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Abstract

We combine insights from engineering and economics literature by incorporating mi-
croeconomic theory on consumer preferences into an existing electricity simulation model
to provide an improved representation of residential customers’ electricity consumption
preferences. The resulting model can be used to evaluate and compare residential
end-users’ responses to electric rate designs and their decisions to invest in and operate
distributed energy resources (DERs). In order to represent how end-users are likely
to respond to different rate designs, we model residential end-users’ preferences for
consuming electricity by incorporating a constraint that represents the consumer welfare
derived from thermal and non-thermal electricity services throughout the day. We then
calibrate this model using advanced meter infrastructure (AMI) data from a large U.S.
electric utility. In future research, this model can provide new insights by combining
engineering simulation techniques with economic theory and econometric methods using
real-world smart grid data.
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1 Introduction

The electric distribution grid is transitioning toward a model in which customers can

themselves provide a variety of services to the grid, including electricity generation, by

investing in distributed energy resources (DERs) such as distributed solar generation,

programmable appliances, and energy storage. However, customers’ incentives to make these

investments depend on how they are being charged for electric service. Specifically, the way

the electric distribution company allocates the cost of service into the different elements

of the rate (tariff) design, such as volumetric or demand charges and time-variant or flat

charges, determines the returns on investment for different types of DERs. The rate design

will also be a main factor in determining where and to what extent investment in DERs

are made, and whether DERs will contribute to improving system reliability and reducing

electric system costs.

Despite the topic’s importance for the electric distribution system of the future, the body

of literature on the impact of electric rate design on the proliferation of DERs is still limited,

see e.g., Darghouth et al. [2016], Hledik and Greenstein [2016], Schittekatte et al. [2018],

and Simshauser [2016]. While these studies look at important topics such as the potential

for cost shifting, they all hold electricity consumption patterns constant, and, hence, do not

take into account how customers’ use of electricity may shift in response to new electric rate

designs. As a result, their approaches are more limited in their ability to capture the impact

of rate design on the return on investment for different DERs.1

In this paper, we improve upon this common feature of typical engineering models

analyzing the impacts of electric rate design by incorporating microeconomic theory into

an existing electric simulation model. Engineering simulation models are generally cost

minimization problems with ad-hoc monetized penalties for deviations from a reference

electricity use profile, and, thus, do not provide a very good representation of consumer

1 A notable exception is Hledik and Greenstein [2016] who estimate the effect of demand charges under
smart, or predictive, charging patterns of distributed storage owners and simple charging, and show that
the benefit of cost-reflective pricing is larger under smart charging. However, this different charging pattern
is not based on observed user preferences or behavior when faced with a different tariff.
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preferences and are limited in their ability to predict changes in consumer behavior. In

contrast, our model specification provides an improved representation of residential customers’

electricity consumption preferences, and can therefore be used to evaluate and compare

residential customers’ responses to different electric rate designs and their decisions to invest

in and operate DERs.

Specifically, we include a consumer welfare constraint (henceforth utility constraint) in

the optimization (electric bill minimization) model to represent consumer preferences for

non-thermal and thermal electric loads. This representation allows us to separate consumer

preferences related to heating and cooling needs, which are weather dependent, and other

needs, which depend on individual preferences for appliance usage. We then calibrate the

model using AMI data from a large US electric distribution company. Using 30-min data for

over 50,000 customers, we calibrate unique preference parameters for each customer. As a

result, we can provide synthetic model-generated loads that closely replicates observed loads.

This paper is structured as follows. We first describe the simulation model and how the

utility constraint is specified. We next describe how we calibrate the new specification to

AMI data. Finally, we present results from a randomly selected subset of users to illustrate

how well the model output with the new specification replicates observed electric load

patterns.

2 Demand Response and Distributed Resources Economic Model

(DR-DRE)

The Demand Response and Distributed Resources Economic Model (DR-DRE), which this

research improves upon, was originally developed by engineers at the Massachusetts Institute

of Technology (MIT) (see Huntington [2016] for a more complete description of the original

specification). DR-DRE is designed to represent how electricity tariffs affect households’

electricity consumption and their decisions to invest in and operate DERs. The model can

represent a large number of different households/users such that aggregating the DR-DRE

model output across a large set of users gives results for the impact of an electricity tariff on

3



aggregate (net) load.

DR-DRE’s available investment options in DERs are rooftop photovoltaics (PV) systems,

batteries and heat pumps. The model’s representative customers choose their electricity

consumption and investment in DERs to minimize their net electricity expenditure (i.e.,

any expenditure minus any DER-related revenues), subject to customer-specific constraints

related to preferences for indoor temperature and load shifting as well as constraints related

to heating, ventilation, and air conditioning (HVAC) technology and the building’s thermal

characteristics. The customers’ decisions to conserve or shift electricity consumption, and

whether to adopt any DER therefore depend on the relative prices and the associated welfare

losses (such as deviations from the ideal indoor temperature) from changing their electricity

consumption across the hours of the day.

DR-DRE can represent a variety of rate designs which can include time-varying energy

($/kWh), capacity ($/kW), and fixed charge components, or any combination thereof. The

model can also simulate the provision of different services from DERs, such as energy,

operating reserves, firm capacity, and network services.

The DR-DRE model is proprietary and a mixed integer linear program written in

Julia/JuMP, using a nonlinear solver.

3 Updating the Consumer Preference Specification in DR-DRE

In the original DR-DRE version, households’ cost-minimizing responses to electricity rate

and structure were determined by two disutility parameters (i.e., penalties) for thermal and

non-thermal load responses, respectively. For thermal load, this disutility parameter was a

monetized disutility for indoor temperature deviations outside of a set range around the

ideal indoor temperature (bliss point). This results in an end-user optimization around

cost and temperature. For example, during summer hours when the cost of electricity for

cooling is higher than the monetized disutility from having a higher indoor temperature, the

model provides a cost-minimizing solution with higher indoor temperature and lower thermal

load but with an additional disutility cost tied to the resulting hotter indoor temperature.
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Similarly, for non-thermal load, in the original DR-DRE specification, there was a parameter

which represented the monetized disutility of curtailment of non-thermal electricity use.

However, the values of these parameters were not based on empirical studies or observed

user preferences, and this specification furthermore did not allow for a difference in the

utility/preference for electricity load during different parts of the day.

We therefore replaced the constraints related to these parameters with a household utility

constraint (1) as specified below:

Utility ≥ ū, (1)

where

Utility =

T∏
t=1

(NonThermal Load (t) −MinLoad (t))at−
T∑
t=1

b(TempInt(t) −BlissPoint)2

(2)

and where 0 < at < 1 and t = [1, 24] represents the hour of the day. MinLoad is the absolute

minimum non-thermal electricity use in each hour, TempInt(t) is the indoor temperature in

hour t as generated by the HVAC system and BlissPoint is the most comfortable indoor

temperature which would be chosen if the electricity costs of running the HVAC system

were not a consideration. ū is the minimum level of utility (household welfare) that the

cost-minimizing solution needs to achieve.

The first part of the utility function represents each user’s relative preference for electricity

services other than heating or cooling (non-thermal loads) during each hour. This part of the

utility function is an adapted version of the Klein-Rubin (Stone-Geary) utility function.2 This

formulation features a necessary or minimum consumption of each good (here represented

by the parameter MinLoad). As a result, this specification better reflects the choice problem

facing an electricity customer considering substitution of electricity consumption in one

period with consumption in another period based on the relative prices across time periods.

The relative size of parameters at, in turn, indicates the relative utility of non-thermal

2 The Klein-Rubin (Stone-Geary) utility function has been widely used in the study of private consumption
patterns, see e.g., Gaudin et al. [2001], and derives from the seminal studies by Klein and Rubin [1947],
Geary [1950] and Stone and Rowe [1954]
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electricity use in different hours of the day.

The second part of the utility function models each user’s relative preference for meeting

their heating and cooling demand (thermal loads) during each hour by representing the

disutility from any deviation between the indoor temperature provided by the user’s HVAC

system and the end-user’s ideal indoor temperature (bliss point) as a convex function.3 The

squared term implies an increasing marginal disutility of further temperature deviations

away from the bliss point.

With this specification, substitution and shifting of loads amongst hours and across

uses (thermal versus non-thermal) are better captured, while avoiding the type of ad-hoc

monetary disutility penalty featured in the original specification.

4 Calibration against AMI Data

DR-DRE previously relied on simulated, representative residential load profiles based on

average thermal and non-thermal load patterns. Through access to a very large and granular

dataset of customer-level AMI load data from Commonwealth Edison (ComEd) in Chicago,

we are able to represent a much more varied set of preferences and calibrate them to observed

load data rather than simulated load profiles. This representation of a large set of different

end-user preferences based on real load data enables us to better capture the variation in

household responses that can be expected under different rate designs. However, our data

show only the total household-level consumption, and do not differentiate between different

end uses of electricity, such as heating and other needs. As a result, we need to estimate

the fraction of each end-user’s load that is used for thermal and non-thermal purposes.

Thus, as further described below, we first use regression analysis to estimate the thermal

and non-thermal portions of the total household electric load. Next, we use the estimated

thermal and non-thermal electric loads to calibrate the parameters of the utility function

and the building thermal properties in DR-DRE.

3 We assume a bliss point of 21 degrees Celsius.
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4.1 Econometric estimation of thermal and non-thermal loads

We first estimate hourly thermal load for each household by regressing the total household

load on outdoor temperature to capture each household’s electricity use for indoor space

heating and cooling. In the next step, we calculate hourly non-thermal loads as the difference

between the observed total loads and the estimated thermal loads.

4.1.1 Data

The dependent variable is customer-level AMI load data for 55,635 households with 30-min

resolution for the year 2016 from ComEd in Chicago. We aggregate the data up to hourly

loads resulting in 8,784 data points per household (2016 was a leap year). We eliminate

commercial users and users with a large number of missing data, which reduces our initial

sample of 55,635 to 54,412.

Table 1 below shows the customer class and tariffs of the 54,412 households sample. In

2016, ComEd introduced a Residential Real Time Pricing (now more accurately re-name

Hourly Pricing) program, however, since participation has been low (less than 0.6% of

residential customers with supply service with ComEd), we assume all households in our

sample face a flat (time-invariant) volumetric charge per kWh.

Table 1: Characteristics of the 54,412 users sample

Customer class Frequency Fixed Charge Volumetric Charge (per kWh)

Residential Multi 9,040 $11.98 $0.107

Residential Multi (Space Heat) 1,076 $12.46 $0.095

Residential Single 44,185 $14.89 $0.106

Residential Single (Space Heat) 111 $16.32 $0.94

Table 2: Distribution of hourly loads (kWh) for the 54,412 users sample

Min. 1st Quartile Median Mean 3rd Quartile Max

0.00 0.25 0.48 0.76 0.92 28.81
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Table 3: Distribution of yearly loads (kWh) for the 54,412 users sample

Min. 1st Quartile Median Mean 3rd Quartile Max

10.17 3657.65 5909.93 6638.45 8843.46 61323.89

Tables 2 and 3 show the distribution of the hourly loads and total annual loads, respec-

tively.

For the regression analysis, the main independent variables are outdoor temperature and

relative humidity in 2016 at Chicago Midway Airport Climatological Data Station, retrieved

from a public dataset by the National Centers for Environmental Information (NCEI) with

60-min resolution.

4.1.2 Econometric specification

Our econometric specification estimates the responsiveness of customers’ electricity usage to

outdoor temperature. We assume that this response is due to a change in thermal loads; so,

for example, during the summer, we attribute a positive correlation between total electricity

consumption and hourly outdoor temperature to increased A/C usage. This assumption

disregards the fact that it is possible for there to be non-space cooling or space heating

reasons for changes in electricity consumption in response to outdoor temperature, such as

changes in the use of electric appliances due to weather (either through behavioral change,

such as households staying in to avoid high outdoor temperatures, or technological effects,

such as a refrigerator having to cycle more due to hotter temperatures). However, because

we do not observe appliance-level electricity consumption, this assumption is required. Note

also that since the customers in our sample, as noted in the previous section, were facing

time-invariant volumetric electricity charges in 2016 there is no need to control for electricity

price in the regressions.

To estimate the responsiveness of electricity consumption to changes in outdoor temper-

ature, we run the following two regressions for each individual household separately: one

for the hours in which the temperature was above 65 degrees Fahrenheit (F), and another
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for the hours in which the temperature was below 65F. This cut-off point of 65F is based

on the common assumption that energy consumption is influenced by the need to keep a

comfortable indoor temperature - estimated to be 65F - in residential buildings.4 We are thus

attempting to estimate the responsiveness of electricity demand to outdoor temperature due

to residential space cooling and heating, respectively. We define this incremental response

as thermal load.5

Dividing the regressions based on temperature (heating degree hours vs. cooling degree

hours) provides two important benefits. First, it lets us avoid having to place unnecessary

structure on the regression specification to allow for a U-shaped functional form around

65F. Second, it provides more flexibility in temperature responsiveness, due to differences

in behavior, preferences, and consumption patterns during different times of year. This

flexibility is important because many individuals in our sample do not have electric heat;

behavioral responsiveness such as opening windows and/or doors during summer nights can

lead to greater heat transfer losses; and so on. Thus, by allowing the coefficients to vary for

heating and cooling preferences, we increase the accuracy of our regression results over the

entirety of the temperature range.

Our estimation equations are as follows:

For hours with temperature >65F:

Lt = β0 + βCDH CDHt + βCDH2 [CDHt]
2 + βhumidity Humidityt+

βweekend Iweekend +
∑

month ∈ 2...12

βmonth Imonth +
∑

hour ∈ 2...24

βhour Ihour + εt;

and for hours with temperature <65F:

Lt = β0 + βHDHHDHt + βHDH2 [HDHt]
2 + βhumidity Humidityt+

βweekend Iweekend +
∑

month ∈ 2...12

βmonth Imonth +
∑

hour ∈ 2...24

βhour Ihour + εt;

4 This is, for example, how Cooling and Heating Degree Days are defined.
5 As alluded to earlier, this specification assumes that water heating usage is not a part of our thermal load.
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where

• Lt is total household load in hour t.

• CDHt is Cooling Degree Hours (CDH) in hour t. The cooling degree hours are

calculated as the difference between the hourly temperature and 65F for each hour in

which the temperature is higher than 65F. A square term is added for each cooling

degree hour to account for a non linear response due to extreme temperatures.

• HDHt is Heating Degree Hours (HDH) in hour t. The heating degree hours are equal

to the difference between 65F and the current hourly temperature whenever it is below

65F. A square term is added here as well.

• Humidityt is the hourly relative humidity, which measures moisture in the air as a

percentage of the maximum water vapor possible at a given temperature and pressure.

This variable affects individuals’ sensation of outdoor temperature.

• Iweekend is a dummy variable that indicates whether the given hour belongs to a

weekend or weekday. Weekday is the omitted category.

• Imonth are dummy variables that indicate to which month of year the hour belongs to.

January is the omitted category.

• Ihour are dummy variables that indicate hour of day. Midnight to 1 am is the omitted

category.

We use the regression results to predict the hourly thermal load for each household. We

first replace coefficients that were not significant at the 5% level with zeros. That is, we only

use statistically significant coefficients to estimate the thermal load. Our regression-predicted

thermal loads are thus calculated with the following equations:

For hours with temperature >65 F:

̂ThermalLoadt = β̂CDH,t CDHt + β̂CDH2 [CDHt]
2 ,
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and for hours with temperature <65 F:

̂ThermalLoadt = β̂HDH,t HDHt + β̂HDH2 [HDHt]
2 ,

where β̂ are the user-specific coefficient estimates from the regressions.

4.1.3 Econometric Results

In the figures below, we show the regression results for a sub-sample of 50 randomly selected

users from the whole sample of 54,412 households (henceforth users). We randomly sampled

50 users to first test out our calibration approach before expanding it for the full sample.

Figures 1 and 2 show the regression-estimated average seasonal thermal load profile

across the hours of the day for our sub-sample, while figures 3 and 4 shows the hourly

residuals across the year from the regression. These residuals would be equivalent to the

non-thermal loads per hour, since we estimate non thermal loads by subtracting thermal

loads from the total load.

Figure 1: Average Hourly Regression-Predicted Thermal Load Subsample 1
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Figure 2: Average Hourly Regression-Predicted Thermal Load Subsample 2

Figure 3: Hourly Residuals Subsample 1
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Figure 4: Average Residuals Subsample 2

4.2 Calibration using the estimated loads

4.2.1 Calibration of household preference parameters determining non-

thermal load

The preference parameters we need to calibrate with the AMI data are the at values and

the ū values from expression (2) for each household. Using the estimated non-thermal

load for each hour (which is estimated as the difference between total observed loads and

regression-predicted thermal loads), we can approximate the value of the at parameters

in (2) for each household and hour by making use of the assumption that the estimated

non-thermal load is the load that maximizes (non-thermal) utility subject to a budget

constraint.6

6 This approach for calculating the at values additionally requires an assumption that the non-thermal load
is determined independently of the thermal load, which is strictly speaking not fulfilled as we have defined
our utility function, but is the only assumption that makes it possible for us to approximate the at values
without having to run the model and correct for the endogenous indoor temperature and related disutility.
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Maximizing the first term of (2) subject to daily electricity expenditure m, we can solve

for at and get:

at =
price(t) [NonThermal Load (t) −MinLoad]

m−
∑T

t=1 price(t) MinLoad
=

NonThermal Load (t) −MinLoad∑T
t=1NonThermal Load (t) −

∑T
t=1MinLoad

(3)

Because the 2016 electricity prices were time-invariant, the at value for each hour is

simply given by the share of that hour’s non-thermal load in total daily non-thermal load.7

To arrive at a reasonable number of preference parameters for each household that still

represent the household’s preference for electricity use in each hour of the day, we calculate

48 average values to represent each hour of the day on weekends and weekdays. For example,

we calculate the mean for all the values of at for 1 am on weekdays and weekends in 2016,

similarly for 2 am, and so on for each hour of the day.

Once we have calculated the 48 at parameters, we use these parameters to calculate the

value of the first term of the utility function (2). We thus estimate the value of the first

(non-thermal) term of the utility function given the estimated non-thermal load for each

day and the respective at’s. We then average these values within three different seasons

(winter, summer, and spring/fall) to arrive at three different seasonal utility values for the

non-thermal part of the utility function.

For the spring/fall months, where there is little to no thermal loads, this value represents

the average level of daily household utility achieved with the loads we observe for 2016;

essentially, the ū for those two seasons. However, for the summer, the second, thermal term

of the utility function plays a larger role as space cooling loads are significant during those

months. For the relatively few users with electric space heating, the winter will similarly

require the ū to be calibrated to consider the heating electric load. For all users, we therefore

choose to have two ū values for weekday and weekends during the spring/fall, two values for

Essentially, in this step, we assume the value of the second, thermal part of the utility function is equal to 0.
7 We assume a value of the Minload parameter equal to 0.001
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weekday and weekend during the summer and two values for weekday and weekend durign

the winter, i.e., a total of 6 different ū values. For the summer, the calculations of the ū

values is complicated by the fact that they are not directly determined by cooling load

but instead by model-determined indoor temperatures and is further described in the next

section. The calibration of the winter ū values remains for future calibration work.

In summary, for each household, we have 54 parameters to represent its preferences for

electricity use: the 48 at values, which represent the relative utility of non-thermal electricity

consumption in each hour on weekdays and weekends respectively, and 6 ū values (one for

weekdays and one for weekends in each season) representing the seasonal average daily evel

of household utility achieved with the loads we observe for 2016.

Once calibrated to the AMI data and the load patterns observed under the business

as usual scenario (BAU) scenario with flat volumetric charges in 2016, these ū values will

define the minimum utility level which the household needs to achieve when minimizing

expenditure subject to a new set of electricity prices in the new rate design scenarios we will

run in future research.8

4.2.2 Calibration of the summer ū values

To calculate the weekday and weekend ū values for the summer, we need to calculate the

value of the second term in the utility function (2), i.e., we need to subtract the disutility

from any deviation from the assumed blisspoint of 18.3 degrees C. While the value of the first

term of the utility function could be calculated based on our regression results as described

in the previous section, the second term depends not directly on cooling load but on indoor

temperature, which is endogenous to the simulations from DRE.

We therefore used an iterative approach where we first ran DRE using a value of zero for

the second term of the utility function, after which the simulation gave indoor temperature

results. With the new indoor temperature estimates, we recalculated the value of the utility

function for each user based on the value of the first term that we wanted to replicate

8 This implicitly represents an assumption that the elasticity of substitution between consumption of electricity
services and other household consumption is zero.
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as described in the previous section and the value of the second term as implied by the

model-generated indoor temperatures until we reached a point where indoor temperatures

remained stable.

Figure 5 shows outdoor hourly temperature data for the summer months compared to

indoor hourly summer temperatures predicted by the model. Indoor temperatures drop with

some time lag whenever outdoor temperatures go below the bliss point, and rise again to

the levels of the bliss point when the outdoor temperature rises again above the bliss point.

The figure also represents the final indoor temperatures used for the calculation of the value

of the utility function when we reached a point sufficiently close to equilibrium.

Figure 5: Hourly Summer Outdoor Temperature vs Hourly Summer Model-Simulated
Indoor Temperature per User

Figure 6 instead illustrates the summer average temperature profiles across the hours of

the day. As can be seen, there is very little variation in indoor temperature across users,

most being within decimal points to the assumed bliss point of 18.3 degrees, except for user
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Figure 6: Average Hourly Summer Outdoor Temperature vs Average Hourly Summer
Model-Simulated Indoor Temperature per User

21 which has a high AC load and needs to be further calibrated in future work.

4.2.3 Calibration of space cooling load

We next calibrate the model such that the total cooling loads simulated by DRE during the

summer months of June, July and August matches the users’ regression-predicted cooling

loads during those months in 2016. As we show in the next section, this calibration technique

will allow us to introduce variation in the model-simulated space cooling loads across all

users.

The DRE thermal model depends on multiple input parameters9 such as an outdoor

heat index, thermostat setpoints, air conditioning equipment capacity and coefficient of

performance (COP), building resistance value R (i.e., a measure of the resistance to heat

transfer from inside to outside), and building thermal capacity value C (i.e., a measure of

9 See Huntington [2016] for a description of these input values and associated references.
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the building’s ability to store thermal energy in the building materials). The calibration

approach relies on adjusting these two main building thermal parameters for every user such

that the regression-predicted space cooling load during the summer months matches the

magnitude of the model’s simulated space cooling load for that user.

This part of the calibration process are based on the followin assumptions/parameter

values: an indoor temperature “bliss” point of 18.3◦C (i.e. an ideal indoor temperature of

65◦F consistent with our regression specification) and the value of the b parameter in the

utility function (2) set to 0.1.10 Furthermore, based on typical appliance specifications we

used an air conditioning COP of 3, and a maximum cooling capacity of 4kWe. 11 We also

assumed a thermal time constant (τ) of 10 hours based on the old age of the buildings in

area we’re modeling. The τ defines the ability of a building to retain heat and depends

on the building thermal parameters such that τ=R*C. With these assumptions, DRE is

constrained to a single independent variable and, therefore, when provided a single R value

the model outputs a predictable total cooling load for the summer season.

We run DRE several times for each of the 50 users using multiple R values. Of these 50

profiles, we pick the mean value in order to get a total summer cooling load for each of the

R values used in the simulations (the standard deviation of the model-generated cooling

loads for the sample of users was so small that the mean was representative for the level of

cooling load for all the users). Table 4 shows the simulation results.

10 This was the value at which DRE could be made to replicate the regression estimated thermal and
non-thermal loads, and was found through iteration.

11 These values are adopted to represent typical AC units found in the ComEd area of study. Based on
the 2015 Residential Energy Consumption Survey (RECS), 92% of homes in the Northeast and Midwest
regions have air conditioning systems, of which almost 70% correspond to central units. COP values are not
provided in the survey, but EIA (2018) reports that installed base for residential central air conditioners
in 2009 and 2015 for the North (Not Hot-Dry or Hot-Humid) region had a typical SEER of 11.4-12.5
(equivalent to 3.0 - 3.2 COP). Regarding the size of a AC system, it will depending on the footage of
the building and the climate zone, which can range anything between 18kBTU/h and 60kBTU/h, i.e.
1500-5000kW, with central units on the larger range.
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Table 4: Input and Output Values for a Constrained Thermal
Cooling Model Simulated by DRE

Output: Total summer space cooling load (kWh-yr) Input: R (C◦/kW) C = Tau/R (kWh/C◦)

5,459 1.0 10.0

5,019 1.1 9.1

4,625 1.2 8.3

4,281 1.3 7.7

3,718 1.5 6.7

2,794 2.0 5.0

1,867 3.0 3.3

1,401 4.0 2.5

1,122 5.0 2.0

935 6.0 1.7

802 7.0 1.4

702 8.0 1.3

624 9.0 1.1

562 10.0 1.0

The R and total space cooling load values presented in Table 4 are then used to derive a

mathematical expression that approximates the relationship between both variables, i.e., R

and summer cooling load. By plotting these variables against each other, a power trend-line

is fitted to these values as Figure 7 shows.

19



Figure 7: R Values vs DRE Simulated Summer Cooling Load

An expression shown in Equation (4) is derived to describe the relationship between R

and DRE simulated space cooling load.

R = 5921.9 ∗DREThermalLoad−1.008 (4)

where DREThermalLoad corresponds to the total DRE simulated AC load for June, July

and August.

Finally, using this expression and the regression-predicted summer space cooling loads

for each user, we are able to estimate a unique R value and (because we assumed a τ of

10 hours) also a unique C value for every user. Fortunately, when re-running DRE after

having calibrated the R values for each user, the model-generated indoor temperatures in

general remained sufficiently close to the previous model runs such that the summer ū values

calculated in the previous step with the same R value for each user were still valid.
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5 Calibration Results

5.1 Simulation of thermal loads

In this section we present a number of figures to illustrate DRE’s capability of simulating

summer cooling loads that match the regression-predicted space cooling loads after we

performed the calibration steps described in the previous sections.

Figures 8 and 9 plot the average DRE-generated hourly summer cooling loads across

45 end-users and compares to the results from the thermal load regressions. We removed 5

users out of the 50 end-users random sample from the visualization and analysis because

their thermal loads were equal or close to zero based on our regression analysis, hence, in

future calibration work we will need to adjust the parameters to reflect a user that does not

have an AC.

The figures show that, in general, both DRE-generated and regression-estimated profiles

follow a similar pattern and have for most users similar magnitudes. The degree to which

both magnitude and pattern are replicated depends on each user’s characteristics and profiles.

Some users have higher AC loads for which we still need to calibrate. Even so, the shapes

are in general similar and represent the expected peak around 4 and 5 pm.
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Figure 8: Average Summer Weekday Thermal Loads Estimated by Regression vs
Simulated by DR-DRE Subsample 1

Figure 9: Average Summer Thermal Loads Estimated by Regression vs Simulated by
DR-DRE Subsample 2
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The cooling loads estimated from the regression share a strong linear relationship with

the cooling loads generated by DRE, as shown in tables 5 and 6. The complete hourly series

for the whole summer have a mean correlation of .94 across the users, while the hourly

average loads (i.e., the data points represented in Figures 8 and 9) have a mean correlation

of .98.

Table 5: Correlation Between DR-DRE Simulated
Hourly Summer Averaged Thermal Loads and Hourly Summer Averaged

Regression-Predicted Thermal Loads

Min. 1st Quartile Median Mean 3rd Quartile Max

0.8530 0.9709 0.9885 0.9803 0.9959 0.9998

Table 6: Correlation Between DR-DRE Simulated
Hourly Summer Thermal Loads and Hourly Summer Regression-Predicted Thermal Loads

Min. 1st Quartile Median Mean 3rd Quartile Max

0.7579 0.9318 0.9572 0.9395 0.9788 0.9944

5.2 Simulation of non-thermal loads

As described previously, we estimated non-thermal loads as the difference between the

observed total loads and the regression-predicted thermal loads. In this section, we present

figures to illustrate DRE’s capability of replicating these non-thermal load patterns as

estimated in our regressions.

Figures 10 and 11 show how different load shapes are across the 45 users and the ability

of DR-DRE to accurately replicate the regression-estimated user specific profiles. Since the

profiles were generated based on at values in the utility function (2) that were calculated as

averages across the full year, we here illustrate the yearly average non-thermal load profile

across the hours of the day for each user.

As with the thermal loads, we removed 5 users with thermal load equal to zero because

the model would not be able to correctly replicate correctly the profile, which we will address
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in future work.
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Figure 10: Average Non-Thermal Loads Estimated by Regression Analysis
vs Non-Thermal Loads Simulated by DR-DR Subsample 1

Figure 11: Average Non-Thermal Loads Estimated by Regression Analysis
vs Non-Thermal Loads Simulated by DR-DR Subsample 2
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Table 7 below shows the distribution of the correlations across the 45 out 50 randomly

selected users. There are very high correlations between the averaged non-thermal loads

predicted by the regression analysis and those simulated by DR-DRE, with a mean coefficient

of 0.97 across users, thus demonstrating that the DR-DRE model does a good job of

replicating the average non-thermal load shape as estimated by the regressions. This is also

illustrated by the correlation plots in Figures 12 and 13.

Table 7: Correlation Between DR-DRE Simulated
Hourly Yearly Averaged Non-Thermal Loads and Hourly Yearly Averaged

Regression-Predicted Loads

Min. 1st Quartile Median Mean 3rd Quartile Max

0.8638 0.9683 0.9814 0.9713 0.9888 0.9968
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Figure 12: Yearly Hourly Average Non-Thermal Loads Correlation Plots Subsample 1

Figure 13: Yearly Hourly Average Non-Thermal Loads Correlation Plots Subsample 2
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Unfortunately, we are not as well able to replicate the hourly non-thermal load series

over the whole year as shown in Table 8. This is explained by the fact that there is large

seasonal variation in the non-thermal patterns across the users, hence, the 48 at parameters

that determines the shape of the DRE-generated loads will not accurately replicate the

non-thermal load in one specific hour of the year. To address this issue, we would need to

significantly increase the number of a parameters which is unwieldy because 54 user-specific

parameters is already a lot for a model that is intended to be run for more than 50,000 users.

Thus there is a trade-off between how well one specific user’s hourly profile can be replicated

by increasing the number of parameters and how many users the model can represent.

Table 8: Correlation Between DR-DRE Simulated
Hourly Non-Thermal Loads and Hourly Regression-Predicted Loads

Min. 1st Quartile Median Mean 3rd Quartile Max

-0.47009 0.01964 0.06009 0.05831 0.12084 0.31943

6 Future Calibration Finetuning

So far we have calibrated the R’s and C values for users with a space cooling load lower

than 3000kWh. Thus, future work consists of estimating a new relationship between R

values and cooling load also for users with cooling loads above that range. This exercise will

further improve the calibration results for users with large space cooling loads.

Another future task is to adjust the user-specific parameters to better represent those

users with regression-estimated cooling load close to or equal to zero - presumably due to a

lack of AC.

In addition, we will parameterize the model to also replicate the space heating load in

the winter for those (relatively few) users who are electric space heating customers.
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7 Conclusion

This research provides an example of how to improve the representation of end-user pref-

erences in electricity simulation models. Each user’s preferences are captured in a utility

constraint calibrated to advanced metering infrastructure data from a large U.S. electric

distribution company. The results of this research demonstrate the capabilities of our

modeling tool for creating large numbers of synthetic end-user profiles that can replicate

observed load data, relying on a combination of econometric techniques and engineering

simulation methods. In future research, we will further improve the calibrations, and then

use the resulting individually calibrated preferences to assess how end-users may respond to

different electric rate designs by changing their electricity load and investing in DERs.
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