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• Fundamental, bottom-up, LP model for Europe

• Electricity (spot market) prices for a market with complete competition

• Simultaneous optimization of unit commitment and investment decisions

• MILP mode for highly detailed unit commitment and investment decisions available (disregarded 

for the current work)

• Depicts: generation technologies (conventional, CHP, RES), storages, grid, PtX, DSI, curtailment

• Simplified cost function:

• Most important restriction:

Satisfaction of demand in every hour
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E2M2 - European Electricity Market Model (Sun, 2013)

Model Description

𝑐0 = ෍𝑐𝑣𝑎𝑟 +෍𝑐𝑓𝑖𝑥 +෍𝑐𝑖𝑛𝑣 = 𝑚𝑖𝑛
!

Variable cost of all units

Fix costs of all units

Annualized investment costs



01-June-19IER University of Stuttgart 4

The role of time resolution

Motivation

Reality

1-hour 
resolution

2-hour 
resolution

Deane 
et al., 2014

Model experiments
have shown, that sub-
hour resolution brings

similar results compared
to 1-hour resolution
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Graeber, 
2002

Vom Stein 
et al., 2017 

Sections where demand
is more or less static, 
can be aggregated to

multi-hour blocks.

Sections of the residual load
with high gradients should

be modeled in detail.
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The role of time resolution

Motivation

Graeber, 
2002

Vom Stein 
et al., 2017 

Savvidis
et al., 2018 

Propose a 
{variable, dynamic, adaptive} 

time resolution approach
in order to

REDUCE the model size
while keeping the

MAXIMUM possible result quality

H-Block H-Block

No
aggregation

Aggregation 
of parts

which cause
errors
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H Use such {variable, dynamic, adaptive} methods

to provoke errors

at specific points in time

without altering the rest of the time series

which allows a focused analysis of single effects

QH steps

„intentionally provoke an error“
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Explaining the zero crossing effect

Method

𝑇1
𝑄𝐻

𝑇2
𝑄𝐻

𝑇3
𝑄𝐻

𝑇4
𝑄𝐻

𝑇1
𝐻

Time step notation:
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Introducing the 2 most important metrics

Method

𝑅𝐺𝑒𝑛(𝑇) = ቊ
𝑅 𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑅 𝑇 > 0

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑅 𝑇 ≤ 0
𝑅𝑃𝑢𝑚𝑝(𝑇) = ቊ

𝑅 𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑅 𝑇 < 0

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑅 𝑇 ≥ 0.

𝐸𝑠𝑎𝑣𝑒𝑑𝐺𝑒𝑛
𝑃𝑜𝑡 𝑇𝜅

1𝐻 =෍

𝑖

𝑅𝐺𝑒𝑛 𝑇𝑖
𝑄𝐻

− 𝑅𝐺𝑒𝑛 𝑇𝜅
1𝐻 , ∀𝑖 𝑤ℎ𝑖𝑐ℎ 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑗 ∈ 𝑍

𝐸𝑙𝑜𝑠𝑡𝑆𝑡𝑜
𝑃𝑜𝑡 𝑇𝜅

1𝐻 =෍

𝑖

𝑅𝑃𝑢𝑚𝑝 𝑇𝑖
𝑄𝐻

− 𝑅𝑃𝑢𝑚𝑝 𝑇𝜅
1𝐻 , ∀𝑖 𝑤ℎ𝑖𝑐ℎ 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑗 ∈ 𝑍.

H-Block H-Block QH steps



• Simplified unit commitment model:

• No investments

• No ramping restrictions

• No grid

• Aggregated unit types

• Model scope (year 2015):

• 50 Hertz Region of Germany (isolated) 

(ENTSOE, 2019)

• Scaled RES to match German 2030 targets

• Scaled storage capacities

• 127 zero crossing occurences
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The model: keeping it simple

Method



• Storages are less used in the aggregated model

• Underestimation of storage use: -8 GWh (1.2% difference)
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Differences between QH and VAR (zero crossing = 1H; rest = QH)

Results

-8 GWh

-3 GWh

• Thermal power plants are less used in VAR model

• Overestimation of RES: -3 GWh thermal plant usage

But what EXACTLY happens? VAR QH
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Detailed analysis

Results



• Aggregating time steps in order to minimize model size leads to result deviation of the model (e.g. total 

operation cost changes)

• We propose a quantification method for the potential error caused by the zero crossing effect which 

can be calculated prior to a model run

• Models with variable time resolution capabilities can be used to analyze the error mechanism behind 

time aggregation

• We analyze the error mechanism at zero crossing points by comparing a highly resolved model (QH) to 

a variable resolved model (1H aggregation at zero crossing points, QH at the rest)

• We observed: storage efficiencies and storage volume drive the deviation

• Future topics to be addressed: ramping restrictions, availability of units, linearized start-up costs, grid, 

PtX technologies, investments
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Summary and Outlook
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