Selecting optimal locations of public charging stations for electric vehicles using the big data of driving behaviors: A case study of Seoul, Korea

Jihyeok Jung, Moonseok Choi, Deok-Joo Lee*

RESEARCH BACKGROUND

EV adoption in Korea

• The limited battery capacity is the one of the biggest factors interrupting EV adoption.

- Korean government has been implementing policies to improve charging infrastructure.
 - (e.g.) Installation of public charging stations, subsidy for home charging equipment
 - EV penetration rate in Korea is rapidly growing, although the market share of EV is still around 0.2%.

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

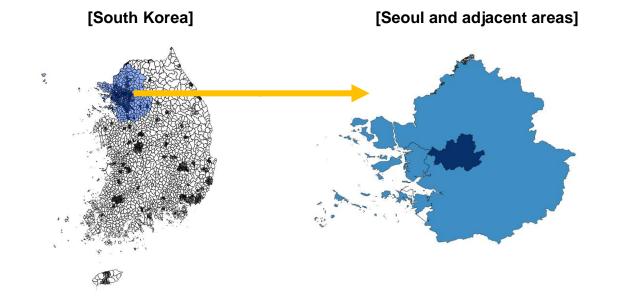
Case study

Conclusion

RESEARCH BACKGROUND

Introduction

Model – 1 Demand estimation


Model – 2 Optimal location

Case study

Conclusion

Importance of public charging stations in Seoul, Korea

• Seoul has ranked the 1st place in population density among the cities of OECD members.

Population of Seoul

- 9.77 million people live in Seoul
- More than **25 million** people live in

the adjacent areas of Seoul

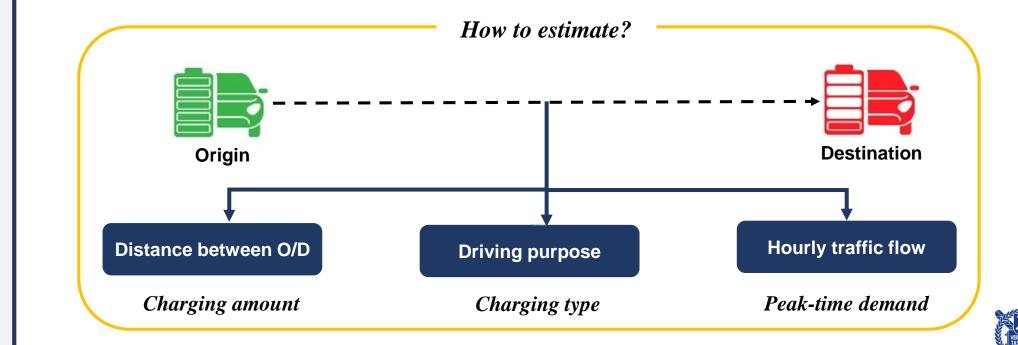
(half of Korean population)

- Citizens in Seoul have difficulty installing home chargers due to the lack of private space.
- Optimization research is necessary to install public charging stations efficiently.

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location


Case study

Conclusion

RESEARCH BACKGROUND

Determining the location of charging stations

- Charging stations need to be systemically designed.
- Demand for a specific type of charger in unit area should be estimated.
 - It is necessary to determine how many slow and fast chargers should be installed in the public charging point.

RESEARCH PURPOSE

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

[RESEARCH PURPOSE]

Develop an optimal location model of public chargers considering O/D data with drivers' travel purpose

Demand Estimation

Hourly demand estimation for slow and fast charger

Optimization Installation cost minimization

Case Study

A case study of Seoul using actual data

LITERATURE REVIEW

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

Previous research of EV charging demand estimation

- Demand estimation model can be divided into two types.
 - 1) Reflecting social, and demographic characteristics of a study area
 - 2) Using real-world data related to vehicle traffics

The study reflects two types of demand estimation model
1) considering driving purpose (social characteristics)
2) considering O/D data (vehicle traffics)

	He et al. (2016)	Estimate the potential charging demand in a specific area through a weighted sum of six socio- demographic components, such as age, sex, income level, etc.	
	Kleiner et al. (2018)	The average distance traveled in each area is calculated by the features of the area. (e.g., vehicle type ratio, commute distance)	
	Xi et al. (2013)	Assigning tour direction to each EV randomly, based on real tour record data of conventional cars.	
Using vehicle traffic data	Riemann et al. (2015)	Set each OD pair as a flow pattern, and generate EV charging demand, reflecting the routing choice behaviors of EV drivers	
	Dong et al. (2014)	Make the daily driving route of EV by using the tour record of conventional cars	
	Cai et al. (2014); Shahraki et al (2015)	estimate the traffic flow in the city through the driving data of taxis	

LITERATURE REVIEW

Previous research of optimal locations

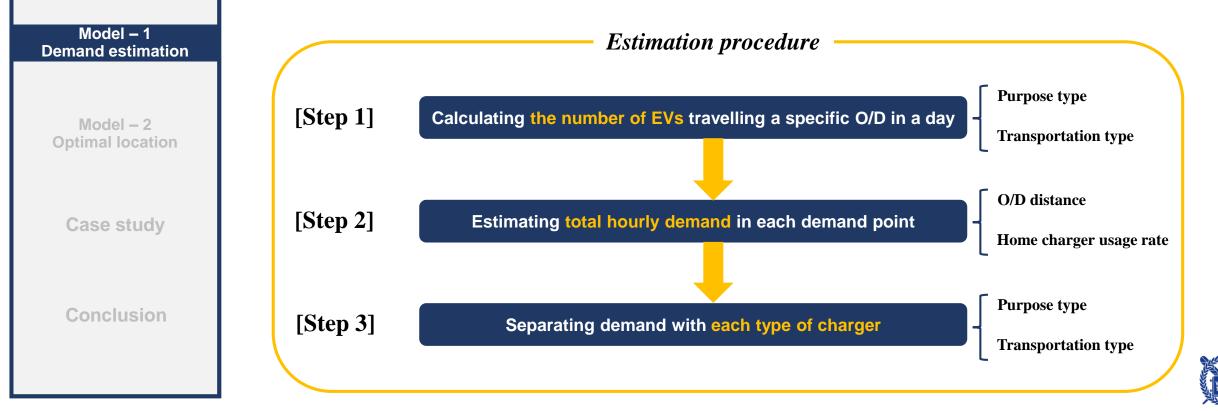
Introduction Model – 1 Demand estimation Model – 2 Optimal location

Case study

Conclusion

The study develops a Mixed-Integer Programming model 1) Variables: Number of slow / fast charger in each potential charging station 2) Objective: To minimize the total installation cost of chargers 3) Constraint: To cover the hourly potential demand fully

• Each model of optimal locations of EV charging stations has their own objective and constraints


Riemann et al., (2015); He et al. (2018)	Network model	Capture the maximum flow	The number of charging stations is fixed.
He et al. (2016)	Mixed-integer program	 Minimize the number of charging stations Maximize demand coverage 	 Fully cover the potential demand The number of charging stations is fixed.
Yang et al. (2017)	Mixed-integer program	Cost minimization	Ensure service quality above a certain level.

Introduction

DEMAND ESTIMATION

- Demand estimation procedure
 - EV charging demand in unit area should be estimated to locate public charging stations.
 - Hourly demand toward each type of charger (slow / fast) is estimated.

DEMAND ESTIMATION

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

Model assumptions

- Probabilities of a person's travel purpose, vehicle type, and travel time are independent.
- Travels occur in each time period and demand is generated at destination.
- The amount of demand is equal to travel distance.
- If an EV driver has home charger, he or she doesn't use public chargers.
- Propensity to each type of charger is determined by the vehicle type and travel purpose.

Notation of sets

Notation	Description		
0	Set of all origins		
D	Set of all destinations		
Р	Set of all travel purposes		
V	Set of all travel transportations		
Т	24-hour time, $T = \{0, 1, 2, \dots, 23\}$		

DEMAND ESTIMATION

Introduction

Background

Model – 1 Demand Estimation

Model – 2 Optimal location

Result

Conclusion

[Step 1] Calculating the number of EVs traveling a specific O/D in a day

The number of daily travels using electrified $v \in V$ with purpose $p \in P$ (from $i \in O$ to $j \in D$)

$$N_{ij}^{p,v} = E_v \times n_{ij} \times r_{ij}^{p,v}$$

- EV penetration rate of vehicle v
- The number of daily travels from i to j
- Prob. that a person travels with purpose p and vehicle v

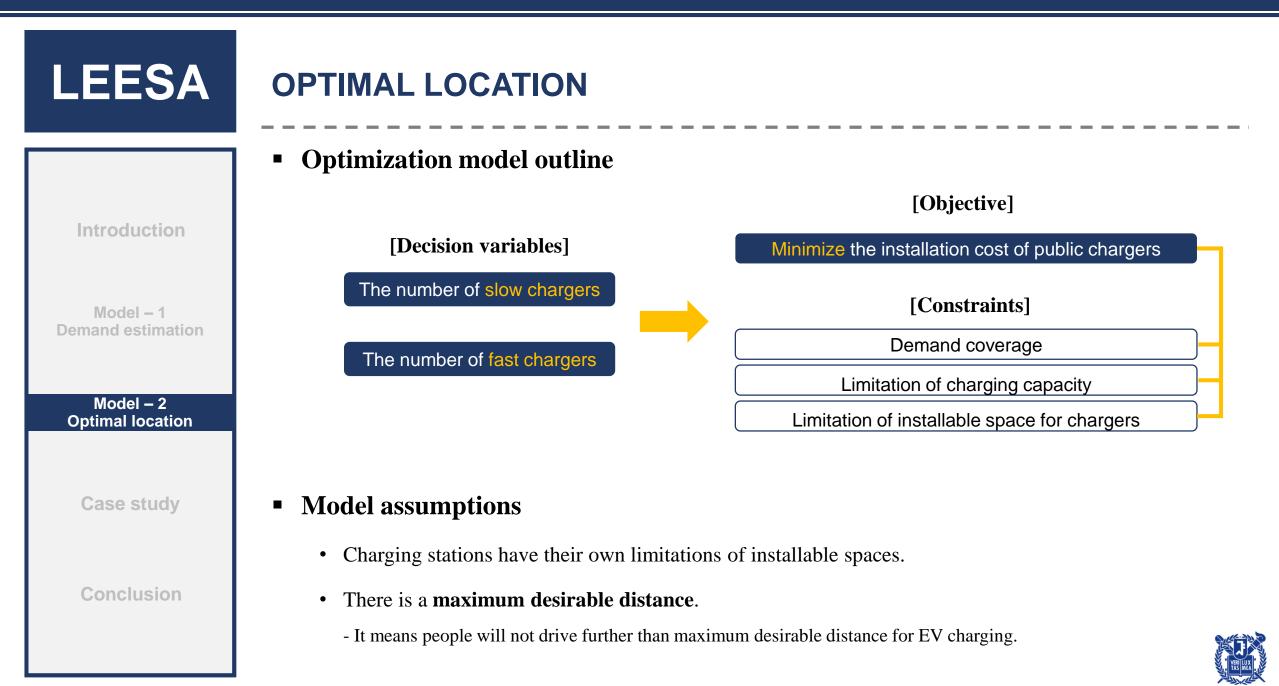
[Step 2] Estimating total hourly demand in each demand point

Total charging demand of electrified $v \in V$ with purpose $p \in P$ (in demand point *j* at time $t \in T$)

$$D_{jt}^{p,v} = \sum_{i \in O} \left(N_{ij}^{p,v} \times d_{ij} \right) \times q_t^{p,v} \times \left(1 - H_v \right)$$

- Daily EV travels
- Distance between *i* and *j*
- Prob. That a travel with p and v occurs at t
- Home charger adoption rate

[Step 3] Separating demand with each type of charger


Demand for slow charger (in demand point *j* at time $t \in T$)

Demand for fast charger (in demand point j at time $t \in T$)

$$D_{jt}^{S} = \sum_{v \in V, p \in P} \left(\delta^{p,v} \times D_{jt}^{p,v} \right)$$
$$D_{jt}^{F} = \sum_{v \in V, p \in P} \left(\left(1 - \delta^{p,v} \right) \times D_{jt}^{p,v} \right)$$

- A person's preference for slow chargers when travelling with *p* and *v*
- Total charging demand

OPTIMAL LOCATION

Notations

 N_l^S

 N_l^F

Introduction

Model – 1 **Demand estimation**

Model – 2 **Optimal location**

Case study

Conclusion

Notation	Description		
Sets			
L	Set of potential charging stations		
B_j	Set of potential charging stations whose distance is less than maximum desirable distance from demand point j		
Parameters			
$COST_S$	Cost of a slow EV charger		
$COST_F$	Cost of a fast EV charger		
$CAPA_S$	Capacity of a slow EV charger per hour		
$CAPA_F$	Capacity of a fast EV charger per hour		
SPACE _l	Number of available installation spaces in potential EV charging station $l \in L$		
Decision vai	riables		
y_{jlt}^S	The amount of flow for a slow charger from demand point $j \in D$ to charging station $l \in L$ at time $t \in T$		
\mathcal{Y}_{jlt}^{S} \mathcal{Y}_{jlt}^{F}	The amount of flow for a fast charger from demand point $j \in D$ to charging station $l \in L$ at time $t \in T$		

Optimal number of slow chargers in location $l \in L$

Optimal number of fast chargers in location $l \in L$

OPTIMAL LOCATION

 $\min \sum_{l \in I} \left(COST_{S} \times N_{l}^{S} + COST_{F} \times N_{l}^{F} \right)$

Model

s.t.

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

$\sum_{l \in B_j} y_{jlt}^S = D_{jt}^S \qquad \forall j \in J, t \in T$ $\sum_{l \in B_j} y_{jlt}^F = D_{jt}^F \qquad \forall j \in D, t \in T$
$\sum_{i \in D} y_{jlt}^{S} \le CAPA_{S} \times N_{l}^{S} \qquad \forall l \in L, t \in T$
$\sum_{i \in D} y_{jlt}^F \leq CAPA_F \times N_l^F \qquad \forall l \in L, t \in T$
$\mathbf{N}_{l}^{S} + \mathbf{N}_{l}^{F} \leq SPACE_{l} \qquad \forall l \in L$
$\mathbf{N}_{l}^{S}, \mathbf{N}_{l}^{F} \in \mathbb{Z}_{+} \qquad \forall l \in L$
$y_{jlt}^{S}, y_{jlt}^{F} \ge 0 \qquad \forall j \in D, l \in L, t \in T$

Objective function: Minimize the total installation cost of chargers

Constraint 1:

Demand should be fully covered by public charging stations

Constraint 2:

There is a capacity limitation of each potential charging stations

Constraint 3: There is a limit of installation for chargers

Constraint 4: Variable domain

DATA DESCRIPTION

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

Data (Source: Ministry of Land, Infrastructure and Transport of Korea, 2016)

• Two types of O/D data, which represent the daily travel amount of people, are used.

(1) Purpose O/D (11 purposes)

		Number of daily moves grouped by purpose			
Origin	Destination	Going to work	Returning home	Shopping	•••
А	В	20	40	10	•••
В	С	80	15	20	•••
		•	••		

(2) Vehicle O/D (21 transportations)

		Number of daily moves grouped by vehicles			
Origin	Destination	Private car	Taxi	Bus	•••
А	В	15	35	25	
В	С	35	20	60	•••

• For simplification, we grouped purpose and vehicles into 3 groups.

Purpose group	Transportation group
Purpose 1 (p1): Going to work	Vehicle 1 (v1): private car
Going to work, Going to school	Private car (self-drive), Private car (drive by others)
Purpose 2 (p2): Returning home	Vehicle 2 (v2): Taxi
Returning home	Taxi
Purpose 3 (p3): Others	Vehicle 3 (v3): Others
Send-off, Going to academy, etc.	Bus, Rail, etc.

DATA DESCRIPTION

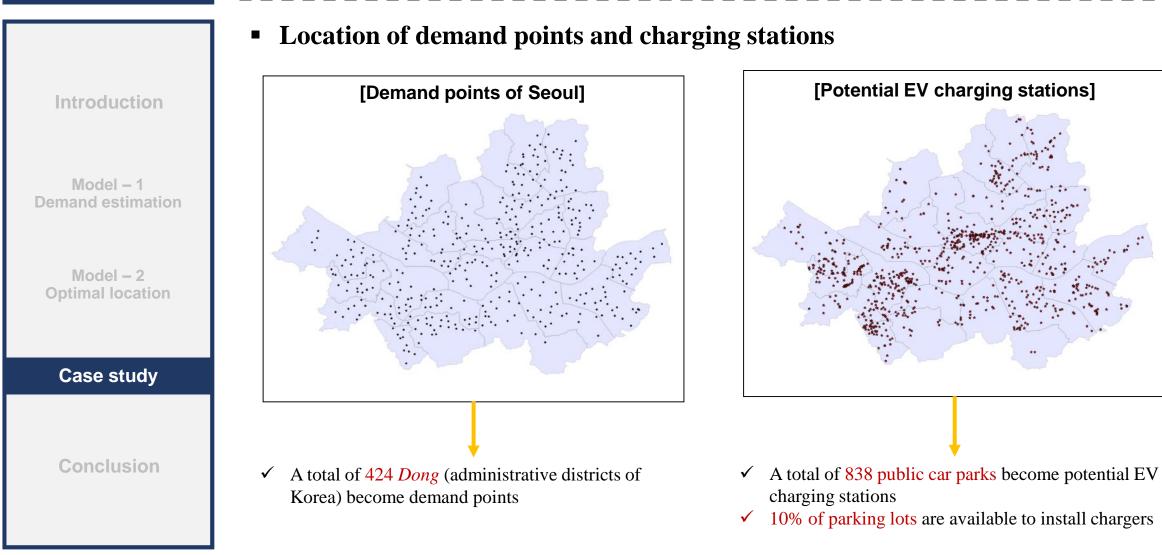
• Data (cont.)

- Hourly traffic flow of each travel purposes has significantly different characteristics.
 - p1 (Going to work) has a quite high rate in the morning hours.
 - p2 (Returning home) shows high rate in the evening time.
 - p3 (Others) distribute relatively evenly in all time period except for late night hours.

[Hourly traffic flow ratio of each purpose]

Introduction

Model – 1 Demand estimation


Model – 2 Optimal location

Case study

Conclusion

LEESA **STUDY AREA Characteristics of regions in Seoul, Korea** [Northern area] Low-population ٠ A few workplaces & commercial places ٠ [Central area] Introduction Workplaces are concentrated. ٠ Few people live in the region. Model – 1 **Demand estimation** Model – 2 **Optimal location** Case study [Outer region] Conclusion [Southern area] Mainly Residential areas High-population ٠ Workplaces and residence coexist. ٠ Lots of commercial places

STUDY AREA

DEMAND ESTIMATION RESULT

Parameter settings

• The origin and destination set: $O = \{\text{centers of Dong in Seoul, Incheon, and Gyeonggi-do}\}$ $D = \{\text{centers of Dong in Seoul}\}$

• EV penetration rate:
$$E_v = \begin{cases} 0.01 & \text{if } v \in \{v_1, v_2\} \\ 0 & o.w. \end{cases}$$

• Ratio of home charging users:
$$H_v = \begin{cases} 0.3 & \text{if } v = v_1 \\ 0 & o.w. \end{cases}$$

- The propensity to each type of charger by purpose
 - When drivers use EV for commuting or returning home, they would like to prefer using slow chargers since they can park their car relatively long time.
 - When drivers use EV for other purposes, they would like to prefer using fast chargers.
 - Taxis always use fast chargers.

$$\delta^{p,v_1} = \begin{cases} 0.8 & p = p_1, p_2 \\ 0.2 & p = p_3 \end{cases} \qquad \delta^{p,v_2} = 0, \forall p \in P$$

Introduction

Model – 1 Demand estimation

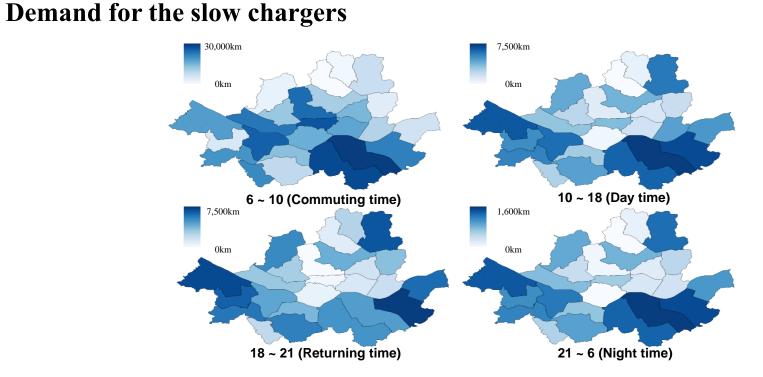
Model – 2 Optimal location

Case study

Conclusion

DEMAND ESTIMATION RESULT

Introduction

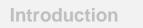

Background

Model – 1 Demand Estimation

Model – 2 Optimal location

Result

Conclusion

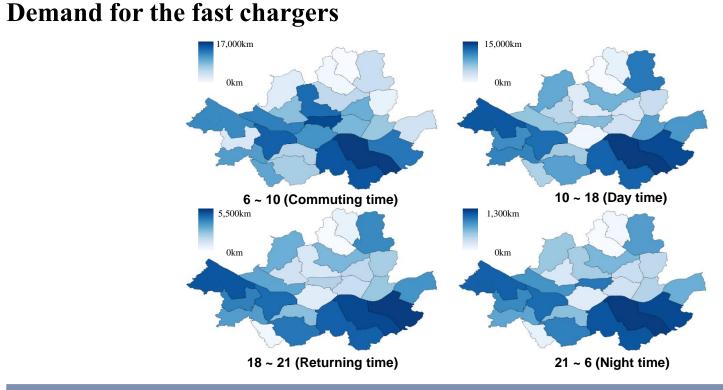


Results

- The southern and central areas, in which workplaces are concentrated, show higher demand in the morning.
- Demand of outer areas rise sharply and that of central areas drop significantly in the evening time.
- Southern parts show a high level of demand in all time period.

DEMAND ESTIMATION RESULT

٠

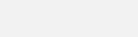

Background

Model – 1 Demand Estimation

Model – 2 Optimal location

Result

Conclusion

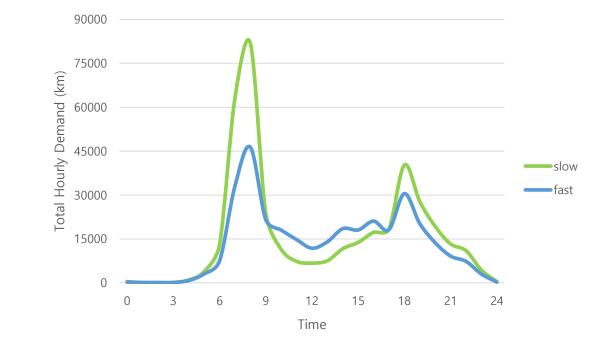

Results

- It shows quite similar distribution regardless of time except for the central areas.
- The southern areas show a high level of demand in all time period.
- The northern areas show a low level of demand.

DEMAND ESTIMATION RESULT

Estimated total hourly demand

Introduction


Background

Model – 1 Demand Estimation

Model – 2 Optimal location

Result

Conclusion

- \checkmark The peak time of both types of charging is 8 a.m. but demand for fast charging shows more flat shape.
- \checkmark Commuting is the most influential in charging demand.

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

OPTIMAL LOCATION RESULT

Parameter settings

- Maximum desirable distance: 2km
- Capacity of slow and fast charger:

$$CAPA_{s} = \frac{200}{3}$$
 km/hour, $CAPA_{F} = 480$ km/hour

• Unit installation cost of slow and fast charger:

 $COST_{s} = \$3,000, \quad COST_{F} = \$40,000$

• 10% of the total parking lot can be used to install chargers

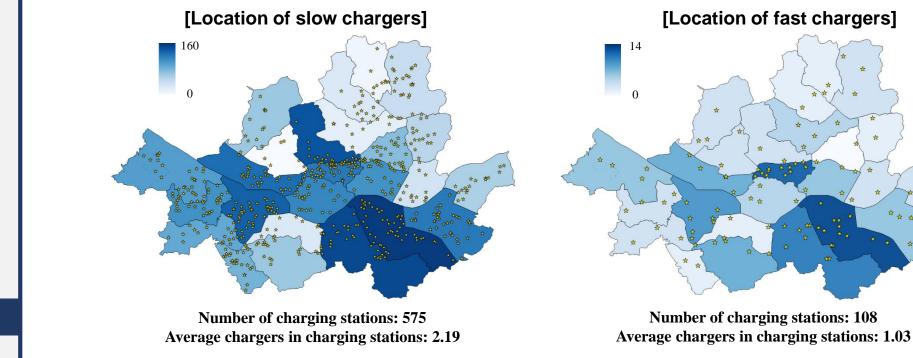
Experiment settings

- We used X-press of FICO® as a solver of our MIP model.
- We stopped the computation when the gap of LP bound and feasible IP solution goes below 5%.
- The model is performed on the PC with Intel[®] Core[™] i7-6700 3.40GHz CPU and 16.0GB of RAM.

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location


Case study

Conclusion

OPTIMAL LOCATION RESULT

Optimal solution

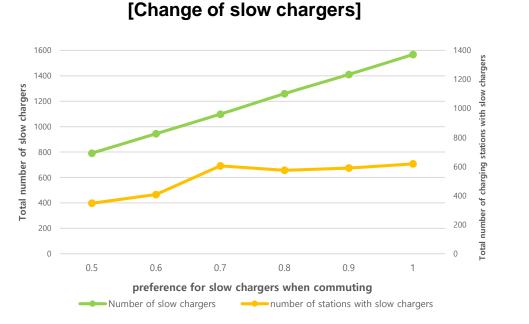
٠

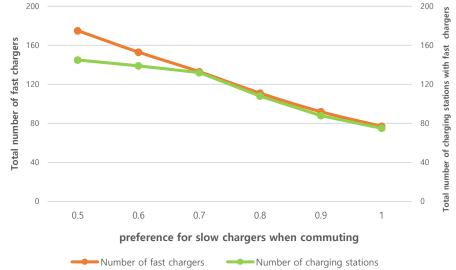
Results

- A total of 1259 slow chargers and 111 fast chargers are needed, and the minimized cost is \$821,700.
- Slow chargers: highly distributed and many chargers in workplace areas \leftrightarrow highly distributed but a few chargers in residential areas
- Fast chargers: Evenly distributed due to taxi travels & almost of them are not installed in one place

SENSITIVITY ANALYSIS

Introduction


Model – 2 Optimal location


Conclusion

Impact of the preference for each type of chargers

• The sensitivity of preference for each type of charger when people commutes $(\delta^{1,1}, \delta^{2,1})$ is analyzed.

[Change of fast chargers]

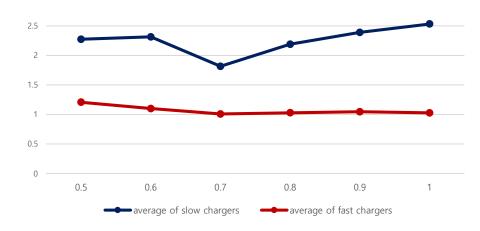
SENSITIVITY ANALYSIS

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study


Conclusion

٠

Impact of the preference for each type of chargers

• The sensitivity of preference for each type of charger when people commutes $(\delta^{1,1}, \delta^{2,1})$ is analyzed.

[The average installed chargers in each charging stations]

Results

- As preference for slow charger increases, the number of slow chargers obviously increases.
- **However,** the number of charging stations does not increase as fast as the rate of increase of chargers (even decreases)
- The average installed chargers in charging stations does not change significantly.
 - If demand increases, it is better to install chargers in multiple locations rather than in concentrated location.

CONCLUSION

We developed

Introduction

Model – 1 Demand estimation

Model – 2 Optimal location

Case study

Conclusion

• The model estimating potential demand for each type of EV chargers

• The model optimizing slow and fast chargers of public charging stations

We suggest

- Slow chargers should be installed in workplace, and residential areas
- Fast chargers should be distributed evenly around the metropolitan city.
- Charging stations should be more distributed rather than be concentrated in one place.

Further research

- Reflecting each driver's travel route.
- More realistic model considering other cost, driver's utility, etc.

THANK YOU

Q & A

Lab. of Engineering Economic System Analysis, Seoul National University