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Abstract

Decarbonizing the electricity sector requires a massive shift away from fossil-fired generation, towards a diverse
suite of newer technologies. Demand response (DR) is one of these promising technologies. It encompasses a
range of techniques that adjust demand levels in response to system conditions. It could make the grid more flex-
ible and reduce peaks in demand, potentially helping integrate renewables and operate the grid more efficiently.
DR can have operating characteristics that differ from those of traditional generators. To realize the potential
value of DR to a decarbonizing grid, we must understand how these unique properties affect its system-wide
value. This study contributes to our understanding by characterizing the relative value of different possible prop-
erties of DR, so that market participants can focus their efforts on the most useful types of DR resources. We
use a two-stage stochastic unit-commitment model, with ERCOT as our test system. Features examined include
advance notification requirements, restrictions on when DR is available, the number of startups, the number of
hours of operation, and the amount of energy shed. Results suggest that inexpensive DR that requires advance
notification may still be quite valuable to the grid, and these limitations affect the value of DR less than other
usage restrictions. Availability for early afternoon ramps and peaks is key for realizing reductions in system
costs and ramp rates among thermal generation, and may be more important than the ability to respond to the
real time market. The understanding gained from this study can guide the development of new DR products that
provide higher system-wide value and better consumer satisfaction.

1 Introduction

There are great expectations for demand response (DR),

which encompasses the idea of electricity demand re-

ducing or shifting its load in response to incentives that

are linked to wholesale market conditions. The greater

flexibility in demand that it could provide would be very

valuable on a low- or no-carbon grid. DR could help in-

tegrate intermittent renewables by making the grid more

flexible, and it could help utilities meet their resource

adequacy requirements, which will be increasingly dif-

ficult as dispatchable generation is replaced with vari-

able renewables [15]. It could also help manage and

limit new investment needed in distribution grids with a

large number of small energy resources, like home so-

lar panels, small storage units, and car chargers. How-

ever, there are many different ways of implementing

DR, each with their own benefits and drawbacks that

are not all well understood. We examine some of the

options for DR in an attempt to quantify their relative

benefits.

There are many types of DR. This study focuses on

the types of DR that, at an aggregate level, are able to

receive instructions from wholesale electricity markets

regarding the amount of energy to shed. This kind of

DR is defined by two key features. First, the incen-

tives or instructions for load shedding are dynamic and

able to respond to unexpected grid conditions like heat

waves, reliability events, or high-priced hours. This fea-

ture is in contrast to ’static’ programs like time-of-use

pricing, in which a different rates are offered for on-
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peak and off-peak hours that do not change regardless

of system conditions. Second, the DR resource must be

able to provide a specified level of load reduction when

called upon by some type of system operator. This ar-

rangement is in contrast to dynamic pricing programs

which expose consumers to a varying price signal and

allow them react as they see fit. The combination of

these two features creates a resource that can be counted

on by utilities and system operators to help balance the

grid.

We focus on this type of DR because it represents

the form of DR that is able to bid in wholesale markets

in the US. In 2011, FERCs Order 745 paved the way

for the expansion of this type of DR by requiring that

it be compensated in wholesale markets at equivalent

rates to a generator. As a result, the volume of DR in-

cluded in wholesale markets has been on the rise. Major

market operators including CAISO, ISO-NE, PJM, and

ERCOT have programs for generic DR resources to bid

in their wholesale, ancillary services, and capacity mar-

kets where applicable.

Individual electricity customers that might provide

demand response do not bid in these markets on their

own. Typically, electricity customers providing demand

response participate in wholesale markets via interme-

diaries, either third party aggregators (termed demand

response providers), or utility programs that moderate

the relationship between wholesale market and con-

sumer. This intermediary aggregates a number of elec-

tricity customers together and bids their combined load-

reducing capabilities into the wholesale energy mar-

kets. If that bid is won, the intermediary translates that

award into an instruction sent to the customers to reduce

their load. That instruction could take many forms, in-

cluding automatic, remote control of a device or appli-

ance, or an automated message requesting that a con-

sumer take a certain action, or offering a certain incen-

tive for reducing their electricity demand.

Many technologies and end-uses can provide demand

response. Even after focusing within the category of

dynamic, energy-based DR, we still find large varia-

tion in how companies have chosen to implement DR

schemes, to say nothing of the potential variation in un-

explored arrangements. For example, demand response

providers like OhmConnect aggregate residential con-

sumers and bid their load into the wholesale market.

Businesses, shopping centers, industrial facilities, and

even electric car chargers could provide demand re-

sponse by reducing and deferring demand. Although

the ideal DR resource is available all the time, as much

as needed, in reality each of these cases comes with

their own abilities regarding when, how often, and for

how long they can be called upon to reduce their load.

This variation results in many different types of re-

strictions in how DR can be dispatched. For example,

many residential customers, especially those without

connected smart home appliances, need significant ad-

vance warning to reduce their demand. Deferrable car

charging may come with limits on the amount of energy

that can be reduced in a given time frame or the dura-

tion of the reduction to ensure that cars are charged up

in time for their drivers to use them. Industrial appli-

cations may only be able to reduce their load a certain

number of times per month or year to hit their produc-

tion targets.

With so many different ways of implementing DR

available, aggregators face a decision regarding which

types to target. The knowledge of which limits are

preferable would help the aggregator target more valu-

able types of consumers for inclusion in demand re-

sponse aggregations. Is the deferral of car charging

or control of building HVAC systems more valuable?

Should an aggregator try to use contracts that limit what

times of day customers are called on, or rather limits

how many hours in a week they’ll be used? With this

knowledge, aggregators could choose to market to cus-

tomers who are more able to provide DR that is more

valuable to the system they are selling to. System op-

erators, as they are updating bid structures in their mar-

kets to accommodate DR, can make sure to include pa-

rameters that accurately represent the forms of DR that

are more desirable.
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These issues point to the importance of deepening

our understanding of the value of DR that is imperfect,

i.e. DR that is subject to some limitations like when and

how much it can be used, or what type of notification

timing it needs to work properly. Many of these possi-

ble types of limitations look different for DR than for

traditional generators, so there is not an existing body

of research on how these types of limitations might af-

fect system operation. Our study seeks to help answer

these questions so that market participants can focus on

the types of DR that create the most value and flexibility

for the grid.

To shed some light on these issues, we use a two-

stage stochastic unit commitment model of the ERCOT

system to simulate the impact of DR subject to five dif-

ferent types of limitations within the wholesale market

context. These limits affect: (1) the number of startups

in a given time frame, (2) the number of hours of opera-

tion in a given time frame, (3) the amount of energy use

reduced in a given time frame, (4) which hours DR is

available to be dispatched, and finally (5) how far in ad-

vance DR must be given commitment and production

decisions. By comparing these qualities in the same

modeling framework, we can identify their relative im-

portance.

In existing markets, bid structures do not fully recog-

nize the nuances of DR functions and capabilities, es-

pecially the load shifting aspects of DR. Only the load

shedding capabilities of DR are recognized and com-

pensated. This structure allows DR to be represented in

a similar way to traditional generators in market mod-

els. (At least one pilot program in California is targeting

DR that increases load during times of surplus supply,

but this remains the exception rather than the rule.) As

long as levels of DR are low enough that load shifting

does not create significant new peaks or ramps in de-

mand, only representing the demand reduction may be

a workable approximation.

In this study, we represent DR in the same way as

done in these wholesale markets. This approach means

results will necessarily be limited by the models inabil-

ity to represent the deferment of demand, which can

create new peaks in extreme cases [2]. However, this

approach provides computational simplicity and allows

our results to be mapped more easily to existing mar-

kets.

1.1 Prior literature

Existing literature examines the features and potential

value of DR, though only a minority of studies examine

DR as it is represented in wholesale electricity markets

or otherwise take a system-wide perspective of its value

and include a somewhat detailed representation of the

grid’s operation. The studies that do attempt to deter-

mine the system-level value of DR have examined the

impact of several types of restrictions in the operation of

DR. [2], [1] and [7] look at the impact of the reliability

of DR on its capacity and reliability value. The degree

of centralized control of DR can also affect its value in a

similar way, and is investigated by [10]. [8] and [2] ex-

amine the impact of availability hours; [8] additionally

examines the maximum duration of response. Payback

or rebound, i.e. the amount of shed load that must be

shifted to another period and how long it can be shifted,

could also have a significant impact on the value of DR,

especially at high penetrations, as shown in [21]. This

paper builds on the above literature by comparing dif-

ferent DR qualities side-by-side in the same system, in-

stead of one-by-one.

2 Methods

2.1 Stochastic Unit Commitment Model

To represent the impact of DR on the operation of the

grid, we use a two-stage stochastic unit commitment

and economic dispatch model. Our model is complex

enough to capture the factors that might have a substan-

tial impact on the dispatch of DR, including ramping

constraints, startup costs, and generator minimum load

thresholds. We make several simplifying assumptions

to limit the computational complexity and data require-

ment. Although the precise cost estimates from the
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model may not be accurate, the trends shown between

different scenarios should be representative of what we

might expect in an actual system.

Our model takes its inspiration from [9] and [10]. Its

formulation is given in Appendix A. DR is represented

as it is in wholesale markets: as a shed only resource

that does not account for load shifting. As a result, DR

is represented similarly to traditional generators, but

with special properties: no startup costs, no ramping

constraints, and a near-zero minimum generation level.

The use of a unit commitment and economic dispatch

model allows us to simulate more detail in ramping and

startup constraints. The model’s stochastic nature al-

lows us to mimic a day-ahead and real-time market by

representing the day-ahead uncertainty in the demand

forecast. This feature enables us to tease apart the value

of DR that can be scheduled in real-time instead of a

day in advance.

Uncertainty is driven by day-ahead demand forecast

error. First stage decision variables must hedge against

possible realizations of demand, and represent choices

made in the day-ahead market regarding how much

generation must be committed for the following day.

Second stage decisions are analogous to real-time mar-

ket decisions, and are made for each possible demand

scenario. Generators are divided into fast and slow

types; slow types must have their startup and commit-

ment decisions made in the first stage, and their power

output levels are decided in the second stage, subject to

their commitment status. Fast types have their startup,

commitment, and production decisions made in the sec-

ond stage. Commitment decisions are binary, but for

the purposes of our model the binary constraint is re-

laxed to the range between 0 and 1 for computational

efficiency.

The operational time-frame used in this model is 5

days. A single day is the more traditional unit of simu-

lation in similar studies [10, 20], but this formulation

does not allow for several important features of our

study. First of all, we are interested in looking at re-

strictions in the dispatch of DR over the course of sev-

eral days; for example, some customers may only want

to reduce their load once a week. A single day time

horizon does not allow for these types of longer time-

horizon restrictions. Second, unit commitment models

are subject to end effects for a few hours near the start

and end of the simulation, due to startup costs and mini-

mum production costs. A longer time horizon allows us

to eliminate the suspect hours on either end and focus

on the more robust middle.

Finally, the ERCOT system features two large nu-

clear plants which must be on for almost a full day to

justify their startup costs. Especially in times of high

renewables production, they may not be dispatched im-

mediately within our model. This operation would be

unrealistic because it would overly weight the startup

costs against the variable costs due to the short time

horizon. A longer horizon results in more realistic

weighting of startup against variable costs.

Our selection of time-frame makes a few assump-

tions about the system operation that are important to

note. Since we are using day-ahead uncertainty but

making decisions for five days at a time, we effectively

assume the system operator has much better foresight

than they actually have because when first stage deci-

sions are made, the demand on days 1-5 has the same

level of uncertainty. As a result, the operation of the

system would be a best-case scenario, providing a lower

bound on costs. For instances where DR is restricted to

a certain amount of usage over the simulation, we as-

sume much better foresight regarding when DR will be

most valuable than a system operator would typically

have, again leading to a best-case scenario for DR dis-

patch.

Instead of modeling the whole year for every sce-

nario, we choose a sub-selection of days based on those

days that had the highest prices, ramp prates, and first

stage committed capacity. We grouped these days into

22 five-day simulations. The simulations overlap by 24

hours, allowing us to eliminate the 12 hours on either

end of each simulation. In total, the results for each

scenario are based on eighty-eight days.
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Figure 1: Supply curve for ERCOT in 2016 as modeled.

2.2 Data

The system modeled is ERCOT, which serves most of

Texas, and uses data from 2016, the most recent year

with complete data at the time of the study. Transmis-

sion costs and constraints are not considered, and the

system is modeled as a single node.

Generator data is taken from EIA Form 860, and in-

formation regarding heat rates is taken from the EPAs

eGrid database [16], [19]. We remove plants that are

retired or not yet built. Where values are missing in

eGrid, we substitute the average by generator type.

Generator capacities are confirmed via the ERCOT Ca-

pacity Demand and Reserve Report [3], which is also

used to weed out some generators which may not have

been operating on the ERCOT system in 2016. Vari-

able costs of production for each plant are composed of

fuel costs (using costs from [17] and the heat rate from

[19]), and variable operations and maintenance costs

taken from [14]. Startup costs are assigned by tech-

nology type from [6]. No differentiation is made in this

study between cold and hot startups. Values for these

parameters and for ramp rate limits are given in Ap-

pendix B. The supply curve of the resulting generator

set is shown in Figure 1.

Historical wind and solar production, as well as de-

mand, are all taken from the year 2016 to preserve

any correlation between renewable generation and load.

Wind data by generator is available from ERCOT ([4]).

For wind generators in the EIA database without his-

torical production data, we assign data from the nearest

available generator. Solar availability is estimated from

historical insolation data according to [11, 13], assum-

ing single-axis tracking. We gathered production esti-

mates on a 2x2 lat-lon grid across the ERCOT region

and assigned the closest point to each solar installation.

Historical demand and day-ahead demand forecasts are

taken from EIA Form 930 [18]. Where NAs are present,

data from adjacent times is used to interpolate.

2.3 Statistical Model of Uncertainty

In our two-stage stochastic model, uncertainty is rep-

resented by a suite of possible scenarios for demand.

We create these scenarios using historical demand and

day-ahead demand forecasts, from which we determine

the forecast error. We represent the forecast error as a

percent of the total forecasted demand and use an au-

toregressive process to model it. The model parameters

are found by maximum likelihood estimation using a

Kalman filter [5, 12]. To generate demand scenarios,

we apply the autoregressive model to a randomly gen-
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erated timeseries drawn from the same distribution as

the original forecast error, which is used for the ’burn

in’ period. Twenty-five different scenarios for forecast

error are used in total. A sample of these resulting de-

mand from a sample of these scenarios over a two day

period is shown in Figure 2. All scenarios are given

equal weight in the model.

2.4 Implementation of DR and Restrictions

The baseline DR resource is an optimistic representa-

tion to illustrate what might be possible with an ideal

DR implementation. This resource has no startup cost,

a minimum generation level near zero, constant avail-

ability, and a marginal cost of $35/MWh in the base

case, putting it on par with a coal plant. In reality, most

consumers would not be able to or want to modify their

load as frequently as this resource does. This idealistic

case serves as a reference point for more realistic re-

stricted DR implementations. We assume 1000 MW of

this resource is available to the wholesale market in the

form of many homogeneous smaller resources, which

we model together as a single ’pseudo-generator’ with

a relaxed binary commitment variable.

Five types of restrictions on DR usage are compared

in this study, which can be divided into pure usage re-

strictions and notification restrictions. The usage re-

strictions are on the number of startups for DR, the

number of hours it is committed, the amount of en-

ergy shed, and the hours of the day during which DR

is available. These restrictions are for the five-day pe-

Figure 2: Five sample realizations of demand over 48
hours generated using an autoregressive model.

riod of each simulation. To ensure that DR cannot be

committed in all hours costlessly to avoid startups, the

minimum generation of DR is set to 0.1% of its capac-

ity.

Notification restrictions are represented by modify-

ing the formulation of the commitment and produc-

tion variables for DR. Commitment and production can

each be first stage variables, meaning they must be de-

cided before uncertainty is revealed, or second stage

variables, meaning that they can be decided uniquely

for each scenario after uncertainty is revealed. In the

most optimistic case DR is a fast resource, meaning

that both types of decisions can be made in the sec-

ond stage, which corresponds to DR that can react to

real-time market awards. In the middle case, DR is the

same as a slow generator, in which commitment is a

first stage decision but production can be decided in the

second stage. In the most restrictive case, DR requires

full day-ahead notification of both its commitment and

production decisions, so they are both first-stage vari-

ables. Each of these representations could be imagined

in DR resources with varying levels of automation and

user control.

3 Results

We can compare these different types of DR restric-

tions in several ways. A change in total system costs

indicates their overall value. Shifts in the distribu-

tion of ramp rates in dispatchable generation gives us a

sense of the flexibility value of DR (albeit on an hourly

timescale). The total MWh shed by DR resources, and

the number of hours in which DR was committed are

also useful metrics for examining how the DR resource

was used. We compare these restrictions to a base case

of DR with no limits, as well as a model of the system

without an additional DR resource.

3.1 Usage Limits

We examined four types of usage restrictions: limits

on the amount of energy used, the hours of commit-
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Type of DR Reduction in 99th
percentile ramp (MW/hr)

Fast 40.67
Advance Commitment 40.67
Advance Production 33.45
Afternoon & Evening 0.00
Daytime 40.67
Energy Limit (10GWh) 17.67
Energy Limit (5GWh) 0.00
Hour Limit (10) 17.67
Hour Limit (5) 0.00
5 startups 40.67
3 startups + 30 hour limit 37.09
1 startup 40.67

Table 1: Shift in the distribution of upward ramps, as
illustrated by the change in the 99th percentile upward
ramp relative to a case with no DR.

ment, the number of startups, and the times of avail-

ability. They all resulted in somewhat different levels

of use of the DR resources, making it less straight-

forward to compare their value. We would expect

that infrequently-dispatched resources are likely to be

dispatched only in high-value hours, while more fre-

quently dispatched resources will be used in both high

and lower-value hours. As a result, we expect that types

of DR that are used to shed less energy would have a

higher value per MWh shed. As a result when we see

types of DR resources that are dispatched more than

others but create less value per MWh, it tells us that

that restriction has a significant impact on the value of

DR to the system.

Energy and hour limits interestingly have similar

value to the system at similar levels. (e.g., a 5000 MWh

energy limit is the same as a 5 hour limit for a 1000

MW resource.) These limits reduce the amount that the

DR resource is dispatched more than in other scenar-

ios, resulting in a much lower system benefit for the

same amount of DR capacity. However, since this DR

is saved for high-value hours, the system cost savings

per MWh shed are much higher than other types of re-

strictions (Figure 4).

Availability restrictions examined two different time-

frames for DR usage. The first, daytime-only DR (7am-

10pm), might represent the HVAC functions of large

shopping centers or office buildings; it also corresponds

with ERCOT’s on-peak hours1. Afternoon/evening

DR (3-9pm) might represent appliance and AC use by

households returning from school and work. Unsur-

prisingly, daytime-only DR provides almost the same

level of system benefits as always-available DR (the

base case), as cost-driving ramp rates and high marginal

prices are almost never seen at night. Evening-only DR,

on the other hand, is dramatically less valuable. Sum-

mertime peaks in Texas often begin before 3pm, so this

type of DR is not available to reduce high afternoon

ramps (see Table 1) nor is it available to reduce peak

demand in the early part of the peak. The cost savings

per MWh shed are equivalent to the base case (Figure

4c), but since this type of DR is used to shed demand in

dramatically fewer hours than the base case, we would

expect it to have a higher value per hour, as seen in the

energy and hour limits.

Startup restrictions are, in theory, a practical way

of implementing a restriction on the number of unique

’events’ that a DR resource experiences. However, in

practice they do not work very well in the absence of

other restrictions. With nothing stopping the system

operator from maintaining DR operation at a low level

for a long period of time, startup limits can be met by

simply never ’shutting down’ DR. This is what we see

when we restrict the model to only one DR startup per

day, as illustrated in Figure 3. In this case, DR sheds

very slightly (0.42%) more MWh than the base DR case

over the study period, but it is committed in five times

the number of hours.

Even in the case of a relatively relaxed 5 startup limit

over 5 days, we see an elevated level of commitment.

Additional restrictions like a no-load cost, a response-

duration constraint, or a limit to the number of hours

of operation are needed for a startup restriction to cre-

ate a desired number of unique ’events’. A secondary

scenario with a limit of 3 startups coupled with a 30-

1ERCOT Glossary http://www.ercot.com/glossary/o
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hour commitment limit to control the over-commitment

problem still saw higher amounts of commitment than

in the base case. These results are partly driven by the

low marginal cost of DR in this model, the low mini-

mum energy shed from DR, and the resulting low cost

of commitment. The option value of being able to dis-

patch such a cheap resource is worth paying a small

commitment cost. For DR with a high marginal cost

and/or a high commitment cost, we would expect dif-

ferent levels of operation and commitment.

Besides pure system-cost savings, we are also inter-

ested in the ability of DR to reduce major ramps in gen-

eration from dispatchable plants. These types of ramps

are expensive for thermal generators, especially those

that were not built with ramping capabilities in mind,

and higher levels of renewables may increase the fre-

quency and size of these ramps. Evening-only DR does

not reduce the frequency of high-ramp periods relative

to a case with no DR; the most dramatic ramps in Texas

occur in the early afternoon before this type of DR is

available (see Table 1). DR that is subject to hour and

energy limits is also less able to reduce ramps, likely

because it is being deployed in times of high marginal

cost of production, instead of during shoulder times that

Figure 3: Expected number of hours that DR is commit-
ted during the 88 ’key’ days modeled. Three types of
startup restrictions are: 5 startups, 3 startups and 30
hours of commitment, and 1 startup, all applied over a
5-day time-frame.

feature strong ramps.

Interestingly, DR that requires an advance produc-

tion decision is also somewhat less effective at reduc-

ing maximum ramps. This result points to the influence

of uncertain changes in demand on the maximum ramp

rates of the system (a result which could also be cause

by uncertain RE production in real systems) . It seems

the keys for reducing ramps among dispatchable gener-

ation on the ERCOT system are, in order of importance,

availability in the early afternoon (or whenever times

of maximum ramp and load are), availability for multi-

hour events that stretch from the ramp to the peak, and

fast operation to respond to unexpected ramps.

3.2 Notification Limits

Demand response with notification limits can still be

valuable, but much higher amounts of commitment or

production are needed to achieve similar value to the

base DR case. We examine two types of notification

requirements: advance commitment demand response

(AC DR, which functions the same as a slow genera-

tor), and advance production DR (AP DR) which re-

quires production schedules in the first stage (i.e. day-

ahead market) that cannot be modified. For both, we

find that the notification limit results in more, not less,

dispatch of DR (either through commitment or produc-

tion), indicating that even this imperfect version of DR

is preferable to a more expensive or ramp-limited gen-

erator.

AC DR is committed in more than twice as many

hours as in the base case, yet it is used to shed vir-

tually the same amount of energy for the same level

of cost savings, as shown in Figures 4 and 5. In this

model we assign a small cost for commitment (via a

very small minimum generation level) for demand re-

sponse, so that it cannot be committed all the time cost-

lessly. In our model, this small cost incurred by com-

mitting AC DR in the day-ahead market is worth it for

the option value of dispatching AC DR in the real time

market.

AP DR is not as valuable as AC DR or base DR.
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(a) Expected cost savings relative to a scenario with no DR

(b) Expected MWh shed by DR

(c) Expected cost reduction per MWh shed by DR

Figure 4: Effects of introducing DR with various limitations. All values are expected values across 25 demand
scenarios, for the 88 most important days simulated. Fast DR, on the left, represents the base case.

Since the model must decide on production levels with-

out knowing the true levels of demand, sometimes it

will be used to produce in an hour when it is uneco-

nomic. Although it produces more than the base DR, it

results in less cost reduction and also less ramp reduc-

tion than the base case or the AC DR case, as shown in

Figure 4 and Table 1. However, it is still more valuable

from a cost and ramping perspective than several of the

usage restrictions.

AP DR also shifts costs towards fast generators and

away from slow generators relative to base DR. Both

production and startup costs are higher for fast gen-

erators and lower for slow generators when AP DR is

used . This result points to the reduced flexibility value

of AP DR and the ability of base DR to displace fast

peaker plants. As the time resolution of the model is

only hourly, the advantage of DR that can be dispatched

in real time may be even higher if sub-hourly effects are

taken into account. However the flexibility of genera-

tors in the model is likely somewhat overestimated, so

the relative advantage of DR may be somewhat less than

shown in this model.
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Figure 5: Expected number of hours that DR is commit-
ted during the 88 ’key’ days modeled. The three types
of DR restrictions are: Fast, also referred to as base
DR, which can be dispatched in the real time market,
advance commitment which gets a unit commitment de-
cision in the day-ahead market, and advance produc-
tion which gets a production schedule in the day ahead
market.

4 Discussion and Conclusion

We examined the value of different types of demand

response (DR) to the electricity system within a unit

commitment and economic dispatch model of the ER-

COT system in Texas. A two stage stochastic model

mimicked the impact of forecast uncertainty on the day

ahead and real time markets. We evaluated four types of

usage restrictions and two types of advance notification

requirements, and compared them to ’perfect’ DR re-

sources that are available all the time with no advance

notification, as well as to a system without additional

DR.

These results begin to inform a discussion about what

types of ’imperfect’ DR are more preferable, a ques-

tion that developers of demand response must address,

given that consumers most likely want some type of

limit placed on how much they can be used to shed or

defer demand.

Given the choice between notification restrictions or

usage restrictions, the former appears more valuable to

the system. It is possible that consumers may be will-

ing to defer or reduce their demand more often if they

are given more advance notice. DR that requires an

advance commitment provides similar value to unre-

stricted DR in terms of system cost reduction and off-

setting large system ramps; this value comes at the cost

of being committed in many hours where it may ulti-

mately not be used, and is made possible by low com-

mitment costs. DR that requires advance production

schedules is slightly less valuable, but still reduces costs

and ramps significantly. This type of DR is dispatched

more frequently, which could lead to difficulties mea-

suring baseline usage.

Startup restrictions, although an appealing way to

control the number of ’events’ a consumer experiences

in a given time-frame, are relatively ineffective at ac-

complishing this goal without another type of usage re-

striction, or some type of ’no load’ commitment cost. In

the absence of these other restrictions, the system oper-

ator can maintain DR at a low level of demand shedding

without turning it ’off,’ thus avoiding another startup. A

representation of the deferral of demand by the system

operator, not just the shedding of demand, would also

avoid this phenomenon, but there is significant uncer-

tainty surrounding how long demand can be deferred

and how much of the shed load must be recovered.

Energy and hour-based limits turn out to have quite

similar effects; DR developers should consider which

one makes the most sense for the type of customer re-

source they are contracting with. If it makes use of

a consumer’s battery backup, for example, an energy-

based limit may make the most sense. Otherwise, an

hour-based limit may be more intuitive.

These results call for further study. There are other

types of DR characteristics that should be studied, like

how reliably DR does what it is dispatched to do, how

long it can shed load for, and different hours of avail-

ability. Combinations of new and already-studied char-

acteristics might represent the true operational charac-

teristics of known DR resources. Different marginal

costs for DR, or fuel costs for existing thermal gen-

erators, could shift the conclusions. Refinements to

10



the modeling structure would introduce additional com-

plexity but perhaps answer questions with a higher

fidelity. Sub-hourly timescales could shed light on

shorter ramping events; combined with more detailed

modeling of ramping and startup costs, we could gain

more insight into the flexibility value of these resources.

Finally, different systems with different types of vari-

able renewables and load shapes may respond differ-

ently.
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Appendix A: Model Formulation

Sets:
f : fast generators

s: slow generators

d: demand response pseudo-generators

g: all generators: the union of f , s, and d

t: timesteps

ω: scenarios

Parameters:
PMIN : min generation levels per generator

PMAX: max generation levels per generator

F : production cost ($/MWh)

C: startup cost

A: generator availability

R: max ramp rate, as a fraction of total capacity

S: startup limit (if used)

E: energy limit (if used)

H: hour limit (if used)

prob: probability of scenario ω

Variables:
p: production (second stage)

q: production by advance production DR (first stage)

z: slow generator startup (first stage)

v: all generator startup (second stage)

w: slow generator commitment (first stage)

u: all generator commitment (second stage)

c: number of total startups (second stage)

Equations
Objective: Minimize expected cost

min Cost =
∑
ω

[cg ∗ Cg + pgtωFg]probω (1)

Subject To

Supply demand balance∑
g

pgtω ≥ Dtω ∀ t, ω (2)

Respect generator min and max

pgtω ≥ PMINg ugtω Agt ∀ g, t, ω (3)

pgtω ≤ PMAXg ugtω Agt ∀ g, t, ω (4)

Startup, commitment, and initialization

zgt = wgtω − wg,t−1,ω ∀ g ∈ s, t > 1, ω (5)

vgt = ugtω − ug,t−1,ω ∀ g, t > 1, ω (6)

zgt = wgtω ∀g ∈ s, t = 1, ω (7)

vgt = ugtω ∀g, t = 1, ω (8)

Non-anticipitivity constraints for slow generators

vs,t,ω = zs,t ∀ s, t, ω (9)

us,t,ω = ws,t ∀ s, t, ω (10)

Ramping constraints

pg,t,ω − pg,t−1,ω ≤ Rg ∀g, t, ω (11)

Startup detection

cg,t,ω ≥ vg,t,ω ∀g, t, ω (12)

cg,t,ω ≥ 0 (13)

For advance production DR

qg,t ≤ PMAXdwg,tAg,t ∀g ∈ d, t, ω (14)

pg,t,ω = qg,t ∀g ∈ d, t, ω (15)

Startup constraints∑
t

cgtω ≤ S ∀g ∈ d, ω (16)

Energy constraints∑
t

pg,t,ω ≤ E ∀g ∈ d, ω (17)

Hour limits ∑
t

ug,t,ω ≤ H ∀g ∈ d, ω (18)
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Relaxed binary and non-negative constraints

0 ≤ w, u ≤ 1 (19)

p, q, c ≥ 0 (20)

14



Appendix B: Generator Data

Plant Type Max ramp rate
(fraction of capacity)

Variable O&M
($/MWh)

Startup costs
($/MW) Slow or Fast?

Biomass 1 8.742 0 Slow
Coal <300 MW 0.6 4.831 157 Slow
Coal 0.6 4.831 65 Slow
Other Gas 1 3.385 55 Slow
Gas Combined Cycle 1 2.828 55 Slow
Gas Combustion Turbine 1 3.942 126 Fast
Gas Internal Combustion Engine 1 5.850 55 Fast
Gas Steam Turbine 1 4.831 58 Fast
Hydroelectric Plant 1 0.000 0 Slow
Landfill gas 1 5.850 0 Slow
Nuclear 0.17 1.050 300 Slow
Petroleum 0.9 0.000 55 Fast
Solar PV 1 0.000 0 Fast
Solar Thermal 1 0.044 0 Fast
Wind 1 3.364 0 Fast

Table 2: Default data used in this model. Sources are given in the document text.

Fuel Cost Units

Coal $2.311 $/MMBTU
Natural Gas $3.789 $/MMBTU
Petroleum $15.83 $/MMBTU
Nuclear $7.7 $/MWh

Table 3: Fuel costs used to calculate variable production costs. Sources are given in the document text.
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