

Outline

- Motivation: regulation of local monopolies in energy sector
- Averch-Johnson effect in the price cap and revenue cap regulation
- Numerical simulation

Further details: Kuosmanen & Nguyen (2018)

https://www.researchgate.net/publication/327645490 Capital bias in the price cap and revenue cap regulation Averch-Johnson critique revisited

Divestiture in electricity market

- Electricity generation: competitive market with many buyers and sellers
- Transmission: national monopoly
- Distribution: local mopolies

Electricity generation, transmission, and distribution

Source: Adapted from National Energy Education Development Project (public domain)

Unregulated monopoly

max
$$\pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$

subject to
 $y = f(x_1, x_2)$

Rate of return regulation

$$\max \pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$
subject to
$$y = f(x_1, x_2)$$

$$\frac{p(y) \cdot y - r_2 x_2}{x_1} \le s_1$$

Averch & Johnson (1962, AER)

$$\max \pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$
subject to
$$y = f(x_1, x_2)$$

$$\frac{p(y) \cdot y - r_2 x_2}{x_1} \le s_1$$

$$\frac{-dx_2}{dx_1} = \frac{r_1}{r_2} - \frac{\lambda}{(1-\lambda)} \frac{(s_1-r_1)}{r_2}$$

Revenue cap

$$\max \pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$

subject to
$$y = f(x_1, x_2)$$

$$p(y) \cdot y \le \overline{R}$$

Revenue cap

A monopoly produces a homogenous product y using a capital input x_1 and a variable input x_2 and production function $y = f(x_1, x_2)$ facing a strictly decreasing inverse demand function p(y).

$$\max \pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$

subject to
$$y = f(x_1, x_2)$$

$$p(y) \cdot y \le \overline{R}$$

Is revenue cap immune to the capital bias?

Revenue cap

A monopoly produces a homogenous product y using a capital input x_1 and a variable input x_2 and production function $y = f(x_1, x_2)$ facing a strictly decreasing inverse demand function p(y).

$$\max \pi(x_1, x_2) = p(y) \cdot y - r_1 x_1 - r_2 x_2$$

subject to
$$y = f(x_1, x_2)$$

$$p(y) \cdot y \le \overline{R}$$

Lemma 1: If the regulator specifies the revenue cap based on the acceptable total cost as

$$\overline{R} = s_1 x_1 + r_2 x_2,$$

then the revenue cap (5) is directly equivalent to the rate of return constraint (3). In this case, the revenue cap regulation is subject to the Averch-Johnson effect.

Simulation experiment

- Linear demand function p(y)
- Cobb-Douglas production function $f(x_1, x_2)$
- Input prices r_1 , r_2 taken as given

How changes in the regulated rate of return s_1 influence:

- Output y
- Price p
- Total revenue py
- Monopoly profit
- Consumer surplus
- Capital intensity r_1/r_2

Baseline scenario

Table 2: Comparison of the regulated vs unregulated monopoly: the percentage of the regulated monopoly's outcomes relative to that of the unregulated monopoly as a function of parameter s_1 .

S_1	output	price	total revenue	monopoly profit	consumer surplus	capital intensity
1.02	110 %	92 %	101 %	2 %	121 %	9611 %
1.05	110 %	92 %	101 %	6 %	121 %	9068 %
1.25	110 %	92 %	101 %	24 %	121 %	6390 %
1.50	109 %	92 %	101 %	41 %	120 %	4444 %
1.75	109 %	92 %	101 %	52 %	119 %	3264 %
2.00	109 %	93 %	101 %	60 %	118 %	2502 %
2.25	109 %	93 %	101 %	67 %	118 %	1975 %
10.00	100 %	100 %	100 %	100 %	100 %	100 %

Conclusions

- Price cap and revenue cap regimes are not immune to the Averch-Johnson effect (capital bias)
- Numerical simulations demonstrate, that despite the capital bias, regulatory constraints have desirable effects
 - Output increases
 - Price decreases
 - Consumer surplus increases
 - Total revenue increases
 - Monopoly profit decreases
- Relatively light handed regulation suffices to achieve the main benefits

Thank you for your attention!

Questions, comments:

• timo.kuosmanen@aalto.fi