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Abstract

The Paris agreement in 2016 marks a global effort to limit the increase in temperature. In that spirit, the Federal Government
of Canada introduced a carbon tax to reduce greenhouse gas emissions. The main goal of this paper is to define the correct
approach to carbon pricing. Following the method, introduce by Goutte and Chevalier (2015), we define the carbon price as the
necessary tax to incite electricity producers to switch from coal to natural gas. In addition, we consider the case of switching
from natural gas to wind as a potential approach. After reviewing the two methods, we model prices under three stochastic
procedures: pure-jump Lévy process, Lévy Normal and Heston model. Finally, we generalize our empirical technique to oil,
natural gas and coal individually. The main finding of this article is that the Lévy process outperforms the Lévy Normal and
Heston as it is able to take into account the jumpy and volatile nature of energy prices.
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1 Introduction

In October 2016, the federal government of Canada pub-
lished ”The pan-Canadian approach to pricing Carbon
Pollution”. The main goal of this act is to reduce green-
house gas (GHG) emissions by taxing fossil fuels respon-
sible for releasing carbon in the atmosphere. Over the
years, fossil fuels, namely, coal, natural gas, and oil, have
been seen as the main cause of temperature disruptions
and extreme weather events. Climate specialists predict
that temperatures could rise up to 5 degrees Celsius in
2100 (Chesney and Taschini, 2012). As fossil fuels con-
tain carbon, once burnt, they allow energy to be gen-
erated, which in turn is important for health, educa-
tion, political power and economic status (Sneideman,
2015). The Canadian consensus is in line with the cli-
mate agreement reached in Paris in 2016 where countries
have agreed to a common effort to limit temperature in-
crease to 1.5 degrees. Furthermore, developed countries
are to provide help during extreme weather events and
slow-onset such as the sea level rise. Finally, financial
support should be given to developing countries in order
to invest in clean energy (UNFCC, 2016).
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If a consensus has been reached regarding efforts to pro-
tect the earth, the implementation of a carbon pric-
ing scheme divides the fiercest economists, especially in
Canada. Two systems are currently in place: cap and
trade, and taxation. On the one hand, a cap and trade
give an initial number of permits to emit CO2 to a com-
pany based on its activity. If an enterprise emits less than
what the number of permits allows them, they can freely
trade the number of permits in excess to another entity
that wishes to pollute more. Economically more efficient,
this approach gives an incentive to a company to reduce
its pollution level in order to sell their permit. On the
other hand, a taxation approach gives the right to a com-
pany to emit a certain level of CO2. If the firm releases
more CO2, it has to pay a tax. As one can see, firms
do not have an incentive to pollute less than what the
limit prevails. In Canada, Quebec and Ontario adopted
a cap and trade system, where the carbon price is $18 per
tonne on average for the Quebec Province (Tombe and
Rivers, 2017). However, the western provinces of BC and
Alberta opted for a taxation system. The current carbon
price in Alberta is $30 per tonne. The introduction of
carbon pricing is said to have different impacts among
regions. A case study of the province of Saskatchewan,
whose economy is based on the extraction of natural re-
sources, shows that GHG emissions are reduced but its
economy is bound to shrink as the fuel-switching oppor-
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tunities are rare (Liu et al, 2018). However, the BC ex-
ample shows promising results. Introducing its carbon
tax in 2008, Yamazaki (2017) found evidence that the
system in place proved to be beneficial for the employ-
ment rate of the province.

This paper focuses on Alberta who introduced the car-
bon tax in 2017. Alberta is currently the biggest coal
producer alongside British Columbia as they provide
85% of Canadian coal. The use of this fossil fuel cur-
rently generates 10% of the country’s electricity. More-
over, the province supplies 71% of Canada’s natural gas
(NRCAN, 2018). In 2018, the carbon tax increased by
50% to reach 30$ per tonne. Households electricity bills
are expected to rise by 150$ (Tombe, 2017). The main
concern raised by economists is that the tax is going to
affect poor households, and this, in turn, could lead to an
increase in inequalities (Ambasta and Buonocore, 2018).
Hence, a correct approach to carbon pricing is essential
for the Albertan economy and its residents.

In this paper, we introduce an approach to carbon pric-
ing based on the European energy market experience.
Following the method introduced by Goutte and Cheval-
lier (2015), we define the carbon price as the necessary
price to incite companies to switch from coal to natural
gas. Since the latter is less carbon intensive, this measure
would considerably reduce GHG emissions. Besides, we
also examine the case of switching from natural gas to
wind. The economic content of this paper gives a detailed
explanation of the fuel-switching and energy-switching
processes. Moreover, we intend to generalize our statis-
tical approach to the North American market and other
energy indicators. In addition to the fuel-switching and
energy-switching prices, we look at coal, natural gas, and
oil individually. In order to model the prices, we consider
three types of stochastic models: Lévy Normal Inverse
Gaussian (NIG) process, Lévy Normal, and the Heston
model.

The paper is structured in the following way. Section 2
provides the necessary economic background to under-
stand how the fuel-switching price is defined. Section 3
presents the data used and gives the first insight into
the Albertan energy market. Section 4 is concerned with
the methodology and can be dissected into two parts:
stochastic modeling and parameters estimation. Section
5 shows the empirical results found. Section 6 discusses
the potential shortcomings of the paper and topics for
further research and summarizes the main results.

2 Energy Economics and Energy-Switching

Energy markets depend on micro and macroeco-
nomic factors and influence fuel-switching and energy-
switching. The aim of this section is to first give the
dynamic driving energy prices. Secondly, the notion
of energy-switching is defined as well as the necessary

conditions for it to happen and the potential problems
arising from it. Thirdly, the carbon pricing formula is
presented and reveals when companies have an incen-
tive to pass from coal to natural gas (or natural gas to
wind) and vice-versa based on current market condi-
tions. Finally, we examine the factors influencing the
price of wind.

Prices in the energy sector depend on political decisions
and economic aspects. Competition among fossil fuel
users and from alternative sources to generate energy,
such as renewables, is a key factor in defining prices. In-
deed, energy markets are often controlled by a monopo-
list who has the power to dictate prices. Moreover, subsi-
dies given by governments to clean-technologies can play
an important role in the competitiveness of the industry.
In addition to the competition facet, national allocation
plans, which covers the initial number of permits (CO2
allowances) and a penalty level, are identified as the main
cause of price jumps. Furthermore, the volatility of the
price of fossil fuels is also an element to take into con-
sideration. In fact, coal prices are generally more stable
than natural gas prices and, consequently, are more at-
tractive for a company looking to reduce risks. Other
variables potentially influencing prices are weather con-
ditions and economic growth (Sjim et al, 2006; Seifert et
al, 2008; Carmona et al, 2009).

Another influence omitted from the list above is fuel-
switching, which represents the possibility to pass from
a coal-fired plant to a natural gas plant, and vice-versa.
Coal is generally cheaper and thus preferred by com-
panies, even though it emits more CO2. Therefore, in
order for a switch to happen two conditions must be
met. First, the carbon price (tax or current permit price)
must be high enough and natural gas price low enough.
Since natural gas emits less CO2, a high carbon price
favors its use. Second, there has to be the physical pos-
sibility to switch. During the winter season, the demand
for electricity is typically higher than in the summer,
and it is not unlikely that all plants are working at their
maximum capacity, regardless of the type of fossil fu-
els used (Delarue, D’haeseleer, 2007). The fuel-switching
process is a good start to model carbon price since tra-
ditional abatement measures tend to invite producers
to use cleaner energy than coal. However, as noted by
Chesney and Taschini (2012), fuel purchasers tend to
sign contracts with a long maturity and this impedes the
fuel-switching process to be fully flexible. Consequently,
this paper chooses to consider monthly fuel prices, rather
than daily.

Electricity prices depend on the physical capacity to
generate power, the presence of potential substitute and
other economic factors. Therefore, an adequate formula
must take into account the various aspects mentioned so
far. This paper follows the method defined by Chevallier
and Goutte (2015). Prices are defined by the marginal
generation of technology and are expressed as the ratio
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between the fuel cost, FC, and the plant efficiency, η,
which represents the necessary amount of energy needed
to produce electricity:

MC =
FC

η

Introducing a price on carbon requires the equation
above to be revised. Considering that fossil fuels have a
different impact on the environment, an emission factor,
EF , based on C02 intensity is added as well as an emis-
sion cost, EC, per unit of carbon emitted. The revised
formula reads:

MC =
FC

η
+
EF

η
EC

Fuel-switching occurs if the use of one fossil fuel to gen-
erate energy is cheaper than the other option. There-
fore, by equalizing the marginal costs, one can define the
minimum carbon price necessary for a switch to occur.
Indeed, the only factor which is common to both fossil
fuels is EC.

ECswitch =
ηcoalFCgas − ηgasFCcoal
ηgasEFcoal − ηcoalEFgas

If the carbon tax defined by the Albertan government
is lower than this price, then coal plants are said to be
more profitable than gas plants.

The idea behind energy-switching based on wind follows
the same formula. However, the factors influencing wind
prices are quite different. Indeed, the use of wind de-
pends on seasonal factor and its price depends on tech-
nological aspect, such as electricity storage. The Cana-
dian Wind Energy Association (CanWea) provides fur-
ther explanation regarding this topic. Moreover, wind is
discussed in greater details in the next section.

3 Data

The data used in this project were gathered from vari-
ous sources, such as NRG Stream, Bloomberg, Energy
Information Association (EIA), Market Insider, Jem En-
ergy, the city of Winnipeg and CanWea. This section
provides insight into the distribution and evolution of
energy prices over time, as well as the justification for
the time period considered.

Following the formula for the fuel-switching (energy-
switching) prices from the previous sections, the differ-
ent variables employed were retrieved from various data
sources. When fuel-switching is considered, we need data
regarding the fuel cost, efficiency parameter and emis-
sion factor as mentioned in the previous section. Prices of
coal are in $/tonne and prices of natural gas in $/MMbtu
were retrieved from NRG Stream (Alberta data), EIA

(natural gas North America data) and Market Insider
(coal North America data). The emission factor compo-
nent, EF , is expressed in kgCO2eq/MWhp. Financial
data from the city of Winnipeg show that EF is equal
to 210 for natural gas and 320 for coal. Similar to pre-
vious findings, coal is more harmful to the environment
than natural gas. A 2004 study from JEM Energy cal-
culated the efficiency of the coal and natural gas plants
in Alberta. The average efficiency for a coal and natu-
ral gas plant is respectively, 32.6% and 31.1% (32% and
43% respectively for North America, according to EIA)

In order to compute the EC price, the data were changed
from $/MMbtu and $/tonne to $/Mwh. Furthermore,
weekly data and daily data were chosen as opposed to
monthly data. Fuel-switching is technically more likely
to happen on a monthly basis, however, since we failed to
obtain large time series data for the energy markets, we
opted for a weekly approach. The next figures below, rep-
resent the evolution of coal, natural gas, oil (Bloomberg
data) and fuel switching for both the Albertan and North
American markets.

Fig. 1. Alberta Market

The results for the North American market were ob-
tained using Bloomberg data. In recent years, the prices
for coal and natural gas have become extremely close to
natural gas being even cheaper at times. Consequently,
it is not surprising that we observe the fuel-switching
price to have gone negative. The main implication is that
pricing carbon using fuel-switching is not appropriate
anymore. Regarding oil, we note that the financial crisis
may have triggered a high-spike in its price. By looking
at the three figures, we conclude that energy prices are
characterized by high-spike and quick mean reversion,
which justify our approach to use pure jumps methods.
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Fig. 2. North American Market

Additionally, it is apparent that prices go through peri-
ods of calm and stress, this, in turn, could imply that a
stochastic volatility model, such as Heston model, yields
better results than a classic geometric Brownian motion.
Finally, it is indisputable that fuel-switching has become
obsolete, therefore, we decide to model carbon under our
energy-switching approach.

In recent years, renewable energies, wind in particular,
have become an important source of electricity genera-
tion. A 2016 study by the Canadian Wind Energy As-
sociation (CANWEA), shows that wind power accounts
for 50% of Denmark’s electricity generation system and
is the largest source of new Energy in Canada. The emis-
sion factor, associate to wind is equal to zero and it’s effi-
ciency ranges from 32-37% according to the EIA. More-
over, the cost of Wind is estimated to lie somewhere be-
tween 37.5$ and 42.5$ per MWh. Since data regarding
wind cost is difficult to estimate, we generated a ran-
dom uniformly distributed process to obtain the price
of wind. The next figure shows the necessary price to

switch from natural gas to wind. If the carbon tax is un-
der the line, then natural gas plants are said to be more
efficient than wind plants. The energy-switching price is
quite high and reflects the current low price of natural
gas in Alberta.

Fig. 3. Energy Switching based on wind for Alberta

So far, our results have indicated that fuel-switching,
considering the large drop in the natural gas price, is
no longer an adequate approach. Moreover, the prices
are characterized by jumps and mean-reversion and this
confirms what has previously been observed in the liter-
ature. Therefore, the last step prior to stochastic mod-
eling is to determine the empirical distribution of our
data.

The distribution of returns is a good indicator of the
problems that can arise when simulating prices under a
geometric Brownian approach. Financial data, as illus-
trated by oil and energy-switching, depart from a Nor-
mal distribution. Indeed, extreme returns are more likely
to happen than what the Normal predicts. Moreover,
we notice that returns are generally skewed. Hence, the
use of a NIG may be a more appropriate approach when
simulating energy prices.

4 The stochastic Model

In this part, we are considering a panel of continuous
mean reverting stochastic process and Heston model.
The fuel-switching price

Let (ω, F, P ) be a probability space. In this paper, all
the stochastic models are under this probability space.
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Fig. 4. Empirical Distribution of Returns

We now present three models and compare each of them
to obtain a best overall fit to the fuel-switching price.

4.1 Mean-reverting process

Definition 1: A Lévy process {Xt}t≥0 is a stochastic
process that it satisfies following properties:
1.X0 = 0.
2.For any s > 0 and t > 0, we have that Xt+s − Xt

has the same distribution with Xs. i.e. It has stationary
increments.
3. For 0 ≤ t0 < t1 < ... < tn, Xti −Xti−1 are indepen-
dent for all i. i.e. It has independent increments.
4. The path of a Lévy process are right continuous and
admit left limit. i.e. Xt has Cadlag path.

Next, we will give two mean reverting process, one is
a continuous process with a browian motion and the
other one is Lévy-driven Ornstein-Uhlenbeck processes.

Definition 2: For all t ∈ [0, T ], a continuous mean
reverting process with Brownian motion is a stochastic
process (Xt) which is a solution of the stochastic deffer-
ential equation:

dXt = (θ −Xt)dt+ σdWt

where κ,θ,σ are constants and Wt is a standard Brown-
ian motion.

Remark 1: In this model, κ denotes the mean-reverting
rate, θ denotes the long-run mean and σ denotes the

volatility of (Xt).

Definition 3: The continuous process mean reverting
process with pure Lévy jump process writes:

dXL
t = (θ −Xt)dt+ σLdLt

with parameters κ,θ in R, σm ∈ R+ and Lt is a Lévy pro-
cess. The solution to this stochastic differential equation
is called Lévy-driven Ornstein-Uhlenbeck processes.

Remark 2: The Lévy process L can follow different
kinds of distributions for example the Variance Gamma
distribution. In this paper we assume that it follows
a Normal Inverse Gaussian(NIG) distribution. This
family of distribuiton was introduced by Barndorff-
Nielsen(1998) and it is a continuous probability dis-
tribution that is defined as the Normal variance-mean
mixture where the mixing density is the inverse Gaus-
sian distribution.

Definition 4:
Let δ > 0,α ≥ 0 and γ ≥ 0, then the probability density
function of Normal Inverse Gaussian distribution is :

αδ

π
exp(δ

√
α2 − β2+β(x−µ))

K1(αδ
√

1 + (x− µ)2/δ2)√
1 + (x− µ)2/δ2

where the Kv is a Bessel function of the third kind with
index v and it can be represented with the following
integral:

Kv(z) =
1

2

∫ ∞
0

y(v−1)exp(−1

2
z(y + y−1))dy

Also, for a given real v,Kv satisfies the differential equa-
tion given by

x2y′′ + xy′ − (x2 + v2)y = 0

4.2 Estimations of mean reverting stochastic process

In this section we consider a two step parameter esti-
mation method for this model. In Goutte’s paper he
developed a least square method which minimize the
empirical variance to obtain the parameter for Brownian
motion and he used a constrained maximum likelihood
method for estimating the NIG random variable.

Before estimating parameters, we first need to discretiza-
tion the model. In practice, we observe the price at fixed
times 0 = t0 < t1 < ... < tn = T , with ∆t = tk+1 − tk
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constant. Thus we can first solve the stochastic differ-
ential equation and discretize the solution by:

Xtk+1
= Xtke

−κ∆t +

∫ tk+1

tk

κθe−κ(tk+1−s)ds

+

∫ tk+1

tk

σe−κ(tk+1−s)dLs

Rearrange the solution, we obtain:

Xtk+1
−Xtk = m− aXtk + sεtk

with m = (1 − e−κ∆t)θ, a = 1 − e−κ∆t and sεk =∫ tk+1

tk
σe−κ(tk+1−s)dLs

• If the model is mean reverting process with Brownian
motion, then the process L is Brownian motion and
εk follows N(0, 1).
• If the model is Lévy-driven Ornstein-Uhlenbeck pro-

cesses, then the process L follows a NIG distribution
with expectation 0 and variance 1. Thus we assume
that the parameters of NIG distribution in this model
are α, β, δ and µ.

Thus, we need to estimate the set of parameters
{m, a, s, α, β, δ, µ}

4.2.1 Parameter Estimation procedure: step one

We estimate the subset of parameter {m, a, s} at first
using a least square method that minimize the empirical
variance of the noise:

V ar[sε] ≈ 1

n

n−1∑
k=0

(Xk+1 − (1 + a)Xk −m)2

where n is the amount of data we have.
The solutions to this quadratic problem is:[

m̂

1− â

]
= (A′A)−1A′B

Where A=


1 Xn−1

... ...

1 X0

 and B=


Xn

...

X1

.

Thus the estimator of s is directly followed by

ŝ2 = ŝ2V ar[ε] = V ar[ŝε] =
1

n

n−1∑
k=0

(Xk+1−(1+â)Xk−m̂)2.

4.2.2 Parameter Estimation procedure: step two

In this step we propose a constrained maximum likeli-
hood method to estimate the parameter {α, β, δ, µ}. So
far we assume that we have n+1 observations (the prices)
(X0, X1, ..., Xn) such that, for k = 0, 1, ..., n− 1,

ε̃k = Xk+1 − (1− â)Xk = m̂+ ŝεk

is followed by the non-centered and unNormalized NIG
distribution NIG(α̃, β̃, δ̃, µ̃). Now, we are willing to es-
timate these parameters based on the following propo-
sitions.

Proposition 1 : SupposeX1, X2, ..., Xn ∼ NIG(α̃, β̃, δ̃, µ̃),
then log-likelihood function is given by

nlog(
α̃δ̃

π
) + nδ̃γ̃ +

n−1∑
k=0

[β̃δ̃τk − log ck + logK1(α̃δ̃ck)]

where τk = Xk−µ̃
δ , ck =

√
1 + τ2

k , γ̃ =

√
α̃2 + β̃2.

Proposition 2: If X ∼ NIG(α, β, δ, µ), then for any
a ∈ R+ and b ∈ R, we have

Y = aX + b ∼ NIG(
α

a
,
β

a
, aδ, aµ+ b)

Proposition 3:The first four central moments of the
NIG distribution are:

m1 = µ+ δβγ−1,m2 = δα2γ−3,

m3 = 3δβα2γ−5,m4 = 3δα2(α2 + 4β2)γ−7

By proposition 1, we can estimate the parameters
{α̃, β̃, δ̃, µ̃} by maximize the log likelihood under con-

strains γ̃ > 0 and δ̃ > 0. Due to complicated form of
the density of NIG distribution, obtain a estimators for
our parameters is a difficult task and so we need special
numerical method to solve it.

Once the parameter set {α̃, β̃, δ̃, µ̃} has been estimated,
we then use proposition 2. We know that

εk =
ε̃k
ŝ
− m̂

ŝ
∼ NIG(ŝα̃, ŝβ̃,

δ̃

ŝ
,
µ̃− m̂
ŝ

).

So the true estimates of the parameters {α, β, δ, µ} are:

α = ŝα̃, β = ŝβ̃, δ =
δ̃

ŝ
, µ =

µ̃− m̂
ŝ

.

Recall in previous we want the expectation of εk to be 0
and variance to be 1. Thus according to proposition 3,
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we also need E[εk] = µ+ δβ
γ = 0 and V ar[εk] = δα2

γ3 = 1.

Combine with the four equation above, we can conclude
that we only have two free parameters (α, β).

At last, since we are using special numerical method to
maximize the log-likelihood function, we need to give our
method some good initial values. Under this situation,
we find out the first to forth sample moments based on
Xi and then solve the initial value of these parameters.
Now let

µ1 = µ̃+ δ̃β̃γ̃−1, µ2 = δ̃α̃2γ̃−3

µ3 = 3δ̃β̃α̃2γ̃−5, µ4 = 3δ̃α̃2α̃2 + 4β̃2γ̃−7

where µk = 1
n

n−1∑
j=0

(ε̃j − X̄)k, k = 1, 2, 3, ... is the kth

sample moment.

Using these four equation we obtain,

ˆ̃γ =
3

S̄
√

3γ̄2 − 5γ̄1
2
,

ˆ̃
β =

γ̄1S̄ ˆ̃γ2

3

ˆ̃
δ =

S̄2 ˆ̃γ3

ˆ̃
β2 + ˆ̃γ2

, and ˆ̃µ = X̄ − ˆ̃
β

ˆ̃
δ

ˆ̃γ

where X̄ and S̄ are the sample mean and variance re-
spectively and γ̄1 = µ3

µ
3
2
2

, γ̄2 = µ4

µ2
2
− 2.

4.3 Heston Model

Definition 5: (Heston model) Under the risk-
neutural probability measure Q the Heston model is
given by:

dS(t) = rS(t)dt+
√
V (t)S(t)dWs(t)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dWv(t)

where Ws(t) and Wv(t) are two Brownian motions
with correlation coefficient ρ. We then apply the Euler-
Maruyama scheme to the equation above and simulate
it. The initial estimates for the volatility equation are
derived under an OLS approach. The risk-free rate r
is arbitrarily initiated at zero. As starting value of the
process we decide to use the mean of the energy price.

Algorithm 1:. Let X̂ and V̂ denote discrete-time
approximations of X and V respectively. The Euler-
Maruyama scheme applied to the above equation is
given by

X̂(h(i)) = X̂(h(i− 1)) + (r − 1

2
V̂ (h(i− 1)))h

+
√
V (h(i− 1))Zx

√
(h)

V̂ (h(i)) = V̂ (h(i− 1)) + κ(θ − V (h(i− 1)))h

+ σ
√
V (h(i− 1))Zv

√
(h)

where Zx and Zy are standardized Gaussian random
variables such that corr(Zx, Zy) = ρ.

5 Empirical Analysis

This section provides the main findings of this article.
First, we begin by comparing the general statistic of our
data with the empirical estimation of our parameters.
Second, the simulations obtained are displayed. Third,
the goodness of fit of the data is assessed.

5.1 Parameter Estimation

Table 1 below presents a summary of the main infor-
mation regarding energy prices. Table 2 provides the
estimated OLS parameter for the Lévy-pure jump and
Brownian motion processes. Table 3 displays the esti-
mates using the simulate the NIG.

The data section of this article presented the real price of
each energy stock and demonstrated that they were sub-
ject to high spikes and jumps. Table 1 confirms our past
impression. It is clear that prices of oil vary quite sub-
stantially with a minimum value of 17.72$/barrel and a
high of 145.18$/barrel. This can potentially be explained
by the power of cartels to dictate prices. Moreover, the
skewness and kurtosis measurement indicate departures
from the Normal as previously assumed by looking at the
distribution of prices. Indeed, a positive kurtosis means
that extreme events are more likely than if the data came
from a Normal distribution. Consequently, we expect the
flexibility provided by the NIG to improve performance
with regards to a traditional Brownian motion approach.

Table 1. Summary Statistics

Energy Energy-Switching Oil Coal Natural Gas Fuel-Switching

Mean 61.11 62.05 57.75 4.67 2.55

Median 62.17 59.38 58.02 4.03 2.97

Standard Deviation 16.20 26.89 10.11 2.25 3.98

Min 15.10 17.72 39.50 1.59 -7.16

Max 97.04 145.18 79.50 18.48 14.88

Period 14-18 00-18 10-18 00-18 14-19

Observations 223 992 425 947 1272

Skewness -0.76 0.36 0.08 1.66 0.050

Kurtosis 0.75 -0.79 -0.47 3.94 2.45

Table 2 describes the result of three energy prices. This
paper chose to focus on Energy-switching, oil, and fuel-
switching as they are the main focus of this paper. κ rep-
resents the speed of mean-reversion of the process. As
hinted by the plots in the previous section, we observe
that mean-reversion speed of energy-switching is faster
than the oil one. Additionally, we note that θ, the av-
erage price of the process, is almost equal to the actual
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mean. Therefore, calibrating the processes using OLS
gives satisfactory results. Regarding the Heston model,
parameter estimates are not presented in this section
since they are hardly comparable with the other two
processes, however, the simulation section presents an
extensive explanation of the model.

Table 2. OLS Parameter Estimates

Parameter Energy-Switching Oil Fuel-Switching

κ 0.1095921 0.007238064 0.008600791

θ 63.45765 64.84073 1.10466

σ 7.408024 3.064373 0.4007405

Table 3. NIG Parameter Estimates

Parameter Energy-Switching Oil Fuel-Switching

α 1.393878 1.099928 0.60614414

β 0.1155199 -0.1857707 -0.13472828

δ 1.059834 0.9967635 0.10518010

µ -0.3104575 0.1708004 0.03343841

5.2 Simulation Results

Prices were simulated using the software R and various
packages from the CRAN library. As an example, we
choose to present the result for energy-switching (main
focus) and oil (larger dataset available). As one can see
in the plots that follow, the Lévy NIG process incorpo-
rates high-spike and larger volatility when compared to
the Normal. If it appears clear that the NIG is better to
simulate the energy-switching price, the results for oil
are harder to assess. Moreover, the Heston model does
not seem to fit our data correctly. A possible explana-
tion is that the weekly volatility is not distributed as a
χ2. Therefore, the next part of this section reviews the
goodness of fit test for the Normal and NIG processes,
in order to confirm our visual interpretation.

5.3 Goodness of Fit Test

The Kolmogorov-Smirnov test is a common approach to
estimate the goodness of fit of the data. A p-value larger
than five percent indicates that the specified model and
the empirical data come from the same distribution. Ta-
ble 4 gives the p-value for the selected energy prices.
The p-values of the Kolmogorov-Smirnov test were cal-
culated based on the parameter estimated and the dis-
tribution of the residuals. According to this method, the
NIG performs better than the Normal for almost ev-
ery energy prices except for natural gas. However, these
results must be interpreted with caution. Indeed, the

Fig. 5. Simulation Results for Energy-Switching

Fig. 6. Simulation Results for Oil

p-values appear to be quite high. Inflated p-values are
not uncommon since the parameters were estimated di-
rectly using the residuals. Nonetheless, the Kolmogorov-
Smirnov test remains the best approach to assess the
goodness of fit of the data. We address this issue in
greater details in the shortcomings.

Table 4. Kolmogorov-Smirnov Test

P-value Energy-Switching Oil Fuel-Switching Coal Natural Gas

Normal 0.3677 0.8609 0.3868 0.704 0.9136

Normal Inverse Gaussian 0.4484 0.869 0.7987 0.762 0.3277

6 Conclusion

6.1 Discussion

This section proposes a discussion of the methodology
used and the topics, which should drive further research.
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First, the shortcomings of the models and solutions are
presented. Second, alternatives to model stochastic pric-
ing are presented. Finally, the results found are com-
pared with the one in the literature.

As mentioned in the previous section, the goodness of
fit test of our data suffers from inflated p-values result-
ing from the estimation technique of our parameter. An-
other common approach to assess the goodness of fit
the Cramer-von Mises criterion. The idea is to compare
whether the empirical distribution with the assumed dis-
tribution. The value of the test is calculated under a min-
imum distance estimation procedure (Anderson, 1962).

Additionally, we discovered that the choice of the risk-
free rate impacted greatly the outcome of the Heston
model simulation. Since energy prices depend a lot on in-
ternational political decisions, it might be wrong to use
the average of a 3-month t-bill interest rate issued by the
federal government of the United States. Consequently,
we chose to set the risk-free as zero. Further research
could focus on the correct estimation of the risk-free in a
world where countries have proven to default and where
some countries, such as Switzerland and Denmark expe-
rience even negative interest rate on their government
bonds.

Two alternatives could have been used to model en-
ergy prices. First, let us consider the case of a Hawkes
process. a Hawkes process is a counting process, as op-
posed to a Poisson process, possesses a random inten-
sity function. The random intensity parameter increases
each time an event takes place, in other words, it re-
lies on the past history of jumps. Therefore, a Hawkes
process is said to be a self-exciting process (Bacry et al,
2016). Hence, the idea behind the Hawkes process is to
assume it is endogenous. Second, we can also consider
the Markov Switching Lévy-driven Ornstein-Uhlenbeck
processes, which the parameter σ can be changed un-
der different states of a Markov chain and different state
represents different economic status like inflation or a
crisis. Hence, future research should try and implement
these two types of processes.

The findings of this paper are similar to the one of
Goutte and Chevalier (2015), who investigated the fuel-
switching price on the European market from 2007 to
2010. At that time, the price of coal was relatively cheap
in comparison to the price of natural gas. Their main
results indicate that Lévy NIG outperforms the Normal
by far. Moreover, they considered the case of Poisson
process and showed it was not suitable to model energy
prices.

6.2 Summary of Main Results

The goal of this paper is to assess to review the intro-
duction of the carbon tax and to model energy prices.

The procedures employed to define the theoretical car-
bon price are energy-switching and fuel-switching. Fur-
thermore, this article focused on oil, coal and natural
gas separately. Three stochastic processes are considered
to model prices: Lévy NIG, Lévy Normal and Heston
model.

The recent changes in the coal and natural gas prices
have made fuel-switching an obsolete method to price
carbon. Indeed, the fuel-switching price appears to be
negative for several periods. Energy-switching, on the
other hand, relies on the use of renewable energies, such
as wind. This approach is hard to implement due to the
lack of existing infrastructure, which does not allow to
switch from one energy to the other. Nonetheless, as the
use of renewable increases, a policy maker could define
a carbon price based on this approach. Future research
could consider alternative sources of energies, such as
hydro and solar energies.

The three types of stochastic procedures yield different
results. Overall, the Lévy NIG outperforms both, the
Lévy Normal and Heston model. Moreover, it seems
that the Heston model is not suitable for energy prices.
Future research should focus on Hawkes processes
and Markov-switching models. Additionally, different
frequencies could be used such as daily or even high-
frequency data. We chose weekly due to the difficulties
to switch from one energy to another on a daily basis.
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Ornstein-Uhlenbeck processes: application to modeling of CO2

and fuel-switching., Ann Oper Res, Vol. 255, 169-197.

[9] City of Winnipeg, 2012, Emission factors in kg CO2-equivalent
per unit., Findata

[10] Delarue, E., Dhaeseleer, W. 2007, Price determination of
ETS allowances through the switching level of coal and gas in
the power sector., International Journal of Energy Research,
Vol. 31, 10011015.

[11] Federal Goverment of Canada, 2016, Pan-Canadian
Approach to Pricing Carbon Pollution., Environment and
Climate Change Canada

[12] JEM Energy, 2004, A Study on the Efficiency of Albertas
Electrical Supply System, Report for For Clean Air Strategic
Alliance (CASA).

[13] Liu, L., Huang, C., Huang, G., Baetz, B., Pittendrigh S.,
2017, How a carbon tax will affect an emission-intensive
economy: A case study of the Province of Saskatchewan,
Canada., Energy, Vol. 159, 817-826.

[14] Natural Resources Canada, 2016, Coal facts, Energy

[15] Natural Resources Canada, 2016, Natural Gas facts, Energy

[16] Seifert, J., Uhrig-Homburg, M., Wagner, M. 2008, Dynamic
behavior of CO2 prices. Journal of Environmental Economics
and Management., Vol. 56, 180194.

[17] Sijm, J., Bakker, S., Chen, Y., Harmsen, H. W. Lise, W.
2005, CO2 price dynamics: The implications of EU emissions
trading for the price of electricity., ECN Working paper, 05-
081, The Netherlands.

[18] Sneideman, J. 2014, A guide to the energy of the earth, Ted-
Ed

[19] Tombe, 2017, ”You probably won’t notice it,” economist says
of 50% hike in Alberta Carbon Tax, Interview given to the
Calgary Herarld and Bill Kaufmann, December 28, 2017

[20] Tombe, T., Rivers, N., 2017, The cost of carbon pricing in
Ontario and Alberta., Macleans

[21] UNFCC, 2016, Paris Agreement., Cop 21

[22] Yamazaki, A., 2017, Jobs and climate policy: Evidence from
British Columbia’s revenue-neutral carbon tax., Journal of
Environmental Economics and Management, Vol. 83, 197-216.

10


