if battery storage investment is decided in the operational period, this allows planners to
decide with a better understanding of which scenario will occur. Notwithstanding the potential cost increase
of energy storage with a shorter lead time, which we do not model, the result implies that being able to
wait and see which scenario will occur, and being able to plan energy storage with shorter lead times, has
significant benefits, and significant impacts on the generation mix.

5 Conclusions

In this paper, we have proposed and demonstrated a stochastic integrated planning model that allows distri-
bution network hosting capacity (HC) constraints to be included long term grid planning under uncertainty.
This is important especially in countries where distribution-connected solar PV capacity is expected to play
a large role in the energy mix. Current grid planning methods generally do not consider distribution net-
work constraints, and as a result, distribution system operators are facing increasing difficulties managing
voltages and reverse power flows. Our model quantifies the effects of these distribution network constraints,
their interactions with uncertainty about future demand, costs, and policies, and the value of energy storage
in resolving some of them. We apply our model is applied to a stylized representation of of the Malaysian
grid, where solar energy is expected to play a particularly large role.

Based on our findings, we conclude that distribution network constraints have a significant impact on the
overall planning and in our case study increase the total net present value (NPV) system cost by almost
1%, or close to $2.7 billion. This happens because hosting capacity limits reduce the amount of cheaper
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distributed solar PV (DPV) in the distribution network, forcing investment in more expensive renewable
technologies and/or shifting DPV to locations with lower quality solar resources. Integrating distribution
ssystem operator (DSO) operated battery storage and domestic home storage in the distribution network to
increase the hosting capacity goes some way to address this problem. The resulting higher DPV investment
in high-resource distribution networks results in cost reduction of 0.86% of total discounted system costs,
equivalent to $2.37 billion.

We also quantify the effects of uncertainty in our model by calculating the expected value of perfect infor-
mation (EVPI), including economic, policy, technology and uncertainty. This upper bound to the value of
better forecasts is, in our case study, around 10% of the overall system cost and hence, uncertainty has very
significant effects. Policy makers should therefore do all they can to minimise uncertainty. We also show
how including distribution constraints in the model increases the value of perfect information. We calculate
the expected cost of ignoring uncertainty; i.e., the cost of using a deterministic model, to be on the same
order of magnitude as the cost of distribution network constraints. Hence, efforts to use models that can
accommodate these constraints are at least as important as efforts to move to stochastic planning modelling
methods.

Finally, we evaluate the difference between a co-optimized and a sequential approach for battery storage
investment. In our case study, a sequential approach, where storage investment is postponed until some
uncertainty is resolved and until transmission and generation investments are made, can reduce the overall
cost by 0.63%. This demonstrates that there is value in waiting, and in reducing the lead time of energy
storage investment.

This paper has been a first attempt to address joint transmission and distribution network modelling for
planning purposes. More research on this topic is necessary, but we have demonstrated that our approach is
worth further analysis.
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