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Abstract 
Today, optimization models are by far the most popular choice when analyzing energy 

systems. Impressive advances in computer and data sciences have allowed for a multitude of 

complex energy system optimization models. The goal of our work is to assess the hopes of a 

positive relationship between the complexity of the model and the accuracy of the results. Up 

until now, a benchmarking of different complexity levels has only been performed for individual 

system components such as for the operational behavior of power plants, the transmission grid 

or the temporal resolution. We propose a framework based on alternative model formulations 

and apply it in a case study with 160 different, more or less complex implementations of power 

system optimization models for economic dispatch and investment decisions. Our results 

indicate that a certain degree of complexity is necessary for sufficiently accurate results, 

however, a careful balancing is required for an efficient use of computational resources. We 

find that most of the Pareto optimal implementations of dispatch models show temporal 

complexity (i.e. solving time) below 1.2% and spatial complexity (i.e. memory usage) below 

0.3% of the respective maximum complexity observed. We conclude that different formulations 

for the partial load efficiency of conversion processes can be recommended for each of the 

two decision problems we analyzed. We further find that a simple grid model comes with a 

minor increase in complexity compared to a copper plate model. The methodology developed 

shows to be promising in reducing computational effort and in providing practical guidance for 

model developers. 
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1 Introduction 
The systematic analysis of energy systems using energy system models has been recently 

affected by three significant developments. First, the ongoing energy transition brings rapid 

and continuous change to energy supply, demand, and policies under a framework of 

ecological, economic and security of supply constraints [1]. Depicting this increasing 

complexity represents a major challenge for the investigation and planning of energy systems 

[2]. Second, optimization models have become the most popular approach for economic 

dispatch planning [3], the evaluation of future energy scenarios [4], the assessment of policy 

measures, [5] and other tasks. Finally, advances in information and data sciences are enabling 

energy system models to depict an increasing part of the complexity of real energy systems. 

The attraction of these new possibilities can encourage applying a degree of model complexity 

that is independent of the problem being addressed [6]. In total, these three developments can 

be observed through an increase in complex energy system optimization models (ESOMs). 

The attractiveness of optimization models lies in their capability of finding a cost optimal 

solution for energy systems under various constraints [7].They are commonly used for short-

term dispatch planning and for investigating future scenarios in terms of investment planning 

[8]. Constraints can depict physical necessities, such as the balancing of supply and demand, 

as well as political, social, or environmental constraints, such as limiting greenhouse gas 
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emissions [6]. Structural changes in energy systems forced ESOMs to become more complex 

[2]. A liberalized energy supply system comes with more market actors and more interfaces 

between them. A distributed energy system comes with an increase in the number of nodes 

and vertices and therefore the need for higher spatial resolution. Highly volatile renewable 

energy sources require a higher temporal resolution. Fortunately, due to the progress in 

computational resources such large ESOMs have become solvable even on desktop 

computers [2]. Today’s ESOMs usually combine expansion and dispatch planning, enabling 

the investigation of highly distributed and volatile future energy systems. With efficient mixed-

integer linear programming (MILP) solvers, individual units can be depicted with high level of 

detail [9]. State-of-the-art ESOMs, however, are still restricted by the limits of computing 

resources as they become more and more complex [10]. 

According to George Box and Norman Draper, ‘all models are wrong, but some are useful’ 

(cited by [11]). If models are wrong in general but still can be a useful representation of reality, 

the question arises as to how simple an ESOM can be while retaining the required accuracy 

in representing the real system [12]. In general, models should be kept as simple as possible 

and as complex as necessary to use resources efficiently and reach the goal of parsimony 

[13]. Choosing the model with the best trade-off between complexity and accuracy comes with 

a process that starts with (1) the formulation of a research question, and includes choosing (2) 

the conceptual model, (3) the necessary model components, (4) their relations, and (5) the 

degree of detail (e.g. in terms of temporal or spatial resolution) which, in combination, are the 

minimum requirements to answer the research question [14]. The process steps following the 

formulation of the research question should be the result of an inter- (step 2) and intra-model 

complexity comparison (steps 3, 4, and 5). Hereby an appropriate conceptual model is selected 

and further specified in its complexity and degree of detail according to the individual 

requirements. Such a systematic procedure is uncommon in energy system modeling though 

it would allow managing the complexity in energy system models by generating a scope of 

options with different levels of complexity. 

Inter-model complexity comparison can be found in different disciplines. García-Callejas and 

Araújo [15] compare different models for ecological systems for their complexity and their 

accuracy in representing the real ecologic system behavior. Venkataraman and Haftka [16] 

analyze different structural models for buildings. Different hydrological models are compared 

by Orth et al. [17]. Bale et al. [18] compare different models for their capability of representing 

complex system behavior in energy system. Meta-modeling can be considered as a type of 

inter-model complexity comparison that replaces the original model by a less complex 

representation. Ikeda and Ooka [19] apply meta-modeling for optimization models of a building 

energy system and observe the potential for large reduction of computing times. 

Martinez-Moyano [20] presents a documentation tool for system dynamics models that 

includes information on the complexity of the respective models. Finally, Scheller and Bruckner 

[21] review different ESOMs for their incorporated complexity and degree of detail, however, 

their recommendations for making the investigated models more complex are not made 

conditional on a systematic evaluation of complexity.  

In terms of intra-model complexity comparison, most studies focus on specific system 

components that cause complexity problems. The degree of complexity is varied by analyzing 

different implementations and the resulting accuracy is compared. Lin et al. [22] evaluate 

different piece-wise linearization methods by comparing the number of variables and 

constraints to the approximation error. Milan et al. [23] apply two approaches for linearizing 

partial load efficiencies in investment ESOMs and compare them by the resulting energy 

system layouts and the complexity measures CPU time as well as the number and type of 

variables and constraints. Kotzur et al. [24] aggregate time series to typical days using different 

clustering techniques and compare the solving times to the deviation in objective function value 
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(OFV). Marquant et al. [25] apply typical days and rolling horizons to reduce the number of 

time steps in the optimization model and contrast the resulting solving times with deviation in 

OFV. Palmintier and Webster [9] aggregate generation units by applying different clustering 

methods and compare the results among other measures in terms of deviation in OFV, 

dispatch schedule and solving times.  

Studies applying holistic and empirical examinations of complexity and accuracy across 

multiple components within one conceptual model are rare. Pollok and Bender [26] introduce 

a workflow that uses multi-objective optimization to find a Pareto front for the trade-off between 

complexity and accuracy (solving time and a custom error measure) and apply it to Modelica2 

models. Sun et al. [28] propose a systematic procedure for defining the right degree of detail 

in agent based models. However, there are no comprehensive guides that we are aware of 

that holistically and empirically examine ESOMs in terms of complexity and accuracy by 

comparing different more or less complex model formulations (i.e. intra-model complexity 

comparison). Such an examination would make the modeling process of ESOMs more efficient 

by minimizing the time required for modeling and computation while at the same time providing 

a sufficiently accurate answer to the problem [29]. 

In the context of this paper, we present a methodology that systematically analyzes the trade-

off between complexity and accuracy in ESOMs. Our empirical analysis investigates the 

complexity for the case study of power system optimization models (PSOMs) with regard to 

economic dispatch and investment planning of energy systems. In addition to the costs of 

required computing capacity and computing time, complexity management in dispatch models 

is further motivated by the need of temporal efficient solutions to support short-term operational 

decisions. We develop a modular and scalable PSOM that allows the generation of a wide 

range of model variants with different degrees of complexity and accuracy. The analysis of 

these models provides the empirical basis for the complexity and accuracy assessment. The 

specific research questions that we will address in this paper are: 

(1) Are complex power system models more accurate?  

(2) What are the complexity and accuracy drivers in power system optimization models? 

Section 2 sets out the literature-based theoretical framework regarding complexity in systems 

and models, techniques for reducing complexity in ESOMs, and approaches to quantify 

complexity and accuracy. Resting on this framework, in section 3 the procedure for a 

systematic management of complexity in ESOMs is introduced and the modular and scalable 

PSOM formulated and validated. Furthermore, representative model formulations as well as 

complexity and accuracy indicators are selected. Section 4 presents the optimization results, 

which are subsequently used to discuss recommendations for the modeling process of PSOMs 

in section 5. 

2 Background: The trade-off between complexity and accuracy in 
energy system optimization models 

The definition of complexity in systems is a long-lasting objective in many disciplines related 

to system theory3. Complexity research can be divided into aggregated complexity, 

deterministic complexity, and algorithmic complexity [30]. Aggregated complexity deals with 

systems of linked components and studies the overall system behavior. Deterministic 

complexity is based on chaos and catastrophe theory [31]. Algorithmic complexity deals with 

the effort required to solving mathematical problems and with the simplest algorithm required 

to represent system behavior.  

                                                
2 For further information on the Modelica modeling language please refer to [27]  
3 For extensive discussions on complexity definitions in different disciplines please refer to [11]. 
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We regard it as necessary to discuss the term complexity in the context of energy systems and 

energy system modeling. Therefore, we will define the complexity of the observed system, i.e. 

the real-world energy system, as aggregated complexity that is defined by decision-making 

agents, physical and social networks, dynamics, self-organization, path-dependency, 

emergence, co-evolution, as well as learning and adaption (see [18] for a detailed discussion). 

We will use computational complexity as a synonym for the required effort for solving 

mathematical problems in energy system models. Extending the definition of computational 

complexity, we will further distinguish between inter- and intra-model complexity comparisons. 

Inter-model complexity comparison analyzes different conceptual models that address the 

same research question while intra-model complexity comparison analyzes the design of a 

particular conceptual model. This definition is depicted in Figure 1. 

 

Figure 1: Complexity research framework adapted to computational energy system models (own representation, 
based on [30]) 

2.1 Managing complexity in energy system optimization models 

Characteristics of complex systems (as found in the definition of aggregated complexity) can 

also be found among the characteristics of computational complexity in ESOMs. These 

include: dynamics, i.e. path dependency or the coupling of consecutive time steps; 

nonlinearities in relations between system components; discrete decisions; and the system 

size. A representation in the form of a model always simplifies and reduces the complexity that 

is inherited in the real-world system [32]. This can be observed in a deviation between the 

three elements of complexity – number of components, connections between components and 

type of connections [14]. Managing this deviation in ESOMs is based on a range of alternative 

formulations that offer flexibility in terms of complexity and accuracy. 

Based on existing approaches, we divide methodologies for reducing computational 

complexity into (1) omission or major simplification of system components and relations, (2) 

approximation techniques, and (3) reformulation and decomposition techniques. We order 

these three categories on the basis of the associated changes to the original formulation, from 

significant changes (omitting system components or relations), through slight to medium 

changes (linear approximation techniques), to the retention of original complexity and degree 

of detail (reformulation and decomposition techniques). Table 1 gives a non-exhaustive 

overview of techniques for reducing the complexity in ESOMs that is partly based on [33]. 

Complexity reduction 
technique 

Applied 
change 

References Targeted complexity problem 

Omission or major 
simplification  

Omission [34], [35] Partial load dependent efficiencies: Avoid nonlinearities by 
assuming constant relations 
System size: Reduce scope of system boundaries 

Linearization Approximation [22], [23], [36] Partial load dependent efficiencies: Avoid nonlinearities by 
assuming linear relations or discrete steps 
Economies of scale: Avoiding nonlinearities by assuming 
linear relations or discrete steps 

Temporal aggregation Approximation [24], [37]–[39] Model size: Reducing number of time steps by aggregating 
consecutive steps or by defining typical days 

Technological 
aggregation 

Approximation [9], [40]–[42] Model size: Reducing the number of components depicted 
in the model by aggregating similar components to groups 

Reformulation Accurate [36], [43], [44] Exploiting solver behavior: Finding equally exact but more 
efficient formulations 

Complexity Research

Aggregated Complextiy

Algorithmic Complexity

Effort to solve a problem

Inter-model complexity
comparison

Intra-model complexity
comparison

Simplest algorithm
representing system

behavior

Deterministic Complexity

System complexity Computational complexity
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Operational properties: Avoiding non-continuous nonlinear 
relations by using e.g. Big-M reformulation 

Model decomposition (Mostly) 
Accurate 

[45]–[47] Non-parallelizability of optimization problems: Decompose 
problem by using model interfaces based on real-world 
system relations and solve the sub-problems either 
iteratively (e.g. Benders decomposition) or non-iteratively 

Time horizon 
decomposition 

(Mostly) 
Accurate 

[25], [48] Model size and nonlinear scaling behavior of models with 
coupled time steps: Reduce the number of time steps in one 
optimization run by splitting the time horizon into server 
sub-time-horizons. 

Matrix decomposition Accurate [10] Non-parallelizability of optimization problems: Decompose 
the optimization problem’s matrix into independent blocks 

Table 1: Non-exhaustive overview of techniques for reducing the complexity in ESOMs with a classifications of 
the resulting change compared to the original formulation, selected references that apply these techniques, and a 
description of the targeted complexity problem and the reduction approach. 

Which components to include and which to omit is decided at the beginning of every modeling 

process by defining the system boundaries. Within the system boundaries, relations may be 

omitted or significantly simplified.  Han et al. [34] omit the load dependency of coefficients of 

performance (COPs) of several conversion processes. Sarid and Tzur [35] assume constant 

losses per distance for AC lines and thereby omit their nonlinear dependency on the current 

and the amount of transmitted energy. 

Approximation techniques can be used to reduce the depicted and the computational 

complexity while remaining part of the complexity of the original formulation [29]. Different 

approximation techniques can be applied to the same model formulation and are therefore 

subject not only to a trade-off between complexity and accuracy regarding the original 

formulation, but also regarding other approximation techniques. Linearization techniques are 

used to linearly approximate nonlinear relations. Lin et al. [22] compare different step-wise 

linearization techniques. Milan et al. [23] linearize partial load efficiencies using binary steps 

and SOS-constraints4 and afterwards compare both approaches to constant efficiencies. Most 

optimization models discretize the time infinite dimension into time-steps with a certain step-

length [50]. The number of time-steps may still cause complexity problems and is therefore 

further reduced by aggregation methods. Pfenninger [37] and Kotzur et al [24] aggregate time 

series data with clustering techniques, among other operations, to find a good trade-off 

between the retained accuracy and the reduced solving times. To allow time series aggregation 

for systems containing storage systems, Kotzur et al. [38] expanded this method to coupled 

time steps. Teichgraeber and Brandt [39] further formalize the choice of time series clustering 

methods and use the error in OFV as evaluation criteria. To reduce the amount of variables 

and constraints and to allow an efficient integration of dispatch into expansion planning models, 

Palmentier and Webster [9], [40], [41] cluster individual generation units to heterogeneous 

groups. The resulting error in OFV is small compared to the gain in reduced solving times of 

up to 2000%. Morales-Espana and Tejada-Arango [42] introduce a unit clustering technique 

that more realistically restricts the individual units’ operational flexibility in the clustered groups.  

Reformulation techniques, such as the Big-M method5 or adding artificial cutting planes [52], 

represent the original relation in a different way, usually by adding additional discrete variables 

and constraints. Therefore, the usage of reformulation techniques is again subject to a trade-

off between their advantage in, e.g., linearizing a relation and increasing the model size [52]. 

The Big-M method is applied in most MILP models, e.g. to implement an if-then-else constraint 

to limit the possible generation of a unit if it was selected from a range of possible options [43] 

or to implement an either-or constraint for restricting the operation to an interval between 

minimum and maximum power [36]. Yang et al. [44] compare different, equally accurate 

formulations for modelling the start-up and shut-down status of thermal generation units by the 

                                                
4 A special ordered set (SOSs) is an efficient implementation for a piecewise linear approximation 
predefined by most solvers [49] 
5 For an exhaustive introduction of the Big-M method in integer programming see [51] 
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resulting solving times. Decomposition methods divide the normally non-parallelizable 

optimization problem into sub-problems. A decomposition is possible along interfaces that are 

either derived from correlations of the real system or along interfaces that are offered by the 

structure of the mathematical problem. In the first case, an investment problem can be solved 

first, and the solution to this problem then represents the constraints for the dispatch problem 

[47]. In addition, more sophisticated methods, such as Benders decomposition6 can be applied 

to decompose an optimization problem into smaller sub-problems [45], [46]. To reduce the 

number of time steps and approach the issue of perfect foresight in ESOMs, the time horizon 

can be split into sub-time-horizons by applying rolling horizon [25] or myopic foresight [48]. For 

the second case, the structure of the matrix is searched for independently solvable partial 

blocks, which can then be solved in parallel on high-performance computers [10]. 

2.2 Quantifying computational complexity and accuracy 
Since there is no universal size for computational complexity in ESOMs, a range of indicators 

is used in literature for its quantification. These can be divided into indicators for computational 

time and space complexity [54]. Time and space complexity are analyzed in theoretical 

computer science by distinguishing between worst-case, best-case, and average time or space 

complexity [55]. While worst-case, best-case, and average time or space complexity (worst-

case complexity is in many cases used synonymously for computational complexity and is 

depicted with the Landau symbol 𝑂(∙), see [56]) theoretically analyze the relation between the 

model size and the (run) time or (memory) space required to solve a problem on it, they are 

not based on empirical experiments. An empirical analysis would be much more practical [57] 

and is applied in this paper. 

The way an empirical time complexity is quantified is again a matter of choice. One way would 

be to measure computational complexity as the running time for simulating or solving a 

mathematical problem [26]. Since the running time depends on the specific computer system 

used, it is hardware-dependent. Another option is to measure the number of operations (e.g. 

floating point operations – FLOPS), that can be regarded as hardware independent with each 

operation or iteration requiring a fixed amount of time, depending on the computer system [57]. 

The space complexity, i.e. memory space required during the computation, can be measured 

directly (empirically) or by using a proxy, e.g. the model size. For both time and space 

complexity, quantifying the computational complexity empirically is based on proxies for the 

complexity of the operations performed during computation [15]. 

Quantifying the accuracy of a model strongly depends on the objective of the analysis 

performed [26]. In general, accuracy is the result of a validation [58]. It can be quantified as 

the deviation from the results of a benchmark model (as applied in e.g. [25], [39]) or as the 

deviation from historical or experimental data on the behavior of the real-world system (as 

applied in e.g. [57]).  For measuring the accuracy of time series different error measures can 

be applied [59]. The choice of the accuracy indicator is a decision made by the modeler and 

should, in our opinion, be related to the research objective.  

The suggested framework for the evaluation of the trade-off between accuracy and complexity 

in ESOMs is depicted in Figure 2. The initial step is the generation of alternative model 

formulations. For this, model components must be identified that can be varied in their 

implementation. Different options for implementing the components are then collected. By 

combining all possible options, the number of alternative models results from a multiplication 

of the options per component. Since this number can get very large, an expert selection of a 

                                                
6 Benders decomposition is an iterative decomposition method named after Jacques F. Benders [53] 

3 Methodology: Description of the evaluation framework and the case 
study 
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range of representative models is suggested. After optimizing the selected models, the 

respective accuracy and complexity indicators are extracted. Models that are Pareto optimal 

regarding these indicators are then identified7. In the following sections, a case study of 

PSOMs is presented that implements this framework. 

 

Figure 2: Framework for evaluating the trade-off between complexity and accuracy in energy system optimization 
model – the full process is divided in (1) the generation of alternative model formulations, (2) the optimization of 
selected model formulations, and (3) the evaluation of the complexity and accuracy indicators with the Pareto 
frontier 

3.1 The developed modular and scalable power system optimization model 
To identify complexity and accuracy drivers and to analyze the relationship between complexity 

and accuracy in PSOMs, a broad data basis covering different implementations, with different 

spatial and temporal resolutions, is required. For this purpose, a PSOM for an electricity 

distribution system is developed. It has a modular design in its component property 

implementations and an automatized preprocessing to apply the model at different temporal 

and spatial resolutions. In terms of power supply systems, a range of components and their 

properties are identified that are common in most PSOMs. The implementations of these 

components and properties come with complexity problems such as nonlinearities, binary 

variables, dynamics or large model sizes. By applying methods for complexity reduction, 

alternative implementations are found and the complexity problems inherited in the original 

formulation is addressed. This matching is depicted in Table 2 together with references that 

apply the respective complexity reduction methods. The mathematical formulations for the 

different implementations are provided in the supplementary material.  

Property Property Complexity problem Implementations 

Conversion 

units 

Partial load efficiency 

Nonlinearities Nonlinear 

Linearized with constant loss factors [61] 

Piecewise linearization with interpolation [22], [23] 

Piecewise linearization without interpolation [23] 

Constant [34] 

Minimum load Binary variables, 
nonlinearities 

Implemented [62] 
Not implemented 

Start-up, shut-down Binary variables, 
dynamics 

Implemented [62] 
Not implemented 

Minimum down times Binary variables, 
Dynamics 

Implemented [62] 
Not implemented 

Ramping rates Dynamics Implemented [62] 
Not implemented 

Storage 

units 
Storage level Dynamics Perfect foresight 

Dynamic [62] 

Grids 

Grid model Model size, 
Nonlinearities 

Copper plate assumption  

Transshipment grid model [35] 
Spatial resolution Model size Scalable [40], [63] 

Model size Implemented [40] 

                                                
7 A solution is Pareto optimal if there is no other solution that would improve all the observed 
measures [60] 
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Plant clustering Not implemented 

Time steps 

Time horizon Model size, influence on 
dynamics 

Adjustable [24], [37], [39] 

Temporal resolution Model size, influence on 
dynamics 

Scalable [37] 

Decision  

formulation 
Objective function Nonlinearities, dynamics Dispatch planning 

Investment planning 

Table 2: Different implementations for selected component properties in power system optimization models. For 
each property the associated complexity problems in power system optimization models are listed. 

The technical components are classified into components for conversion units, for storage 

units, and for the electricity grid. Each of the components’ properties has different 

implementation variants. The temporal resolution is varied by aggregating time-step 

information within a given time interval using averaging as shown in Figure 3. The spatial 

resolution is varied using (1) predefined spatial clusters as shown in Figure 4 and (2) k-means 

clustering methods applied to the individual conversion and storage units at each node, with 

four clusters per conversion technology [64]. We apply unit clustering in all our model variants 

due to the major potential for complexity reduction and the low negative impact on the accuracy 

we observed. Further, the spatial resolution defines the level of detail regarding the electricity 

transmission grid: In higher aggregation levels, transmission lines are clustered, reducing the 

number of nodes under consideration.  

  
Figure 3: Temporal aggregation of a time series 
using averaging methods 

Figure 4: Spatial aggregation of nodes by using 
predefined clusters 

We validate our model by using data from public sources on the German electricity supply 

system in 2016 and compare the historical electricity prices and dispatch schedules to the 

results generated by our model (so-called back casting). Times series data is derived from 

ENTSO-E [65], energy demand distribution among nodes from Federal Working Group on 

Energy Balances (LAK) [66] and Federal and State Statistical Offices (StABL) [67], 

transmission grid vertices and lines from SciGRID [68], geocoding information from [69], and 

data on conversion and storage units from [70], [71]. The model parameters that are required 

for the implementation of operational constraints can be found in literature on exergo-

economics. For example, Mondal and Ghosh analyze a combined cycle biomass plant unit and 

calculate and provide different economic and technologic parameters [72]. Khanmohammadi 

et al. analyze a steam power plant and calculate costs related to exergy-destruction for 

different plant components [73]. The electricity prices are extracted from the ESOM using dual 

solutions of the supply-demand balancing constraint [74]. The dual solutions at all observed 

nodes are compared and aggregated according to the merit-order-based dispatch and zonal 

pricing used in Germany [75]. As shown in Figure 5, the electricity prices calculated by the 

model come close to the historical electricity prices with a mean absolute error8 of 3.03 €/MWh 
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and an mean absolute percentage error of the mean price9 of 10.47%. Currently, the model 

fails to simulate unusually high and low electricity prices. However, for the purpose of this 

paper, the accuracy in representing historical market decisions deems sufficient. 

 

Figure 5: Model results for electricity prices in Germany in 2016 compared to observed historic electricity prices 

during this year 

3.2 Selection of model settings and evaluation criteria 
All optimization runs are performed on the same computer with an i5-5287U CPU 2.9 GHz and 

8 GB Ram memory storage. The models are formulated in the Python programming language 

and optimized using the SCIP solver [76]. All problems are solved to optimality with a solving 

time limit set to 7,200 s. The model currently allows 11,520 combinations of technical settings 

if three different spatial and temporal resolutions are considered. This range is reduced by 

defining twenty representative technical settings and several temporal and spatial resolution 

settings as summarized in Table 3 and Table 4. The modular settings are grouped into models 

analyzing individual technical component properties by keeping other properties at a basic 

level and a selection of use cases (UCs) that analyze properties collectively. Hereby we include 

different complexity relevant aspects in a limited number of models – these are the behavior 

of individual component properties, the behavior of detailed operational constraints, the impact 

of different grid models, the behavior of storage constraints in models with varying complexity, 

and finally the model behavior at different temporal and spatial resolutions. Separating settings 

that implement single complex component properties and use cases that combine several 

complex component properties allows to separate the influence of the individual 

implementation from the behavior that occurs only when certain implementations are 

combined. The nonlinear implementation for partial load efficiencies is excluded since it was 

not shown to be practicable in terms of solving times. The dispatch models are optimized for 

an interval of two days and the investment models for an interval of three years.  

Modular 
setting 

Coefficient of 
performance(COP) 

Minimum 
Load (ML) 

Start-up/ 
shut-down 
(ST) 

Minimum  
down-time (MD) 

Ramping 
rates 
(RA) 

Storage 
level 
(DYN) 

Grid 
model 

COP-C Constant Inactive Inactive Inactive Inactive Foresight Copper 

COP-CL-ML Con. loss Active Inactive Inactive Inactive Foresight Copper 

COP-B Binary Active Inactive Inactive Inactive Foresight Copper 

COP-BI Bin. Inter. Active Inactive Inactive Inactive Foresight Copper 

                                                
9 Defined as 
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ML Constant Active Inactive Inactive Inactive Foresight Copper 

ST-MD Constant Inactive Active Active Inactive Foresight Copper 

ST-RA Constant Inactive Active Inactive Active Foresight Copper 

DYN Constant Inactive Inactive Inactive Inactive Dynamic Copper 

TRANS Constant Inactive Inactive Inactive Inactive Foresight Trans. 

UC-C-1 Constant Active Active Active Inactive Foresight Copper 

UC-C-L-1 Constant Active Active Active Inactive Foresight Trans. 

UC-C-2 Constant Inactive Active Active Active Foresight Copper 

UC-C-L-2 Constant Inactive Active Active Active Foresight Trans. 

UC-C-3 Constant Active Active Active Active Foresight Copper 

UC-C-4 Con. loss Active Active Active Active Foresight Copper 

UC-C-L-3 Constant Active Active Active Active Foresight Trans. 

UC-C-L-4 Con. loss Active Active Active Active Foresight Trans. 

UC-D-1 Constant Inactive Inactive Inactive Inactive Dynamic Trans. 

UC-D-2 Con. loss Active Inactive Inactive Inactive Dynamic Trans. 

UC-D-3 Constant Active Active Active Active Dynamic Copper 

Table 3: Selected technical settings out of 1,280 possible technical alternative combinations. 

Resolution setting Grid resolution Time resolution (dispatch/invest) Unit clustering 

1 National 4 hours / 28 days Active 

2 National 2 hours / - Active 

3 National 1 hour / - Active 

4 Federal 4 hours / 28 days Active 

5 Federal 2 hours / - Active 

6 Federal 1 hour / - Active 

7 Administrative district 4 hours / 28 days Active 

Table 4: Selected temporal and spatial resolutions that are used in combination with the selected technical 
settings. 

After optimizing the previously defined models, indicators for complexity and accuracy are 

extracted from the optimization statistics and results. The indicators used in this paper are 

listed in Table 5. The first group of indicators is used to quantify the complexity of the model 

variant. The complexity indicators are grouped into hardware-dependent indicators (absolute 

solving time) and hardware-independent indicators (memory usage, model size, variable 

number and types, and constraint number and types). The model size is defined as the model’s 

number of tableau entries [77]. The accuracy indicator used is the deviation in OFV from a 

benchmark model variant (UC-C-L-4 with a temporal resolution of 3600 s and spatial resolution 

of federal states). 

Indicator Measuring unit Hardware dependency 

Solving time Seconds Yes 

Memory usage Megabyte No 

Model size Number of variables and constraints No 

Deviation in objective function value % No 

Table 5: Selected complexity and accuracy indicators for evaluating of the trade-off between complexity and 

accuracy among the selected power system optimization model formulations 

4 Results 
Having described the model setup, we present and compare the results as follows. First, we 

demonstrate results based on dispatch models. After presenting a full overview of the dispatch 

model results, the results are further separated into different system components and relations. 

Subsequently, we compare these results to those we obtain when investment planning is 

considered, to investigate the influence of the decision formulation on the model’s behavior in 

terms of complexity and accuracy.  

The relationship between solving time and deviation in OFV among the model variants that 

were successfully optimized is shown in Figure 6. The right-hand figure contains an excerpt of 

the solution range including settings with a solving time below 200 s. It contains 85% of all data 
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points and 91% of the nondominated solutions. Most results scatter between 0 and 500 s 

solving time, while the accuracy varies greatly. To filter efficient and less efficient solutions, the 

Pareto optimal solutions are calculated. The data points are therefore divided into dominated 

solutions (i.e. not Pareto optimal solutions) and nondominated solutions (i.e. Pareto optimal 

solutions). The set of all Pareto optimal solutions, the Pareto frontier, is depicted in red. It can 

be observed that very accurate settings with a deviation in OFV of down to 0.3% require 

roughly 34 seconds and that above this duration, further increase in accuracy comes with very 

high solving times above 2,000 seconds. The majority of the Pareto optimal settings that are 

listed in Table 6, belong to the use case settings that implement a high degree of detail 

regarding operational constraints for conversion units. Also, some settings implementing 

dynamic storage constraints are listed. The dynamic storage implementation applied in this 

work restricts the flexibility of storage device which has an increasing influence on the OFV. 

This results in an overestimation of the total system costs compared to the benchmark 

implementations using perfect foresight for the storage unit dispatch. 

Figure 7 illustrates the relationship between model size and deviation in OFV among the model 

variants that were successfully optimized. The right-hand figure depicts all variants with a 

model size of below 1 billion tableau entries which is 0.3% of the maximum tableau size and 

which comprises 47% of all settings tested and 90% of the nondominated solutions. The total 

model size range varies from 6.55 million to 326 billion tableau entries. The required memory 

usage is approximately linear with the model size (see Appendix A). Therefore, the model size 

can be interpreted as a proxy for the memory usage. Four out of ten Pareto optimal settings 

are use cases with high degree of detail in their operational behavior. Half of the Pareto optimal 

settings implement dynamic storage constraints. As we noted earlier, this can be attributed in 

part to increased system costs through reduced flexibility compared to settings without 

dynamic storage. A full table of the quantitative results obtained during this work can be found 

in Appendix B. 

 

Figure 6: Optimization results for combinations of the complexity measure solving time and the accuracy measure 
deviation from the benchmark objective function value (OFV). The data points belonging to the Pareto front (i.e. 
dominant solutions) are highlighted. The right sub-figure shows all solutions with a solving time < 200 s. 
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Figure 7: Optimization results for combinations of the complexity measure model size and the accuracy measure 
deviation from the benchmark objective function value (OFV). The data points belonging to the Pareto front (i.e. 
dominant solutions) are highlighted. The right sub-figure shows all solutions with a model size < 1e9 tableau entries. 

Setting  DYN UC-D- 
L-1 

UC-C- 
L-1 

UC-C- 
L-4 

UC-D- 
L-3 

UC-C- 
L-1 

UC-C- 
L-3 

UC-C- 
L-4 

UC-C- 
L-3 

UC-C- 
L-4 

UC-C- 
L-4 

Temporal 
resolution [s] 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400 7,200 3,600 3,600 

Spatial 
resolution large large large large large medium medium medium medium large medium 

Solving time [s] 0.05 0.08 0.14 0.76 0.99 3.35 9.34 15.14 34.11 34.69 2,016.31 

Deviation in OFV 0.024 0.021 0.018 0.016 0.013 0.012 0.010 0.009 0.008 0.003 0.000 

Table 6: Nondominated model settings, i.e. Pareto-optimal solutions for the trade-off between solving time and 
deviation in objective function value (OFV) 

Setting  COP-C DYN UC-D- 
L-1 

UC-D- 
L-2 

UC-C- 
L-1 

UC-C- 
L-4 

UC-D- 
L-3 

UC-D- 
L-3 

UC-C- 
L-4 

UC-C- 
L-4 

Temporal 
resolution [s] 14,400 14,400 14,400 14,400 14,400 14,400 14,400 7,200 3,600 3,600 

Spatial 
resolution large large large large large large large large large medium 

Model size 
[Tableau entries] 6.6E+06 8.4E+06 1.1E+07 1.4E+07 2.3E+07 5.4E+07 5.9E+07 2.3E+08 8.0E+08 5.7E+10 

Deviation in OFV 0.0275 0.0241 0.0208 0.0206 0.0181 0.0156 0.0127 0.0054 0.0027 0.0000 

Table 7: Nondominated model settings, i.e. Pareto-optimal solutions for the trade-off between model size and 
deviation in objective function value (OFV) 

4.1 Part-load efficiency 
Four implementations for part-load efficiencies are compared. Figure 8 shows the results 

regarding the solving time, the model size and the deviation in OFV for constant (COP-C), 

constant-loss (COP-CL-ML), binary (COP-B) and binary-interpolation (COP-BI) part-load 

efficiency implementations. The two binary implementations for partial load efficiency (COP-

B, COP-BI) have the highest solving times and show infeasibility at least once within the 

predefined 7,200 s. The solving times of the COP-CL-ML model are to some extent 

influenced by the required minimum load implementation. The two binary implementations 

come with, on average, more than ten times the model size as the COP-C and COP-CL-ML 

models. Regarding accuracy, no major difference can be observed between the models. 
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Figure 8: Distribution of the indicators solving time, model size and deviation in objective function value (OFV) for 
models varying the part-load efficiency implementation. The data points represent different temporal and spatial 
resolutions and are clustered by model settings. 

4.2 Operational constraints 
The degree of detail in modeling generation and storage units is varied by implementing 

minimum loads (ML), start-up costs and minimum down times (ST-MD), as well as ramping 

rates that are combined with start-up costs (ST-RA). Four different use cases (UC-C-1, UC-C-

2, UC-C-3, and UC-C-4) combine several of the aforementioned implementations. The base 

model (COP-C) does not include any of the detailed implementations and is used as a 

benchmark. The results are depicted in Figure 9. The degree of detail in modeling generation 

and storage units has a high impact on solving time. Individually, minimum load 

implementations increase the solving time the most. In combination, however, the impact of 

minimum load implementations is less than the impact of combined dynamics. The use case 

UC-C-1, that implements minimum loads, start-up costs and minimum down-times, shows 

lower solving time than the use case UC-C-2. The latter implements ramping rates instead of 

minimum loads. The combination of dynamics, here in particular minimum down-times and 

ramping rates, seem to have a significant impact on the solving time. 

Regarding the model size, ramping rates have the highest influence, followed by minimum 

down-times and minimum loads. Accuracy is highest for the very detailed models. The ramping 

constraints have an interesting impact on the accuracy in that they come with lower dispersion 

in OFV across different temporal and spatial resolutions. 
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Figure 9: Distribution of the indicators solving time, model size and deviation in objective function value (OFV) for 
models varying the degree of detail in modeling generation and storage units. The data points represent different 
temporal and spatial resolutions and are clustered by model settings. 

4.3 Transshipment grid model and copper plate 
The transshipment grid model implementation, which assumes linear losses along the lines, is 

compared with a simple copper plate implementation while all other implementations are kept 

constant. The differences in complexity and accuracy indicators are presented in Figure 10 . 

This compares the results of the transshipment grid model with the results of the copper plate 

implementation. The differences are calculated by comparing the indicators against each 

other, such that the difference is (𝐼 𝑑𝑇𝐺 − 𝐼 𝑑 𝑃)/𝐼 𝑑 𝑃, where Ind stands for an indicator, TG 

for the transshipment grid model and CP for the copper plate model. A positive difference 

states that the respective indicator is higher for the transshipment grid model than for the 

copper plate model. The difference in solving times varies from -86% to +135%, while the 

average difference ranges from -30% to +30%. The solving times for more complex models 

(i.e. UC-C-(L)-2, -3, and -4) show on average higher solving times with the transshipment grid 

model than with the copper plate model. The model size is increased by the transshipment grid 

model. However, the effect of this influence decreases with the overall model size. The 

accuracy is lower for the transshipment grid model than for the copper plate model, though the 

average difference is low at around 0.05 %. 
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Figure 10: Comparison of the indicators solving time, model size and deviation in objective function value (OFV) for 
models implementing the transshipment grid model to models using a copper plate model. The data points represent 
different temporal and spatial resolutions and are clustered by model settings. 

4.4 Dynamic storage level 
The dynamic storage variables pass a storage level between the time steps (i.e. they are  

recursively dependent on previous time-steps). This implementation is checked against 

respective models that use perfect foresight for the storage unit dispatch and that do not 

require the dynamic storage level variable. Again a positive difference in the graphs in Figure 

11 implies that the respective indicator is higher for the models using the dynamic storage level 

than for the models using perfect foresight on storage dispatch. The results for the solving 

times show that without any other dynamic implementations present, the dynamic storage unit 

implementation has only a small influence. However, it should be taken into account that the 

dispatch models were only optimized for a maximum of 48 time steps. The influence should 

increase with the number of time steps. When the dynamic storage implementation is 

combined with other dynamic implementation as done in the use case UC-C-D-3, the results 

show that the solving times increase on average by a factor of 16. The model size is higher for 

models using the dynamic storage level implementation, but this influence decreases with the 

overall model size. In general, the impact on accuracy is low for the basic models and varying 

among different spatial and temporal resolutions for the detailed use case UC-D-3. The 

dynamic storage level implementation adds further limitation on the flexibility of storage units 

which increases the total system costs. This can lead to unrepresentative results for models 

with this implementation if the deviation in OFV from a benchmark model without this 

implementation is used as an accuracy indicator. Therefore, besides a valid complexity 

assessment, the accuracy evaluation for dynamic storage level implementation using the 

applied indicator can be misleading. 
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Figure 11: Comparison of the indicators solving time, model size and deviation in objective function value (OFV) for 
models implementing a dynamic storage level to models assuming perfect foresight for storage dispatch. The data 
points represent different temporal and spatial resolutions and are clustered by model settings. 

4.5 Temporal aggregation 
The results shown in Figure 12 vary in their temporal resolution by carrying the length of a 

single time step. All models have a fixed spatial resolution on the level of federal states. Though 

in all temporal resolutions the time limit of 7200 s for the optimization was reached, it can be 

observed that the solving time depends strongly on the temporal resolution. While the solving 

time seems to scale nonlinearly with the temporal resolution, the model size increases quite 

linearly. The temporal resolution increases the accuracy in terms of deviation in OFV except 

for one outlier. 

 

Figure 12: Comparison of the indicators solving time, model size and deviation in objective function value (OFV) for 
temporal resolutions of 3600 s, 7200 s, and 14400 s per time step with a fixed spatial resolution on federal state 
level. The data points represent different model settings and are clustered by temporal resolution. 

4.6 Spatial clustering and aggregation for transshipment grid model 
Figure 13 depicts the results for varying spatial resolutions with a fixed temporal resolution of 

14,400 s per time step. Only the models using the transshipment grid model are compared in 

this section due to their stronger dependency on the spatial resolution. The number of nodes 

on the level of administrative districts is 394, on the level of federal states it is 16 and there is 

a single node on the national level. The solving time roughly correlates with the number of 
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nodes – the models on the level of federal states require on average 15 times the solving time 

and the models on the level of administrative districts 333 times the solving time compared to 

the models on the national level. In contrast, the model size is 69 times higher for models on 

the level of federal states and 2,520 time higher for models on the level of administrative 

districts compared to models on the national level. The deviation in OFV does not change 

significantly among the spatial resolutions. 

 

Figure 13: Comparison of the indicators solving time, model size and deviation in objective function value (OFV) for 
spatial resolutions on the level of administrative districts, federal states and country with a fixed temporal resolution 

of 14,400 s per time step. The data points represent different model settings and are clustered by spatial resolution. 

4.7 Comparison with models for expansion planning 
Having focused on dispatch models, we now consider investment decisions. Table 8 shows 

the results for the technical settings using 28-day time steps and a spatial resolution of national 

level. The minimum OFV among all feasible models lies 0.05% below the maximum. Hence, 

all feasible settings tested calculate similar system costs. The technical setting influences the 

number of variables and constraints. While the number of integer variables is equal for all 

settings (it is influenced only by the spatial resolution), the number of binary variables strongly 

depends on the technical setting. The minimum load constraint increases the number of binary 

variables in this example by a factor of 29, the start-up costs by a factor of 85, the binary 

implementation for partial load efficiencies by a factor of 161, and the binary interpolation 

implementation for partial load efficiencies by a factor of 129. The number of constraints is 

influenced the most by the two binary implementations for partial load efficiencies and the 

ramping implementation. 

In contrast to dispatch models, investment models implementing partial load efficiencies using 

constant losses cannot be solved within the defined timeframe. Instead, the respective 

implementation applying binary interpolation that performs badly for the dispatch models now 

shows comparably short solving times. The transshipment grid model does not significantly 

influence the solving time, as already observed for the dispatch models. Including minimum 

loads seems to be also a major factor influencing the solving time of invest models, followed 

by the ramping implementation. The dynamic storage implementations show good 

performance for the tested resolutions. However, testing them on longer intervals should again 

result in a large increase in solving time, though this was not tested in the context of this paper. 

Settings Solving time [s] Objective function  
value [bn €] 

Number of Variables Number of 
constraints Con. Bin. Int. 

COP-C 2.71 1.4724E+10 1,596 14 96 2,177 

COP-CL-ML > 7,200 - 2,044 406 96 3,745 
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COP-B > 7,200 - 3,836 2,254 96 8,001 

COP-BI 16.13 1.4721E+10 5,628 1,806 96 7,553 

ML 17.42 1.4729E+10 1,596 406 96 2,961 

ST-MD 4.17 1.4724E+10 1,596 1,190 96 2,569 

ST-RA 10.39 1.4724E+10 1,988 1,190 96 4,909 

DYN 2.87 1.4724E+10 1,764 14 96 2,439 

TRANS 2.39 1.4724E+10 1,848 14 96 2,429 

UC-C-1 45.69 1.4729E+10 1,596 1,190 96 3,353 

UC-C-L-1 27.77 1.4729E+10 1,848 1,190 96 3,605 

UC-C-2 9.03 1.4724E+10 1,988 1,190 96 4,909 

UC-C-L-2 9.71 1.4724E+10 2,240 1,190 96 5,161 

UC-C-3 41.5 1.4729E+10 1,988 1,190 96 5,693 

UC-C-4 > 7,200 - 2,436 1,190 96 6,477 

UC-C-L-3 58.06 1.4729E+10 2,240 1,190 96 5,945 

UC-C-L-4 > 7,200 - 2,688 1,190 96 6,729 

UC-D-L-1 4.97 1.4724E+10 2,016 14 96 2,691 

UC-D-L-2 > 7,200 - 2,464 406 96 4,259 

UC-D-L-3 94.58 1.4729E+10 2,408 1,190 96 6,207 

Table 8: Optimization results for different invest models with different modular settings – optimized for one year 
using 28 days long time steps and node resolution on a national level 

5 Discussion 
Based on our results, we evaluate the individual components and their parameter 

implementations to answer the research questions we posed. In what follows, the results for 

the proxy model size are again referred to as memory usage. The propositions made must be 

interpreted in the context of the model and scenario analyzed in this paper and might not be 

entirely transferable to different problems and methodologies. Nonetheless, our systematic 

approach towards the assessment of the relationship between complexity and accuracy in 

PSOMs is unique.  

5.1 Are complex power system models more accurate? 
The shapes of the Pareto frontiers indicate that yes, the accuracy of the Pareto optimal 

solutions increases with complexity. Regarding the complexity indicator solving time, 91% of 

the Pareto optimal solutions require less than 35 seconds – which is 1.2% of the maximum 

solving time observed among the successfully solved models. A similar observation can be 

made for the complexity indicator model size as a proxy for memory usage. 90% of all Pareto 

optimal solutions have a model size of less than 900 million tableau entries – that is 0.3% of 

the maximum model size. The distinction between Pareto optimal and dominated solutions 

shows that most of the possible model formulations should be neglected in favor of those with 

a more balanced trade-off between complexity and accuracy. The marginal utility in the form 

of higher accuracy decreases with additional complexity. The findings lead to our conclusion 

that there is a tendency for a high degree of accuracy requiring a certain degree of complexity 

– but models with relatively low complexity can already provide sufficient accuracy. Among the 

Pareto optimal solutions, the majority of models contain a high degree of detail in the 

operational constraints of conversion units. The models with dynamic storage constraints, i.e. 

time-coupled storage levels, being among the Pareto optimal solutions can be explained by 

the increase in total system costs caused by the additional limitation of the flexibility of storage 

units. This additional limitation is not implemented in the benchmark setting. This shows, the 

dependency of the accuracy measurement on the selected benchmark setting. However, the 

benchmark settings selected is the most accurate one since it depicts the actual storage unit 

behavior by using perfect foresight. Overall, the implementation of a high level of operational 

detail should be preferred over a high level of temporal and spatial detail in PSOM for dispatch 

planning. From the small difference in OFV in the investment models analyzed it can be 

concluded that detailed operational behavior of conversion units do not significantly improve 

the accuracy of the results. 
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5.2 What are the complexity and accuracy drivers in ESOMs? 

For the given conceptual model and scenario, the choice of implementation for partial load 

efficiency contributes little to a change in the accuracy indicators. However, in terms of the 

observed complexity indicators, i.e. solving time and memory usage, the impact of the 

implementation for partial load efficiency is high. Binary efficiency implementations add a large 

number of binary variables to the model which leads to a major increase on solving time and 

memory usage. This effect increases for higher spatial resolutions that come with a higher 

number of conversion and storage units. The best alternative implementation for constant 

efficiencies are using constant loss factors in dispatch models and using binary interpolation 

in investment models. 

Among the detailed conversion and storage unit implementations, minimum loads have the 

largest influence on the solving time, while including ramping has the largest influence on the 

memory usage. In terms of accuracy, the implementations for minimum loads, start-up costs 

and minimum down-times do not significantly influence the observed indicators if tested 

individually. Only the ramping implementation has a significant effect on the deviation in OFV. 

Additionally, the ramping implementation decreases the dispersion in OFV among different 

temporal and spatial resolutions. Ramping constraints should, therefore, be included in 

PSOMs if possible. 

Two storage unit implementations are compared: consideration of perfect foresight for 

dispatched power by storage units and dynamic storage level implementation. Tested 

individually, the dynamic storage implementation has low influence on solving time and 

memory usage. However, the number of time steps tested is comparably small and the scaling 

behavior indicates that for a larger number the solving time will be affected more severely. 

The grid model implementations analyzed are the copper plate model and the transshipment 

grid model. The difference in solving times between the two implementations varies widely, 

however, the models that are more complex in the operational behavior of conversion units 

show on average higher solving times with the transshipment grid model than with the copper 

plate model. Positive effects of the transshipment grid model on the solving time might be due 

to an increase in tightness of the model (despite the loss in compactness) by adding additional 

constraints that restrict the exchange of electricity, thereby reducing the feasible area of the 

relaxed linear programming (LP) problem while solving the MILP problem [62]. The memory 

usage for settings using the transshipment grid model is slightly higher than for settings using 

the copper plate model, though this influence decreases when the overall model size is high. 

Including the transshipment grid model in PSOMs for electricity supply systems can, therefore, 

make the model more realistic and also contribute to reducing the model complexity for some 

model variants. 

The joint analysis of different component property implementation allows evaluating how these 

influence one another in terms of complexity and accuracy. The analyzed settings using 

combinations of minimum loads, start-up costs, minimum down-times, and ramping rates were 

shown to have a significantly higher influence on accuracy compared to the model variants 

that implement only one of the properties. It seems to be necessary to either not use detailed 

implementations for conversion units (ramping constraints might be an exception, here) or use 

a combination of different detailed implementations.  

The use cases showed that combining implementations that individually come with dynamics 

(i.e. time-dependent variables) increases solving time significantly. Implementing properties 

with dynamic behavior, such as start-up costs, ramping rates, or dynamic storage levels should 

be considered carefully and added piece by piece to avoid the negative effects of interfering 

dynamics. 
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The two observed decision formulations, (1) dispatch planning and (2) combined dispatch and 

investment planning, behave differently in three major aspects. First, the deviation among the 

OFV for invest models is lower than for pure dispatch models. This indicates that the 

implementation of technical components is less relevant in invest models. Secondly, the 

number of installed units becomes a decision variable, leading to nonlinear constraints. These 

are linearized by using, e.g., Big-M reformulation, which comes with an increase in model size 

and especially an increase in the number of discrete variables. However, this partly changes 

the performance of the model. This can be seen in the third aspect, the different behavior of 

partial load implementations. The constant loss implementation for partial loads performs much 

worse in invest models, while the binary interpolation implementation here shows to be the 

best alternative to constant efficiencies.  

The decision formulation has a significant influence on the complexity and accuracy behavior 

of ESOMs, even if the same energy system is investigated. Thus, the model developer should 

take into account the specific formulation requirements that are accompanied by the decision 

formulation (and in a broader sense with the initial research question). 

5.3 Limitations 
As explained at the beginning of this chapter, all results depend on the conceptual model used, 

the specific implementation, and the scenario chosen. It is highly questionable that the 

propositions can be applied without changes to other ESOMs. The model used in this paper 

focusses on power supply systems and electricity markets in the context of Germany and 

Europe. The accuracy assessment is based on a single accuracy indicator, the deviation in 

OFV from a benchmark setting. Other accuracy indicators, such as dispatch schedules, 

electricity prices or electricity imports should be investigated in further studies. The results 

depend on the computer system they are tested on and on the solver used (currently SCIP, 

see [77]). Other systems and solvers may produce deviating results. However, keeping the 

system constant should allow propositions on the relative differences between model variants, 

which should be reproducible on other systems. The computer system used is limited in 

performance and therefore limited the model sizes that could be tested. The data basis used 

for the complexity and accuracy assessment, especially for invest models, is therefore limited. 

6 Conclusion 
In this paper, an approach was introduced that allows a systematic intra-model comparison of 

complexity and accuracy in ESOMs. The analysis provides beneficial information for (1) 

efficient use of computational resources and (2) a tailored design of power system optimization 

models for specific research questions. The results show that while more complex dispatch 

models tend to generate more accurate results, the marginal utility in the form of higher 

accuracy decreases with additional complexity. The complexity of most Pareto optimal 

solutions in terms of solving time and memory usage is relatively low. Therefore, the proposed 

framework allows to identify model implementations that should be omitted in favor of those 

with a more balanced trade-off between complexity and accuracy. Keeping in mind that all 

models tested in the intra-model comparison depict the same energy system and time interval, 

the variation in complexity is vast. Among all successfully tested dispatch models, the solving 

time ranges from 0.5 to 2,829 s and the memory usage ranges from 0.3 to 3,380 MB. Most of 

the Pareto optimal settings of dispatch models show temporal complexity (i.e. solving time) 

below 1.2% of the maximum temporal complexity and spatial complexity (i.e. memory usage) 

below 0.3% of the maximum spatial complexity. The total system costs in investment models 

– in contrast to economic dispatch models – hardly differ, indicating that complexity can be 

more easily reduced in investment than in economic dispatch models. The findings 

emphasizes the need for systematic evaluation of complexity energy system optimization 

models to reach the goal of parsimony. 
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Based on the representative models evaluated, a number of recommendations for power 

system optimization models could be derived. Including the transshipment grid model can in 

some cases make the model more realistic and contribute to reducing the model complexity in 

some settings by making the model formulation tighter. Among the different efficiency 

implementations, constant efficiencies are shown to be practicable for dispatch and especially 

invest models. If more realistic implementations are required, the efficiency implementation 

using constant losses performed well for dispatch models, while in invest models the efficiency 

implementation using binary interpolation (piece-wise linearization) is shown to be the best 

alternative for constant efficiencies. In general, the joint implementation of several detailed 

conversion unit implementations, such as minimum loads and ramping rates, contribute to 

accuracy in depicting generation and storage units. However, this comes with a high price in 

terms of an increase in complexity that is compensated in the Pareto optimal settings for 

dispatch models by lower degree of detail in temporal and spatial resolutions. Implementations 

adding dependencies between time steps, such as dynamic storage level or ramping 

implementations, can cause complexity problems, especially if several of these are combined 

with each other. Finally, the temporal resolution is shown to have a greater influence on the 

accuracy indicator compared to the spatial resolution. Scaling the spatial resolution causes a 

highly nonlinear increase in required memory space if the optimization model implements a 

grid model. The application of plant clustering methods leads to significantly reduced spatial 

complexity. 

By structuring complexity research from the context of energy system analysis and by 

proposing a framework for systematically evaluating the trade-off between complexity and 

accuracy in energy system optimization models, we hope to have contributed to and motivated 

further research in this area. Our case study for choosing the power system optimization model 

with a balanced trade-off between accuracy and complexity can be transferred to other kinds 

of energy system optimization models. The shortcomings of our current approach offer 

opportunities for further research. From a meta level, an inter-model complexity comparison 

(cross-model comparison) that compares the use of optimization models to other conceptual 

models is of interest, especially with regard to the more frequent use of optimization models in 

energy system analysis [2]. Additionally, the intra-model complexity comparison should be 

extended to include more components, properties, and energy sectors as well as other 

methods for technological simplification, complexity reduction, and reformulation. Including 

other energy sectors may provide further opportunities for the use of complexity reduction 

techniques, such as decomposition approaches. Finally, the intra-model comparison should 

be performed using different solvers to analyze their influence on the results, as already started 

in [78]. 
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Appendix A 
 

 

Figure 14: Relationship between the model size and the memory usage for the memory usage in the models 

optimized 
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Appendix B 

Setting Solving Time [s] Model Size [Million tableau entries] Accuracy [deviation in OFV] 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

COP-C 0,07 0,22 0,29 1,38 1,74 5,83 27,98 7 24 94 409 1.521 5.859 17.480 2,75% 2,93% 3,17% 2,86% 3,15% 3,36% 2,87% 
COP-CL 0,38 1,36 2,32 7,51 28,69 457,33 631,19 10 36 139 635 2.360 9.095 24.536 2,74% 2,87% 3,11% 2,85% 3,14% 3,35% 2,86% 
COP-B 1,75 2829,20 13,92   261,55 457,82 123 459 1.769 9.183 34.153 131.599 262.860 2,57% 2,81% 2,46%   3,08% 2,64% 
COP-BI 2,03 9,66 113,28 69,86 2816,27  330,79 170 636 2.452 12.608 47.012 181.385 325.822 2,75% 2,89% 3,12% 2,86% 3,15%  2,88% 
ML 0,22 0,51 0,55 5,83 11,80 35,01 460,30 10 36 139 635 2.360 9.095 24.536 2,75% 2,89% 3,16% 2,86% 3,15% 3,36% 2,87% 
ST-MD 0,26 0,39 0,80 2,50 5,40 18,55 172,08 16 60 230 1.096 4.072 15.681 38.138 2,75% 2,93% 3,17% 2,86% 3,15% 3,36% 2,87% 
ST-RA 0,65 1,75 4,67 7,76 30,06 79,62 156,47 41 156 610 2.982 11.474 44.999 100.676 2,37% 2,40% 2,40% 2,48% 2,55% 2,52% 2,48% 
DYN 0,05 0,25 0,33 1,03 1,19 11,62 27,52 8 31 120 514 1.912 7.373 18.392 2,41% 2,28% 2,49% 3,07% 2,96% 2,96% 3,16% 
TRANS 0,05 0,16 0,29 0,69 1,06 2,94 18,68 9 32 122 492 1.830 7.052 25.410 2,42% 2,60% 2,85% 2,23% 2,51% 2,72% 1,31% 
UC-C-1 0,23 0,44 1,79 6,66 28,04 66,17 513,81 20 73 280 1.355 5.034 19.388 45.534 2,15% 2,14% 2,26% 1,85% 1,64% 1,69% 1,69% 
UC-C-L-1 0,14 0,93 1,48 3,35 12,66 46,55 74,25 23 85 327 1.503 5.585 21.513 57.880 1,81% 1,81% 1,94% 1,24% 1,05% 1,10% 2,44% 
UC-C-2 0,75 1,91 4,53 9,25 43,05 850,24 168,14 43 166 648 3.193 12.209 47.733 106.485 2,37% 2,40% 2,39% 2,48% 2,55% 2,52% 2,48% 
UC-C-L-2 0,84 2,06 4,60 9,06 50,50 129,97 395,71 48 184 719 3.419 13.063 51.047 124.992 2,04% 2,07% 2,08% 1,86% 1,93% 1,91% 1,53% 
UC-C-3 0,62 1,78 107,08 5,75 43,00 2677,89 332,24 49 187 728 3.613 13.792 53.876 118.320 1,95% 1,86% 0,83% 1,66% 1,36% 0,87% 1,51% 
UC-C-4 0,70 1,58 51,64 8,98 32,71 1057,96 338,65 49 187 728 3.613 13.792 53.876 118.320 1,89% 1,75% 0,63% 1,53% 1,16% 0,67% 1,37% 
UC-C-L-3 0,89 1,92 92,67 9,34 34,11 2444,16 166,78 54 206 803 3.854 14.700 57.397 137.801 1,62% 1,53% 0,47% 1,04% 0,77% 0,19% 2,70% 
UC-C-L-4 0,76 1,61 34,69 15,14 45,93 2016,31 475,83 54 206 803 3.854 14.700 57.397 137.801 1,56% 1,43% 0,27% 0,91% 0,57% 0,00% 2,83% 
UC-D-1 0,08 0,19 0,42 0,63 1,79 5,74 39,16 11 39 152 606 2.258 8.705 26.506 2,08% 1,95% 2,17% 2,43% 2,30% 2,30% 1,08% 
UC-D-2 0,43 1,75 3,58 7,80 100,16 2085,41 81,55 14 54 208 876 3.261 12.573 35.058 2,06% 1,88% 2,13% 2,42% 2,29% 2,29% 1,07% 
UC-D-3 0,99 70,79  17,08 335,83  140,61 59 225 878 4.162 15.868 61.942 140.337 1,27% 0,54%  1,24% 0,60%  2,39% 
                                            
Quantils:   < 25 %   < 50 %   < 75 %   < 100 %                           
                      

  Not solved  Benchmark                  

Table 9: Results for 20 technological settings with seven spatial settings each for (1) the complexity measure solving time [s], (2) the complexity measure model size [Million 
tableau entries], and (3) the accuracy measure deviation in objective function value (OFV)
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