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Abstract: We examine the main driving forces of significant reductions in air pollutants that 

occurred during the transition of the Czech economy towards a market economy in the 1990s 

and how these driving forces affected emissions volumes across the post-transition period to 

2016. Using Logarithmic Mean Divisia Index decomposition (Ang & Liu, 2001), we 

statistically decompose annual changes in the emission levels from large stationary emission 

sources of four types of air quality pollutants, including sulphur dioxide, carbon monoxide, 

nitrogen oxides and particulate matters over the period 1990–2016. While most of previous 

decomposition studies have been decomposing emissions into scale, structure and emission 

intensity factors, a unique environmental dataset allows us to further decompose the emission 

per output effect into [i] the emission-fuel factor, [ii] the fuel-mix factor, and [iii] the fuel-

intensity factor, yielding a 5-factor decomposition. We find that the largest drop in emissions 

of all four pollutants occurred up to 1999 when the emissions decreased cumulatively by 74 % 

at least. In this period, the firms faced new competitive environment and were exposed to strict 

new command and control regulation – as a result, negative emission-fuel factor was the key 

driver of the emission reduction. However, the fuel-intensity effect contributed most to 

reduction of SO2, NOx and PM emission in the first 3 years after the Velvet revolution (1990-

1992). Since 2008, activity, structure, fuel-intensity and emission-fuel factors have contributed 

to emission changes by similar magnitudes, but in different directions. In the last two years, the 

emission-fuel factor effect has become important again, as the large stationary emission sources 

were required to comply with new emission limits set by the EU Industrial Emissions Directive. 

In order to examine the effect of the key LMDI parameters on the decomposition outcome, we 

perform a sensitivity analysis to decompose SO2 emissions on different numbers of effects (3-, 

4- and 5-factors) and when different sectoral detail is assumed.  
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1. Introduction 

Whether economic growth is pollution-reducing or a pollution intensifier has remained under 

dispute. IPAT-based literature1, following a famous pioneering study by Ehrlich & Holdren 

(1971) and, then, Limits to Growth by Meadows, Meadows, Randers, & Behrens (1972), has 

tended to see Population growth coupled with growing per capita income (i.e. Affluence) as the 

primary forces driving adverse environmental Impacts, while Technology has been considered 

to be mostly neutral. The IPAT approach has been criticized due to its pessimistic perspective 

on technological progress, a lack of behavioural response to adverse impacts, and the quality of 

data used in assessments (Carson, 2010). 

The second stream of literature based on the Environmental Kuznets Curve hypothesis, 

following the pioneering 1991 study by Grossman & Krueger (1995), relies on the stylized fact 

that environmental quality tends to be positively, not negatively, correlated with income, 

especially in developed countries (Carson, 2010). An inverted-U shaped relationship between 

per capita income and environmental quality has been tested in many studies utilising simple 

or improved econometric models and datasets (see Cavlovic, Baker, Berrens, & Gawande 

(2000) or Dinda (2004) for a review). However, the Grossman & Krueger (1991) study clearly 

highlights the limitations of such analyses. It has been particularly recognized that it is just the 

reduced-form nature of the EKC model that limits the policy implications of its results. In other 

words, we cannot tell through which channel the level of income per capita affects 

environmental quality, nor we can reveal the extent to which the income factor contributes to 

changes in environmental quality.  

Further, as a reaction to criticisms of the EKC, other statistical techniques have been developed 

to better understand the mechanisms of changes in energy use (or emission volume). In 

particular, researchers were looking for ways to quantify the impact of structural shifts in 

production and changes in sectoral energy intensity on total energy demand. Since then, 

decomposition analysis, and in particular the index-based decomposition analysis, has been 

used hand-in-hand with econometric analysis to understand trends and underlying factors of 

changes in energy use and emissions (Ang and Zhang, 2000). Compared to the reduced-form 

analysis performed in the most EKC literature, a decomposition analysis can identify the 

channels through which environmental quality is affected, as noted in Tsurumi & Managi 

(2010). Others have found that results based on a decomposition model have better statistical 

properties than the standard EKC specification (Stern, 2002). The main criticism of 

                                                 

1 The IPAT relates Impact (e.g., pollution) to Population, Affluence (proxied by per capita income), and 

Technology, sometimes known as the Kaya identity. 
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decomposition analysis stemming from the fact that original approaches generated a residual 

term, which complicated interpretation of decomposition results, has been overcome by linking 

the decomposition to the Divisia index method.2 Motivated by this discussion, we examine the 

main driving forces of significant reductions in the key air quality pollutants in a country that 

has faced dramatic political, economic and institutional changes over the past 29 years. In this 

paper, we conduct a Logarithmic Mean Divisia Index (LMDI) decomposition to examine the 

driving forces of change in air pollutants during the transition of the Czech Republic towards a 

market economy during the 1990s, becoming a member of the European Union in the 2000s, 

and complying with EU air quality and climate policy goals up to 2016. During the period 

analysed, the Czech economy evolved considerably in terms of its scale, structure, and 

institutions. The centrally-planned communist regime was replaced by a market economy 

governed by democratic institutions beginning with the Velvet Revolution of 1989. After a huge 

economic downturn due to the Revolution, it took the economy a decade to re-achieve its pre-

market level. During the 1990s, the structure of the Czech economy changed significantly; 

industrial production declined from more than one third of GDP to one quarter, production in 

the mining and energy sectors decreased significantly, from 5% to 1.4%, and from 8% to 4% 

respectively, while market services, construction, trade and transport increased their outputs. 

The volume of air pollutant emissions fell tremendously, during 1990s (CENIA, 2005). 

During the next decade, the Czech economy grew more than 40%, and since 2010 has increased 

by another 13%. These historical changes serve as a natural experiment, allowing us to 

investigate the key driving forces responsible for the huge drop in emissions of air pollutants. 

Our unique data set enables us to conduct a more refined index decomposition analysis (IDA) 

than prior studies have done. It also allows us to perform a set of sensitivity analyses of the 

LMDI method with respect to the number of decomposition factors used and the level of sector 

disaggregation. 

We use a Logarithmic Mean Divisia Index to decompose the emissions of four air quality 

pollutants, specifically sulphur dioxide - SO2, carbon monoxide - CO, nitrogen oxides - NOx, 

and particulate matters - PM, into three to five factors: the activity effect, structure effect, fuel 

intensity effect, fuel mix effect, and emission-fuel intensity effect. The 5-factors decomposition 

enriches the existing literature, since the emission-fuel intensities have not been either available 

                                                 

2 Ang et al. (2002) defined four criteria for desired decomposition method that are factor-reversal, time-reversal, 

proportionality, and aggregation tests. Original approach based on Laspeyres index decomposition has been 

replaced by Divisia index decomposition mainly on the ground of a residual term that is generated by Laspeyres 

method. 
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or have been time invariant (based on average substance content) in all previous studies. In 

contrast to this commonly-used approach, our data contains information on the volume of each 

pollutant linked to each fuel used in the process, for instance, how much SO2 is released per 

tonne of hard coal used in specific facility. This means that the emission coefficients we use in 

the analysis vary at the facility level as well as over time. Further, both emission volumes and 

fuel consumption are directly measured at the facility level. This provides more accurate data 

and a richer variation across facilities and time compared to emission values calculated based 

on time invariant chemical and technological parameters, which have been used in almost all 

previous studies. 

The specific objectives of this paper are twofold: first, we identify the contribution of each of 

five factors affecting the emission level of four air pollutants in the Czech Republic during its 

transition and post-transition periods. Second, we perform a sensitivity analysis of the LMDI 

decomposition with respect to the number of factors and assuming different sector breakdowns 

of the Czech economy. 

 

Institutional setting of the Czech Republic 

Our analysis begins in the period of economic and political transformation in The Czech 

Republic3 that started after the Velvet Revolution in 1989. The communist centrally planned 

economy was characterized by high energy and resource use accompanied by high pollution 

intensities due to a lack of environmental regulation and undercapitalization. In 1990, when 

economic and political transformation began, the Czech economy released around 16 tonnes of 

CO2 per capita; an emission-output ratio six times higher than the ratio of the EU27 today. 

Because of high emissions of dust and sulphur released from insufficiently filtered power 

plants, the "Black Triangle" area (a region including northern Bohemia, southern Saxony and 

part of lower Silesia) was among the most polluted areas in Central Europe (Ürge-Vorsatz, 

Miladinova, & Paizs, 2006).  

Already the first democratically elected government began to institute more environmental 

protections, and in order to comply with the Community Acquis of the EU, several policies to 

decrease pollution emission levels were introduced. The new Air Quality Act No. 309/1991 and 

related regulations, which required each existing large stationary emission source (power plants 

                                                 

3 The Czech Republic was part of Czechoslovakia until 31.12.1992. Our data represents gross value added, fuel 

consumption and emissions in the Czech Republic only. 
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and industrial factories) to comply with strict emissions limits until 1998, were the main drivers 

of the large reduction in emissions of air pollutants in the Czech Republic during the 1900s.4 

Following this Act, emissions limits were set in 1991 and have since been strengthened several 

times (1992, 1995, 1997 and 2002). This command-and-control regulation drove a large 

reduction in emissions of air pollutants in the Czech Republic during the 1990s, particularly 

SO2, NOx, and PM.  

Newly introduced economic instruments aimed to reduce emissions in the 2000s were  quite 

ineffective due to low tax rates (in the case of energy taxes) or because of  over-allocation of 

CO2 allowances within the first phase of the EU ETS (Ščasný & Máca, 2009). As a 

consequence, as all large emission sources fulfilled their emission limits by 1999, the emission 

levels of air quality pollutants decrease only slightly over the next decade.  Integrated permits 

introduced under Integrated Pollution and Prevention Control and concentration limits on 

pollutants in flue gas were the only truly effective instruments that regulated airborne emissions 

released from large stationary emissions sources in the 2000s.  

The European directive on industrial emissions 2010/75/EU has induced further strengthening 

of airborne emission regulation. However, The Czech Republic has negotiated a transition 

period for implementation of this directive up to the end of 2016. This means most of the current 

large emission sources had time to fulfil new emission limits until the end of 2016. 

We find that the leading driver in the decrease of emissions during the 1990s is the emission-

fuel intensity effect, not the structure effect, which is consistent with the findings of other 

studies from developed countries and transition economies. Although, the fuel intensity effect 

is the most important up to 1992. The emissions abatement was introduced as a consequence of 

a new regulation on the concentration of air pollutants which required large emission sources 

to satisfy certain limits by 1999. It suggests firms adjusted their environmental behaviour by 

improving their end-of-pipe technology rather than by switching type fuel or by improving of 

energy efficiency. This finding shows that command-and-control regulation, as introduced in 

the Czech Republic in the 1990s, did not motivate firms to decrease the amounts of fuel used 

or to change the composition of the fuels, which would have required changing significant 

                                                 

4  Act No. 309/1991 applies at the federal level (Czechoslovakia). Act No. 389/1991 applies to the national level 

(the Czech Republic). Act No.309 determines the emissions limits and deadlines to fulfil the requirement, while 

Act No. 389 defines administration of the process and competences for the relevant authority, Česká inspekce 

životního prostredí (the Czech Environment Inspectorate). 
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amounts of their technology, but rather it motivated firms to decrease their emission levels by 

improving their end-of-pipe type measures without changing their technology.  

We find that, after satisfying the emission limits requirements by 1999, large emission sources 

in the Czech Republic decrease their fuel intensity. This is the main driver that allows keeping 

their emissions on steady level between 1999 and 2007, despite the strong economic growth. 

Since 2008, the magnitude of activity, structure, intensity and emission-fuel intensity effects 

get closer to each other. In 2015 and 2016, the emission-fuel intensity effect becomes important 

again, as the large stationary emission sources has to comply with new strict emission limits 

based on the directive on industrial emissions. 

This paper is structured as follows. The next section reviews related literature. Section 1.2 

introduces the methodology and section 1.3 describes data. Section 1.4 presents the result of 

LMDI decomposition and provides a sensitivity analysis of LMDI decomposition with respect 

to the number of decomposition factors and sector aggregation. The final section concludes. 

1.1. Literature Review 

Decomposition analysis has been applied as a reaction to criticism of the Environmental 

Kuznets Curve hypothesis (e.g. Stern, Common, & Barbier,1996). Stern (2002) finds that 

results from the decomposition model have better statistical properties than the standard EKC 

specification, and notes that the basic EKC model can be considered a nested version of a 

decomposition model. Studies of statistical decomposition of emissions development differ in 

various ways: by the decomposition method employed, the number of factors of the 

decomposition studied, the geographical regions covered by the analysis, aggregation of the 

data, and object of the analysis. 

First, there are two main streams in which the index decomposition analyses are applied: the 

Laspeyres/Paasche index methods and the Divisia index methods. The Laspeyres/Paasche index 

can generate large unexplained residuals, especially in the case of large magnitudes of changes 

in the factors. The refined Laspeyres index method (Sun, 1998) extends the Laspeyres/Paasche 

method, and can achieve perfect decomposition (no residuals). However, the refined Laspeyres 

index method allocates the unexplained residuals among the factors arbitrarily. On the other 

hand, the Divisia index method overcomes the problem of unexplained residual terms, i.e. it 

satisfies the factor-reversal property of decomposition indexes. In particular, the refined Divisia 

index method by Ang & Choi (1997), the new log-mean Divisia index (LMDI), possesses all 

three desirable properties — time-reversal, circular and factor-reversal — and is currently the 

best recommended, index decomposition method (Ang, 2004). 
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Secondly, the number of factors into which emissions are decomposed differs across studies. 

Most studies perform the three-factor decomposition, examining the effects of the scale, the 

composition, and the intensity (or technology) factor. A few studies decompose emissions into 

more than three factors. This, however, requires computations of emission volumes for each 

type of fuel. Without carbon capture technology, the emission-fuel coefficients for CO2 can be 

derived quite straightforwardly by using the typical carbon content of fuel and specific 

oxidation parameters. Sun (1999) uses the time invariant emission-fuel coefficients following 

Torvanger (1991), and then conducts a 4-factor decomposition analysis on the emission of 

carbon dioxide for the 24 OECD countries for 1960-1995. Deriving the emission-fuel 

coefficients for other airborne pollutants requires more information. Viguier (1999) calculates 

the emission coefficients based on the parameters of the substance content of fuels, the fraction 

of substances removed by pollution abatement, and the fraction of substances retained in ash, 

respectively. However, neither of these two studies used directly measured emission volumes 

per fuel. In this paper, both the emission volumes and fuel used are measured and reported at 

facility level, which means the data contain a richer variation across plants and time. 

Third, the studies differ in geographical coverage. Most studies investigate the former EU-15 

countries (e.g. Löfgren & Muller (2010)) and Asian countries, mainly China (e.g. Lin & Long, 

2016) with some studies focusing on the USA and Canada or selected OECD and IEA countries 

(see Ang & Zhang, 2000). Only a few applications of decomposition analysis in African 

countries and Central and Eastern European (CEE) countries exist, and in this respect, our study 

aims to contribute to filling this gap in the literature. Viguier (1999), above, is one of the few 

studies which analyses emissions in CEE countries. Further, Cherp, Kopteva, & Mnatsakanian 

(2003) analyse the quality of air in Russia over the period 1990-1999. They claim that in Russia, 

a structural effect works positively on production of emissions and the intensity effect 

influences emissions production negatively, as a result of more environmentally friendly 

technologies.  

Last, but not least, most of the studies mentioned are focused on CO2 or GHG emissions only. 

Ang (2015) finds that application of IDA has evolved from a focus on energy consumption 

prior to 1990, to more often focusing on energy-related CO2 emissions since 2000. Ang (2015) 

denotes air pollutant emissions as one of new areas in which IDA is applied. In recent literature, 

we have found studies only from Asian countries – mainly China – that investigate airborne 

emissions. In particular, He, Yan, & Zhou, (2016); Y. Wang, Wang, & Hang, (2016); Yang, 

Wang, Zhang, Li, & Zou, (2016) focus on SO2 emission; Chang et al., (2018) investigate SO2 

and NOx emission; Ding, Liu, Chen, Huang, & Diao, (2017); J. Wang et al., (2018) analyse 

NOx emission; and Lyu et al., (2016); Zhang et al., (2019) focus on PM emission. 
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Our paper follows up a couple of studies conducted in The Czech Republic that have not been 

published in scientific journals: Brůha & Ščasný (2006) apply the Laspeyres method for a 3-

factor decomposition analysis on air pollutant emissions in the Czech Republic for the period 

1992-2003. A shortcoming of this method is that it generates the residuals. Ščasný & 

Tsuchimoto (2013) and Tsuchimoto & Ščasný (2012) overcome the problem with the residuals 

and conduct 3-, 4-, and 5-factor LMDI decomposition analyses of air pollutant emissions for 

the period of 1995-2007. The added value of this paper is that we use extended and more detail 

datasets, paying special attention to consistent classification of firms into economic sectors. We 

extend the time span to 1990-2016, paying special attention to consistent classification of firms 

into economic sectors, and we use eight categories of fuel instead of five. As a results we are 

able to identify significant role of fuel intensity effect in 1990-1992 and capture the fuel mix 

effect for CO emission from 2008 to 2016. 

1.2. Methodology 

According to Ang (2004), the method of decomposition should be chosen such that it passes 

both factor and time reversibility and circular tests (Ang & Zhang, 2000). The most important 

test is factor reversibility. It requires perfect decomposition – meaning with no residual term. 

The conventional Laspeyres index is not recommended due to huge residuals. 

The method used in Brůha & Ščasný (2006) satisfies the critical points above; but their method 

is based on a logarithmic approximation and therefore the results are sensitive to a large 

magnitude of change.  

We apply the logarithmic mean Divisia index (LMDI) approach, which satisfies the property 

of perfect decomposition (Ang & Liu, 2001).  “The LMDI approach involves variations in three 

different dimensions: by method (LMDI-I versus LMDI-II), by decomposition procedure 

(additive versus multiplication decomposition), and by aggregate indicator (quantity indicator 

versus intensity indicator)”Ang, (2015, p. 235). LMDI-I is consistent in aggregation (Ang & 

Liu, 2001) and perfect in decomposition at subcategory level (Ang, Huang, & Mu, 2009).We 

decide to apply the LMDI-I method based on recommendation of Ang, (2004, 2005) 

recommends LMDI-I method. 

We follow Ang & Liu, (2007), who also resolve the problem with zero value observation by 

substituting the zero values with a very small number (e.g. between 𝑒−10 and 𝑒−20).  Both 

multiplicative and additive decomposition can be applied with equal results. 

Following Ang (2005), the general index decomposition analysis identity is given by  
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𝐸 = ∑ 𝐸𝑖 = ∑ 𝑥1,𝑖𝑥2,𝑖 … 𝑥𝑛,𝑖 

𝑖𝑖

, 

(1) 

where 𝐸 is emission, 𝑥𝑛 are factors contributing to changes in 𝐸 over time and subscript 𝑖 

denotes a sub-category of the aggregate for which structural changes is to be studied. The 

emission changes from 𝐸0 = ∑ 𝑥1,𝑖
0

𝑖 𝑥2,𝑖
0 … 𝑥𝑛,𝑖

0  in period 0 to 𝐸𝑇 = ∑ 𝑥1,𝑖
𝑇

𝑖 𝑥2,𝑖
𝑇 … 𝑥𝑛,𝑖

𝑇  in period 

𝑇. The multiplicative approach decomposes the ratio between 𝐸𝑇 and 𝐸0: 

𝐷𝑡𝑜𝑡 =
𝐸𝑇

𝐸0
= 𝐷𝑥1

𝐷𝑥2
… 𝐷𝑥𝑛

, 

(2) 

The additive approach decomposes the difference between 𝐸𝑇 and 𝐸0: 

∆𝐸𝑡𝑜𝑡 = 𝐸𝑇 − 𝐸0 = ∆𝐸𝑥1
+ ∆𝐸𝑥2

+ ⋯ + ∆𝐸𝑥𝑛
. 

(3) 

The subscript 𝑡𝑜𝑡 denotes the total relative or absolute change from period 0 to period 𝑇, 

respectively, and the right-hand side terms give the effects associated with the respective 

factors. The general formulae of LMDI-I for the effect of the 𝑘th factor are:   

𝐷𝑥𝑘
= 𝑒𝑥𝑝 (∑

𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0)

𝐿(𝐸𝑇 , 𝐸0)
𝑖

𝑙𝑛 (
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 )) 

(4) 

for the multiplicative approach and:  

∆𝐸𝑥𝑘
= ∑ 𝐿(𝐸𝑖

𝑇 , 𝐸𝑖
0)

𝑖

 𝑙𝑛 (
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 ) 

(5) 

for an additive approach. 𝐿(𝑎, 𝑏) is the logarithmic average of the two numbers, 𝑎 and 𝑏.5 

                                                 
5 Specifically, 𝐿(𝑎, 𝑏) =

𝑎−𝑏

log 𝑎−log 𝑏
, if a≠b, otherwise 𝐿(𝑎, 𝑏) = 𝑎. 
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Since we analyse the emissions developments over the period of up to 27 years, when the 

magnitude of changes in emissions experiences a declining trend, we mainly focus on the 

additive LMDI-I, which has a more intuitive interpretation with regard to the magnitude of 

changes in emissions. 

The standard, three factor IDA identity for emission level of the pollutants from industry is: 

𝐸 = ∑ 𝐸𝑖

𝑖

= ∑ 𝑄

𝑖

𝑄𝑖

𝑄

𝐸𝑖

𝑄𝑖
= ∑ 𝑄𝑆𝑖𝐼𝑖

𝑖

, 

(6) 

where  𝐸 is the total level of emissions from the industry, subscript 𝑖 denotes sector, 𝑄(= ∑ 𝑄𝑖)𝑖  

is total industrial activity level, 𝑆𝑖(= ∑ 𝑄𝑖/𝑄)𝑖  and 𝐼𝑖(= ∑ 𝐸𝑖/𝑄𝑖𝑖 ) are, respectively, the activity 

share and emission intensity of sector 𝑖. The change in total emissions from time 0 to 𝑇 is then: 

∆𝐸𝑡𝑜𝑡 = 𝐸𝑇 − 𝐸0 = ∆𝐸𝑎𝑐𝑡 + ∆𝐸𝑠𝑡𝑟 + ∆𝐸𝑖𝑛𝑡. 

(7) 

The subscripts 𝑎𝑐𝑡, 𝑠𝑡𝑟 and 𝑖𝑛𝑡 denote the effect associated with the overall activity level 

(scale), activity structure and sectoral emission intensity, respectively. 

In addition to the emission level in each sector 𝑖, our data set contains information on 

consumption of fuel 𝑗  in sector 𝑖 and also on how much pollutant is emitted by each type of 

fuel: 𝐸𝑖,𝑗. Using the richer information outlined above, we conduct not only the conventional 

three-factor decomposition analysis, but also four and five-factor analysis: 

Four-factor: ∆𝐸𝑡𝑜𝑡 = 𝐸𝑇 − 𝐸0 = ∆𝐸𝑎𝑐𝑡 + ∆𝐸𝑠𝑡𝑟 + ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑒𝑚, (8) 

Five-factor: ∆𝐸𝑡𝑜𝑡 = 𝐸𝑇 − 𝐸0 = ∆𝐸𝑎𝑐𝑡 + ∆𝐸𝑠𝑡𝑟 + ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑚𝑖𝑥 + ∆𝐸𝑒𝑚𝑓 . (9) 

In four-factor decomposition, the subscripts 𝑎𝑐𝑡, 𝑠𝑡𝑟, 𝑖𝑛𝑡, and 𝑒𝑚 denote the activity (scale) 

effect, structure effect, energy intensity effect, and emission coefficient effect related to total 

energy consumption, respectively. 

In five-factor decomposition, the subscripts 𝑎𝑐𝑡, 𝑠𝑡𝑟, 𝑖𝑛𝑡, 𝑚𝑖𝑥 and 𝑒𝑚𝑓 denote the activity 

(scale) effect , structure effect, energy intensity effect, fuel mix effect and emission coefficient 
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effect related to each individual fuel, respectively. The additive LMDI-I formulae for this five-

factor emission decomposing between year 0 and 𝑇 are: 

∆𝐸𝑎𝑐𝑡 = ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗

, 𝐸𝑖,𝑗
0 ) ln (

𝑄𝑇

𝑄0
), 

∆𝐸𝑠𝑡𝑟 = ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗

, 𝐸𝑖,𝑗
0 ) ln (

𝑆𝑖
𝑇

𝑆𝑖
0), 

∆𝐸𝑖𝑛𝑡 = ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗

, 𝐸𝑖,𝑗
0 ) ln (

𝐼𝑖
𝑇

𝐼𝑖
0), 

∆𝐸𝑚𝑖𝑥 = ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗

, 𝐸𝑖,𝑗
0 ) ln (

𝑀𝑖,𝑗
𝑇

𝑀𝑖,𝑗
0 ), 

∆𝐸𝑒𝑚𝑓 = ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗

, 𝐸𝑖,𝑗
0 ) ln (

𝑈𝑖,𝑗
𝑇

𝑈𝑖,𝑗
0 ), 

(10) 

where 𝐿(𝐸𝑖,𝑗
𝑇 , 𝐸𝑖,𝑗

0 ) =
𝐸𝑖,𝑗

𝑇 −𝐸𝑖,𝑗
0

𝑙𝑛𝐸𝑖,𝑗
𝑇 −𝑙𝑛𝐸𝑖,𝑗

0  , 𝑄(= ∑ 𝑄𝑖)𝑖  is total industrial activity level, 𝑆𝑖(= ∑ 𝑄𝑖/𝑄)𝑖  

and 𝐼𝑖(= ∑ 𝐹𝑖/𝑄𝑖𝑖 ) are, respectively, activity share and energy intensity of sector 𝑖, 𝑀𝑖,𝑗(=

∑ 𝐹𝑖,𝑗/𝐹𝑖)𝑖,𝑗  represents the share of fuel 𝑗 on total fuel consumption in sector 𝑖 and 𝑈𝑖,𝑗(=

∑ 𝐸𝑖,𝑗/𝐹𝑖,𝑗)𝑖,𝑗  is the emission-fuel intensity  of fuel 𝑗 in sector 𝑖. 
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1.3. Data 

1.3.1. Emission and energy data 

Emission and energy data used in this study was obtained from the Air Pollution Emission 

Source Register (REZZO – Registr emisí a zdrojů znečištění ovzduší).6 The REZZO data on 

emissions attributable to stationary emission sources can be further divided into two broad 

categories. The first category covers emissions generated from fuel combustion, and the second 

covers emissions generated by various types of chemical reactions in technological processes. 

Our dataset is based on emissions generated from fuel combustion of facilities larger than 5MW 

of installed thermal capacity (termed REZZO 1). 

For the fuel combustion processes in REZZO 1 facilities, our data set contains unique 

information about how much emissions are produced by which type of fuel, e.g., how much 

SO2 is generated by the combustion of brown coal. While our database on combustion processes 

allows us to derive emissions per fuel type used for each unit, the emissions from technological 

processes do not contain information on the attribution of a specific fuel. That is why we 

particularly focus on emissions generated by REZZO 1 combustion processes (R1comb) in this 

paper.  

The emissions released from the combustion processes of large stationary emissions sources 

(R1comb) represent a large share of the total aggregate level of emissions, about 80% of total 

SO2 and NOx emission over almost the entire period. The share of particulate matters (PM) 

from R1comb on total PM decreases across time due to a strict abatement introduced in large 

sources. Large combustion sources contribute only small amounts to emissions of CO, 5% to 

8%. The heat and power sector (NACE rev.2 code 35) represents the majority of fuel 

consumption and emissions production in our dataset (R1comb) – it represents 70-80% of NOx 

and SO2 emissions with increasing trend, its share PM emissions decreases from initial 52 % 

                                                 
6 The REZZO database, maintained by the Czech Hydro-Meteorological Institute, distinguishes four broad 

categories of emission sources in which data are stored: REZZO1 and REZZO2 include large and medium-sized 

emission sources, grouped by their thermal output amounts which are larger or smaller than 5MW respectively; 

REZZO3 reports the emissions released by local units, including households and area sources, while R4 reports 

emissions from mobile sources. In the case of large emission sources (REZZO1), data are gathered at the facility 

level. Data for medium-sized sources (REZZO2) are reported at the firm level. 
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to 33% in 1994 and then increase up to 87 % in 2014. The heat and power sector´s share on fuel 

consumption on our dataset increases from 65 % to approximately 80 % since 2011. 

Figure 1 shows development of emissions levels of CO, NOx, SO2 and PM in our data set from 

1990 to 2016. There is an inconsistency between 2007 and 2008. The NACE classification 

changed from NACE rev.1 to NACE rev.2 in this period. The NACE rev.2 offers more detail 

than NACE rev.1 and as a consequence, a part of emissions reported in the R1comb database 

shifted to purely technological processes, while a part of the fuel consumption remained in 

R1comb – our datasets. As a result, we can observe a drop in all emissions between these two 

years that is reflected in energy intensity and emissions factor effects. Therefore, we do not 

interpret the change of emission levels between 2007 and 2008.  

We can identify three periods with different patterns of emissions development. In the first 

period, from 1990 to 1999, all emissions dropped rapidly – on average CO, NOx, SO2 and PM 

by 14, 14, 21 and 32 percent per year. In the second period, from 2000 to 2007, emissions varied 

around constant levels or even increased slightly. In the last period, from 2009 to 2016, CO 

emissions varied, and increased on average by 2 % per year, and NOx, SO2 and PM emissions 

declined again. 

SO2 emissions experienced the largest absolute decrease across the whole period, decreasing 

from 1575 kt in 1990 to 74 kt in 2016. Therefore, we present the sensitivity analysis of LMDI 

decomposition on SO2 emissions in section 1.4.2. 
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Figure 1 Emission levels of CO, NOx, SO2 and PM, 1990–2016 for R1comb [kt] 

 

We conduct the decomposition for eight categories of fuel: (1) brown coal, (2) biomass, (3) 

biogas, (4) hard coal, (5) natural gas, (6) oil, (7) other gases and (8) other solids. Figure 2 depicts 

relative development of total fuel consumption and five main fuels in in our dataset from 1990 

to 2016. During this period, total fuel consumption has decreased by more than 35%.  
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Figure 2 Fossil fuels and total energy use , 1990–2016 for R1comb (1990 level = 1.0) 

 

Note: The figure does not depict development of biogas, biomass and other solid fuels, they are included in total 

fuels, since use of these fuels was very low in the 1990s and grow then rapidly after 2000. Biogas use has started 

to be reported since 1997. In 2016, use of biogas, biomass and other solid fuels is 21-, 10- and 6-times larger than 

in 1990 or 1997, respectively.  

1.3.2. Activity data and aggregation of sectors 

We use the Gross Value Added (GVA) as a proxy for economic activity. The GVA is obtained 

from the Supply and Use Tables (SUT) conducted by the Czech Statistical Office. 

Unfortunately, the sector classification in SUT is not constant in time. From 1990 to 1994, SUT 

are reported only in the simple structure of a NACE rev.2 sector classification (38 sectors) and 

only since 1995 have the SUT been reported in full level 2 NACE rev.2 classification (88 

sectors). The GVA is expressed in real 1995 prices calculated based on the current and previous 

year’s prices in the SUT. 

The REZZO database contains information on the economic sector of facilities in NACE rev 

1.1 till 2007 and only since 2008 in NACE rev.2 classification. 
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In order to compile a consistent dataset, we have to convert all sector classifications into the 

same classification structure. There is no one to one match between NACE rev.1.1 and NACE 

rev.2. First, we convert the REZZO database to aggregation of NACE rev.2 classification. As 

a result, we have a dataset aggregated to 44 sectors covering all large combustion sources in 

R1comb, consistent from 1995 to 2016. Second, we combine this 44 sector aggregation with 

the simple structure of NACE rev.2. and obtain a dataset aggregated to 26 sectors from 1990 to 

2016. Figure 3 depict the relative development of Czech GVA from 1990 to 2016. During this 

period, the GVA in constant prices of 1995 has increase by almost 64 %. 

Figure 3 Gross value added, 1990–2016 

 

We apply the LMDI decomposition to both datasets and also aggregate our dataset to 18 sectors 

to test the effect of sectoral aggregation on the precision of the LMDI method. Figure 4 depicts 

shares of economic sectors in 18 sector aggregation on total GVA from 1990 to 2016. Share of 

heat and power sector (D) involves counter-cyclically. Agriculture (A) and Mining and 

quarrying (B) from 8 to 2 and from 4 to less 0.7 percentage share on total GVA, respectively. 

Other sectors vary around their initial values. Figure 5 focuses on the C,J,K sector that has share 

of approximately 35 % GVA and depicts shares of its subsectors on total GVA.  

Table 4 in Appendix provides the sectoral aggregation in all three cases. 
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Figure 4 Share of sectoral  GVA on total GVA, 1990–2016 (18 sectors) 

 

Note: C,J,K sector (NACE codes 10-33 and 58-66) are on the right axis. 
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Figure 5 GVA share of C,J,K subsectors on total GVA, 1990–2016 

 

1.4. Results 

We apply the 5-factor LMDI decomposition in order to analyse the five underlying factors of 

air quality emissions in the Czech Republic from 1990 to 2016. Specifically, we quantify the 

amounts each of these five factors (scale, structure, fuel intensity, fuel-mix and emission-fuel 

intensity) were contributing to changes in the volumes of these emissions over this period. Then, 

we perform sensitivity analyses of the LMDI decomposition with respect to the number of 

decomposition factors (3F and 4F compared to 5F) and sectoral breakdown of the economy.  

The decomposition is always performed on a year-by-year basis, though we report the results 

for a particular year if a cumulative effect is reported for a period. We also note that fuel use 

and emissions are measured for the large emission stationary sources and for combustion 

processes, setting aside emissions stemming from technological processes, medium-size and 

small stationary emission sources and mobile sources. 

Due to a revision in NACE classification, the data are not fully consistent around 2007-2008.7 

As a consequence of this inconsistency, there are visible sharp hikes in the 2008/2007 annual 

                                                 

7 As a consequence of the NACE revisions, some facilities were reclassified into a different economic sector and/or 

moved from the category of stationary emission sources combusting fuels (addressed in this paper) to sources 
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changes in all figures below. Due to this inconsistency in data, the 2008/2007 annual changes 

cannot be compared and readers should overlook them. 

1.4.1. Five factor decomposition of air quality emissions for 1990–2016 

This section provides the results of the 5F LMDI decomposition of SO2, NOx, PM and CO 

emissions performed for each year for the period of 1990–2016. This decomposition is 

performed with the economy breakdown into 26 economic sectors and eight different types of 

fuels. This means the decomposition works with 26 x 8 different emission-fuel intensities 

gathered for each year. Since the economic data are available in finer sectoral disaggregation 

from 1995 only, the LMDI decomposition with a 44 sector-breakdown can be carried out from 

1995 on. How finer sectoral breakdown affected the decomposition outcome during the period 

1996–2016 is therefore discussed in next subsection. 

Figures 6–13 display the results from the 5F LMDI decomposition, in which we show the 

contributions of factors to emission changes in tonnes (on the left, in figures with even numbers) 

and then in percentage points (on the right, in figures with odd numbers). In each of the figures 

it is visible that, although the patterns of emission reductions and their drivers vary across the 

four pollutants analysed, there are two factors that are responsible for the largest portion of 

emissions reductions of each pollutant during nearly the entire period analysed. These two 

factors are the fuel intensity and the emission-fuel intensity.  

Table 1 provides the results for the three periods (1990-1999, 1999-2007 and 2008-2016), but 

even here the decomposition is always performed on a year-by-year basis.8 From left to right, 

we report the total changes that occurred before the end and the beginning of each particular 

period in kilotons and percentages. For instance, emissions of SO2 were reduced by 1,391 kt 

between 1990-1999, which amounted to a reduction of 88 %. In following period of 1999 - 

2007, SO2 emissions were stable. In the 2008-2016 period, these emissions decreased further, 

by about 61 k, amounting to a 45 % reduction. The remaining five columns display overall 

                                                 

releasing emissions from technological processes or to small emissions sources (neither of which is considered in 

this work).  

8 As Löfgren & Muller (2010) emphasized, “summing the effects of one factor over all years usually does not 

reveal a reliable overall effect of the factor in question” (Löfgren & Muller, 2010, p. 230). Hence, a decomposition 

that is based on the first and last years of a certain period exhibits similar problems as summing the effects of one 

particular factor over years. It implies that “results from decomposition analysis of changes over several years 

based on the first and the last year only or reporting sums over all years should be used very cautiously” (ibid.).. 



20 

 

whether and how much a given factor contributed more positively (increasing emissions) or 

negatively (decreasing emissions). Again, in the case of SO2 emissions and for the first period 

(1990-1999 with 9 year-by-year changes), there were one more positive effects of the scale 

factor than negative (+1). For the same period and the same pollutant, the fuel mix factor 

affected emissions seven times more negatively than positively, and emission-fuel intensity 

constantly reduced emissions (i.e. the effect of this factor was always negative).  

Table 1 Cumulative emissions change by period and indication of LMDI effects impacts 

Pollutant Period Change 
(kt) 

Change 
(%) Activity Structure 

Fuel 
intensity Fuel mix 

Emission-
fuel 

CO 1990-99 -68.2 -73.8% 1 -3 -5 -5 -5 

  1999-07 5.7 23% 8 -2 -6 0 0 

  2008-16 3.9 29.3% 2 0 -2 2 2 

NOx 1990-99 -358.5 -74.9% 1 -1 1 -3 -7 

  1999-07 15.0 12.5% 8 2 -4 0 2 

  2008-16 -52.2 -46.9% 2 0 0 -2 -8 

PM 1990-99 -369.3 -96.9% 1 1 -1 -9 -7 

  1999-07 -3.0 -25.6% 8 0 -4 -2 0 

  2008-16 -1.8 -37.9% 2 0 0 -6 -4 

SO2 1990-99 -1391.4 -88.3% 1 -1 1 -7 -9 

  1999-07 -1.0 -0.6% 8 2 -4 0 0 

  2008-16 -60.6 -44.9% 2 0 2 -4 -4 

Note: In the last five columns we indicate how many times a given decomposition factor was either positive 

(increasing emissions), or negative (reducing emissions). The indicator is a sum of positive contributions (+1) and 

negative contributions (-1) across all years in the given period. For instance, zero indicates there were the same 

number of years with positive and negative direction of the factor effect for the given period. The decomposition 

is always performed on a year-by-year basis, so there are nine effects (one for each year) for the period 1990-1999, 

eight effects for 1999-2007 and another eight effects for 2008-2016 

Table 1 clearly shows that the largest drop in emissions of all four pollutants occurred in the 

first period, from 1990 to 1999, when the emissions decreased by at least 74 %. In this period, 

the emission-fuel intensity factor was dominant in reducing emissions, followed by the fuel-

intensity effect and the fuel-mix effect. In contrast, the activity and structure effects had positive 

impacts on emissions growth.  

In the second period, from 1999 to 2007, emissions paths followed different patterns and even 

trends. Strong economic growth in this period resulted in a strong positive activity effect. The 

structure and fuel mix effects went in the same direction for all pollutants, but their effect was 

significantly lower than the activity effect. The fuel-intensity factor was the only negative one, 

and it reduced all four pollutants in this period. Thanks to its effect, overall emissions did not 

rise during this period. The effect of the emission-fuel intensity factor was both positive and 

negative during this period, as shown in Figure 7, Figure 9, Figure 11 andFigure 13. The 
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emission-fuel intensity reduced emissions of PM, its effect was almost neutral for SO2 and it 

increased emissions of NOx and CO. Over the second period, CO and NOx emissions increased 

by 23 and 12 percent, while emissions of PM and SO2 decreased by 26 and 1 percent, 

respectively.  

In the last period, from 2008 to 2016, the activity effect is positive, but its magnitude is lower 

than the effects of the other factors. The structure and fuel-intensity factors contributed 

negatively or positively at different magnitudes. As in the first period, the emission-fuel 

intensity is the most important factor in reductions of SO2, NOx and PM emissions. Overall, 

SO2, NOx and PM emissions followed a decreasing trend in this period. Emissions of CO rose 

and fell, but overall CO emissions rose, following the trend since 1999. In this case, while the 

activity, fuel-intensity and emission-fuel intensity factors mainly contributed to CO emissions 

increases, the fuel mix worked mainly in the opposite direction. 

The magnitude and direction of the effect due to each factor is displayed in detail in figures 6–

13. SO2, NOx and PM emissions shared a common decreasing trend over the whole period when 

the fuel mix effect was relatively low (up to -4, -2 and -6 percent, respectively) compared to the 

effects of other factors. CO emissions started at the lowest initial value of all four pollutants 

(see Figure 1). Their decline was relatively low in magnitude compared to other pollutants, and 

these reductions were realised mostly before 2000. Since then, emissions of CO rose and fell 

with the diverse directions of the effect of each factor, but the emission-fuel intensity was 

primarily responsible for reducing CO emissions, particularly before 2000. 

In the first years after 1989, the Czech economy changed considerably in terms of its structure, 

and reduced its energy intensity. Still, the structure effect was very strong and positive, leading 

to increases, not decreases, in emissions of SO2, NOx and PM during the early years of economic 

transformation (1990-1992). Fuel intensity and activity factors worked in opposite directions in 

the first years after the Revolution, reducing emissions from large stationary sources by 

relatively large amounts and percentages. Emission-fuel intensity played a dominant role in 

reducing SO2 and PM emissions until 1999 and 2000, respectively, due to installations of 

abatement technologies as a consequence of air emission control regulations introduced at the 

beginning of the 1990s. Between 2000 and 2014, the importance of the emission-fuel intensity 

factor lost its dominancy in reducing SO2 and PM emissions, while the roles of fuel-intensity, 

structure and activity factors became at least as important as the emission-fuel intensity effect. 
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Figure 6: 5 factor decomposition of SO2 emission from 1990 to 

2016 (t) 

 

Figure 7: 5 factor decomposition of SO2 emission from 1990 to 

2016 (percent) 

 



 

Figure 8: 5 factor decomposition of NOx emission from 1990 to 

2016 (kt) 

 

Figure 9: 5 factor decomposition of NOx emission from 1990 to 

2016 

 



 

Figure 10: 5-factor decomposition of CO emission from 1990 to 

2016 (kt) 

 

 

Figure 11: 5-factor decomposition of CO emission from 1990 to 

2016 

 

 



 

Figure 12: 5-factor decomposition of PM emission from 1990 to 

2016 (kt) 

 

Figure 13: 5-factor decomposition of PM emission from 1990 to 

2016 



 

1.4.2. Sensitivity analysis of LMDI decomposition with respect to the 

number of decomposition factors and sectoral aggregation 

We perform sensitivity analyses of LMDI decomposition on individual years in the period 

between 1995 and 2016, when we have the most detailed dataset of 44 sectors. We focus on the 

differences between the decompositions with respect to the number of decomposition factors 

and sectoral aggregation here, and present all figures in percentages.  

1.4.2.1. Sensitivity analysis of LMDI decomposition with respect to the number 

of decomposition factors 

Most literature applying LMDI decomposition performs a 3-factor decomposition. This 

distinguishes the activity effect of the whole economy, the structure effect and the emission 

intensity effect. The emissions intensity effect is the main driver of SO2 emissions reduction in 

the period from 1995 to 2016 (in sum and in 14 cases of 21), followed by the structure effect. 

The activity effect, on the other hand, is positive in 17 of 21 cases. 

The emissions intensity effect captures three emissions abatement options together, i.e. it 

captures abatements through end-of-pipe technology, fuel switch and technological and/or 

product changes that can affect the energy intensity of production. This factor thus indicates the 

effects of the environmentally friendliness of production without distinguishing further through 

which channel the emissions were abated. Although these three channels can be either 

combined or counteract each other – as is clear from the emissions changes from 1996 to 1997 

(second column in the figures) when the positive effects of energy intensity are outweighed by 

negative effects of emissions factor and partly by fuel mix factor too. 

The 4-factor decomposition allows us to understand the underlying drivers of the emissions 

intensity effect – i.e. the energy intensity effect, the emissions factor effect aggregated for total 

energy consumption. We can see the energy intensity effect on SO2 emissions was positive ten 

times and negative ten times between 1995 and 2016, but over this period, the reductions in the 

energy intensity of the Czech economy helped to reduce SO2 emissions overall. 

The 5-factor decomposition goes one step further and decomposes the emissions factor 

aggregated for total energy consumption to fuel mix effect and the emissions factor effect 

related to consumption of individual fuels. The fuel mix effect captures the effect of a change 

in fuel type on emissions. The emissions factor effect captures changes in the quality of fuel 

within the particular fuel (e.g. shift to coal with low content of SO2) and changes in 

technologies – mainly the introduction of end of pipe abatements – where the later channel of 

emissions reduction is dominant. 



 

The new information on the role of fuel type changes on SO2 emissions (fuel mix effect) 

supports the emissions factor effect in 15 of 21 years analysed, but is always lover in absolute 

terms than the emissions factor effect. 

Thanks to the definition of LMDI decomposition, adding fuel specific dimension – in the 5-

factor decomposition – affects not only the last factor that is decomposed, but has a slight impact 

on the other effects as well (e.g. ∑ 𝐿(𝐸𝑖,𝑗
𝑇

𝑖,𝑗 , 𝐸𝑖,𝑗
0 ) ln (

𝑄𝑇

𝑄0) is not equal to ∑ 𝐿(𝐸𝑖
𝑇

𝑖 , 𝐸𝑖
0) ln (

𝑄𝑇

𝑄0)).   

Table 2 compares the activity, structure and intensity effects in 5-factor LMDI and with 3- and 

4-factor LMDI decomposition effects. Introduction of fifth factor and the new dimension of 

specific fuel decrease all other LMDI effects in most cases. 

Table 2 Impact of additional dimension in 5-factor LMDI on activity, structure and 

intensity effects 

Factors compared: 5/3 5/4 

Effect Activity Structure Activity Structure Intensity 

1995-96 -0.2% -0.5% -0.2% -0.5% -0.2% 

1996-97 -0.5% -0.4% -0.5% -0.4% -0.5% 

1997-98 -0.2% -0.1% -0.2% -0.1% 0.7% 

1998-99 -1.0% -3.1% -1.0% -3.1% 3.1% 

1999-00 -0.4% -0.1% -0.4% -0.1% 0.0% 

2000-01 -0.5% -0.2% -0.5% -0.2% 0.4% 

2001-02 -0.6% 4.3% -0.6% 4.3% 0.9% 

2002-03 -0.9% 0.8% -0.9% 0.8% 6.7% 

2003-04 -0.6% -2.5% -0.6% -2.5% -2.5% 

2004-05 -0.2% 0.4% -0.2% 0.4% 0.0% 

2005-06 -0.5% -0.1% -0.5% -0.1% -0.2% 

2006-07 -0.6% -0.6% -0.6% -0.6% -7.9% 

2007-08 -1.3% -0.3% -1.3% -0.3% 0.3% 

2008-09 -0.1% 0.1% -0.1% 0.1% -0.1% 

2009-10 -0.3% -0.3% -0.3% -0.3% 2.3% 

2010-11 -0.2% 0.0% -0.2% 0.0% 1.3% 

2011-12 -0.2% -0.6% -0.2% -0.6% 1.9% 

2012-13 -0.2% 0.2% -0.2% 0.2% -0.6% 

2013-14 -0.2% 0.2% -0.2% 0.2% 1.7% 

2014-15 0.0% 0.0% 0.0% 0.0% 0.0% 

2015-16 -0.2% 2.6% -0.2% 2.6% -18.4% 

Mean of absolute 

values 

0.4% 0.8% 0.4% 0.8% 2.4% 

Min -1.3% -3.1% -1.3% -3.1% -18.4% 

Max 0.0% 4.3% 0.0% 4.3% 6.7% 

 



 

1.4.2.2. Sensitivity analysis of LMDI decomposition with respect to sectoral 

aggregation 

The availability of data can often affect the number of sectors included in the decomposition, 

either in the sense that only some sectors are included or that the sectors are aggregated to some 

degree. Although, as Rørmose & Olsen (2003) and (Seibe, 2003) find, the more aggregated 

input data for the decomposition analysis is, the more information is lost. We focus on the role 

of sectoral aggregation of results of LMDI decomposition here. 

Since we need to have consistent dataset at least from 1995, we aggregate the economic sectors 

to 44 and to 26 sectors, in order to have a consistent dataset from 1990 to 2016. We created a 

third aggregation of 18 sectors to test the impact of aggregation on values of factors in LMDI 

decomposition. The 44 sector aggregation is our reference as the most detailed LMDI 

decomposition we are able to perform with a consistent dataset. 

Figure 14 depicts the relative difference in the values of intensity, structure, fuel mix and 

emission effects with respect to the values of effects based on LMDI with 44 sector aggregation. 

The differences in activity effects across the three sectoral aggregation are negligible (up to 0.9 

%), as shown in Table 3. The bias from the 44 sector aggregation is significantly lower in the 

case of 26 sectors than in the case of just 18.  

On average, the structure, intensity, fuel mix and emission-fuel intensity effects are biased by 

15.7, 9.1, 21.7 and 8.1 percent, respectively, in the 26 sector aggregation from the 44 sector 

aggregation in the period from 1995 to 2016. The median bias is much lover: 12.3, 6.7, 8.6 and 

0.8 percent, respectively. The median of absolute values of effects in LMDI with 44 sectors are 

80, 94, 14 and 101 percent for the structure, intensity, fuel mix and emissions factor effects, 

respectively. We see that the bias is relatively low by the most important effect – the emissions 

factor effect (0.8 % on median). 



 

 Note: Absolute value of percentage difference relative to the factor value derived from the LMDI with 44 economic sectors. 

There are three cases with very large value of difference, always when comparing the LMDI with 18 sectors and 44 sectors; to 

display these large values using the same scale we divide the value of percentage difference by ten and display them by rhombus 

(the large difference are reported for the intensity factor in 2015 [870 %], for the fuel mix factor [1964 %] and for the emission 

intensity factor [332 %]).   

  

Figure 14 Relative difference in effect value using LMDI with 18 and 26 sectors relative to the 

effect value based on LMDI with 44 sectors 
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Table 3. Sumary statistics of relative divefences in efect value using LMDI with 18 and 

26 sectors relative to the factor value based on LMDI with 44 sectors 

  
activity structure intensity fuel mix emission-

fuel  

min. 18/44 0.0% 1.2% 1.1% 2.0% 0.1% 

max. 18/44 0.9% 205.0% 870.6% 1964.2% 331.8% 

mean 18/44 0.2% 48.4% 62.2% 132.7% 24.5% 

median 18/44 0.2% 17.6% 17.4% 26.5% 3.6% 

min. 26/44 0.0% 0.4% 0.0% 0.0% 0.1% 

max. 26/44 0.5% 54.1% 26.0% 117.6% 109.8% 

mean 26/44 0.1% 15.7% 9.1% 21.7% 8.1% 

median 26/44 0.0% 12.3% 6.7% 8.6% 0.8% 

 

1.5. Conclusions 

This study applies Logarithmic Mean Divisia Index decomposition to examine the factors that 

were active in changing the emissions level of four air pollutants from large stationary sources 

– SO2, NOx, CO and particulate matters – during the transition and post-transition periods of 

the Czech economy, from 1990 to 2016. We perform 5-factor LMDI decomposition, in which 

the standard third factor – emission intensity – is further decomposed to fuel intensity, fuel mix 

and emission-fuel intensity effects.  

Our time span overlaps two versions of the Statistical Classification of Economic Activities in 

the European Community (NACE) – revision 1 and revision 2. Due to changing NACE 

nomenclature in the REZZO fuel and emission database and the simplified structure of GVA 

for the 1990-1994 period, we create two consistent, but aggregated datasets. The first is 

aggregated to 26 sectors for the entire 1990-2016 period, and the second is aggregated to 44 

sectors for 1995-2016.  

Following Löfgren & Muller (2010), we consider annual changes rather than decomposition on 

longer time intervals to avoid biased results. However, we can identify three sub periods in our 

time span with common trends and similar patterns for SO2, NOx and particulate matters; 1990-

1999, 1999-2007 and 2008-2016. CO emissions developed differently than those of the other 

pollutants. The largest drop in emissions of all four pollutants occurred in the period from 1990 

to 1999, when the emissions decreased cumulatively by at least 74 %. In this period, firms faced 

a newly competitive environment and new command-and-control regulations. As a result, a 

negative fuel emissions factor effect was the key driver of emissions reductions. However, the 

fuel intensity effect contributed most to reduction of SO2, NOx and PM emissions in the first 3 

years after the Velvet Revolution, when the Czech and Slovak economies uncoupled. In 1999, 

all large stationary emission sources were required to comply with emission limits introduced 



 

in 1991.  Therefore, it was mainly market mechanisms that affected development of SO2, NOx 

and PM emissions. Economic growth reflected by a strong positive activity effect pushed 

emissions upwards, though reductions driven by fuel intensity held emissions down. Since 

2008, the magnitude of activity, structure, intensity and emissions factor effects moved closer. 

In the last two years of our time span, 2015 and 2016, the emissions factor effect became 

important again, as large stationary emission sources were required to comply with strict new 

emissions limits based on the directive on industrial emissions. The fuel mix effect reaches 

absolute values higher than 6 % only in relation to CO emissions (up to 15 % in 2005-2006 and 

2006-2007).  

To identify differences in 3-, 4- and 5-factor LMDI decomposition, we perform a sensitivity 

analysis for SO2 emissions with our most detailed dataset of 44 sectors during 1995-2016. The 

differences in the emission intensity in 3-factor LMDI and emission coefficient effects related 

to total energy consumption in 4-factor LMDI, which are decomposed into more detailed effects 

by 4- and 5- factor LMDI, are as expected. We want to highlight that adding a fuel specific 

dimension – in the 5-factor decomposition –affects not only the last factor that is decomposed, 

but decreases all other LMDI effects in most cases. In our case, the activity effect is reduced by 

up to 1.3 %, the structure effect by up to 3.1 % and the fuel intensity in the 4-factor 

decomposition is reduced by up to 18.4 %. Nevertheless, the means of absolute values of the 

differences are significantly lower: 0.4, 0.8 and 2.4 percent for the activity, structure and fuel 

intensify effect, respectively. 

Since we have two datasets with different sector breakdowns of the economy, we perform a 

sensitivity analysis of 5-factor LMDI decomposition of SO2 emission with respect to levels of 

sector breakdown. We also add a third sectoral breakdown of 18 sectors to our two datasets 

with 44 and 26 sectors. We summarise our result so that, the more aggregated the economic 

sectors are, the larger the bias is. The differences breakdowns for 44 sectors are at least 3 times 

lower with 26 sectors than with 18. The differences in the activity effects are negligible. On the 

other hand, we find the highest relative differences driven by the fuel mix effect, which may be 

related to the low magnitude of this effect. The relative differences in absolute values of LMDI 

effects between the breakdown to 44 and 26 sectors, which we use for our decomposition from 

1990 to 2016, are on average 0.1, 15.7, 9.1, 21.7 and 8.1 percent for the activity, structure, 

intensity, fuel mix and emission-fuel intensity effects, respectively. Our results support 

applying as detailed a sector disaggregation as possible in decomposition analysis.  
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Appendix  

Table 4 Aggregation of sectors 

Sec 
(18 ) 

Simple 
NACE 
rev.2   Simple_Str  

NACE2 
agregation  

NACE 
rev.2  Description -  NACE rev.2  

  (26) (44 )  (adjusted) 

A A A A 01 Agriculture 

A A A A 02 Forestry and logging 

A A A A 03 Fishing and aquaculture 

B B B 05 05 Mining of coal and lignite 

B B B 06 06 Extraction of crude petroleum and natural gas 

B B B 07 07 Mining of metal ores 

B B B 08 08 Other mining and quarrying 

B B B 09 09 Mining support service activities 

C,J,K CA CA 10 10 Food products 

C,J,K CA CA 11 11 Beverages 

C,J,K CA CA 12 12 Tobacco products 

C,J,K CB CB 13 13 Textiles 

C,J,K CB CB 14 14 Wearing apparel 

C,J,K CB CB 15 15 Leather and related products 

C,J,K CC CC,JK 16 16 Wood and of products of wood , except furniture 

C,J,K CC CC,JK 17 17 Paper and paper products 

C,J,K CC CC,JK 18,J,K 18 Printing and reproduction of recorded media 

C,J,K CD CD 19 19 Coke and refined petroleum products 

C,J,K CE CE 20 20 Chemicals and chemical products 

C,J,K CF CF 21 21 Pharmaceutical products and preparations 

C,J,K CG CG 22 22 Rubber and plastic products 

C,J,K CG CG 23 23 Non-metallic mineral products 

C,J,K CH CH-CM 24 24 Basic metals 

C,J,K CH CH-CM 25, 28-30, 33 25 Fabricated metal products, except machinery 

C,J,K CI CH-CM 26-27,32 26 Computer, electronic and optical products 

C,J,K CJ CH-CM 26-27,32 27 Electrical equipment 

C,J,K CK CH-CM 25, 28-30, 33 28 Machinery and equipment n.e.c. 

C,J,K CL CH-CM 25, 28-30, 33 29 Motor vehicles, trailers and semi-trailers 

C,J,K CL CH-CM 25, 28-30, 33 30 Other transport equipment 

C,J,K CM CH-CM 31 31 Furniture 

C,J,K CM CH-CM 26-27,32 32 Other manufacturing 

C,J,K CM CH-CM 25, 28-30, 33 33 Repair and installation of machinery 

D D D 35 35 Electricity, heat and gas 

E E E 36 36 Water collection, treatment and supply 

E E E 37-39 37 Sewerage 

E E E 37-39 38 Waste collection, treatment; materials recovery 

E E E 37-39 39 Remediation activities 

F F F F 41 Construction of buildings 

F F F F 42 Civil engineering 



 

F F F F 43 Specialised construction activities 

G G G G 45 Wholesale and retail trade  

G G G G 46 
Wholesale trade, except of motor vehicles and 
motorcycles 

G G G G 47 
Retail trade, except of motor vehicles and 
motorcycles 

H H H H 49 Land transport and transport via pipelines 

H H H H 50 Water transport 

H H H H 51 Air transport 

H H H H 52 
Warehousing and support activities for 
transportation 

H H H H 53 Postal and courier activities 

I,L I I,L I,68 55 Accommodation 

I,L I I,L I,68 56 Food and beverage service activities 

C,J,K JA CC,JK 18,J,K 58 Publishing activities 

C,J,K JA CC,JK 18,J,K 59 

Motion picture, video and television programme 
production, sound recording and music publishing 
activities 

C,J,K JA CC,JK 18,J,K 60 Programming and broadcasting activities 

C,J,K JB CC,JK 18,J,K 61 Telecommunications 

C,J,K JC CC,JK 18,J,K 62 
Computer programming, consultancy and related 
activities 

C,J,K JC CC,JK 18,J,K 63 Information service activities 

C,J,K K CC,JK 18,J,K 64 
Financial service activities, except insurance and 
pension funding 

C,J,K K CC,JK 18,J,K 65 
Insurance, reinsurance and pension funding, except 
compulsory social security 

C,J,K K CC,JK 18,J,K 66 
Activities auxiliary to financial services and 
insurance activities 

I,L L IL I,68 68 Real estate activities 

M MA M M 69 Legal and accounting activities 

M MA M M 70 
Activities of head offices; management consultancy 
activities 

M MA M M 71 
Architectural and engineering activities; technical 
testing and analysis 

M MB M M 72 Scientific research and development 

M MC M M 73 Advertising and market research 

M MC M M 74 
Other professional, scientific and technical 
activities 

M MC M M 75 Veterinary activities 

N N N 77,81,82 77 Rental and leasing activities 

N N N 78 78 Employment activities 

N N N 79 79 
Travel agency, tour operator and other reservation 
service and related activities 

N N N 80 80 Security and investigation activities 

N N N 77,81,82 81 Services to buildings and landscape activities 

N N N 77,81,82 82 
Office administrative, office support and other 
business support activities 



 

O O O 84 84 
Public administration and defence; compulsory 
social security 

P P P 85 85 Education 

Q QA Q Q 86 Human health activities 

Q QB Q Q 87 Residential care activities 

Q QB Q Q 88 Social work activities without accommodation 

R R R R 90 Creative, arts and entertainment activities 

R R R R 91 Libraries, archives, museums and other culture  

R R R R 92 Gambling and betting activities 

R R R R 93 Sports and recreation activities and amusement  

S S S 94,96 94 Activities of membership organisations 

S S S 95 95 Repair of computers and household goods 

S S S 94,96 96 Other personal service activities 

T T T T 97 Activities of households as employers 

T T T T 98 Undifferentiated goods- 

U U U 99 99 Activities of extraterritorial organisations  
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