CARBON TAX FORECASTS: VARs & CONTROL VARIABLES

Jim Stodder, Boston University

<u>m.Stodder@gmail.com</u> Jstodder@bu.edu

Presented at 42nd International Convention of the International Association for Energy Economics Montreal, Canada May 30, 2019

Previously presented at Pardee Center for the Study of the Longer-Range Future Boston University February, 2019

School of Economics & Management, Far Eastern Federal University (Vladivostok, Russia) December 2017

Findings:

Carbon taxes make <u>Natural Gas</u> the last big fossil fuel. A very modest Carbon Tax (20 per metric ton) causes a large drop in Coal and a small drop in Oil consumption. Natural gas is stable, however, for a slight reduction in the trend of CO_2 .

 Vector Auto-Regressions (VARs), a standard tool in Finance, are a useful but under-utilized method to gauge short-term energy and environmental impact.

 Constrained VARs are particularly useful for gauging the effects of Quantity vs. Price Controls; i.e., a policy of Pollution Permits vs. Carbon Taxes.

Taxes per unit of Fuel

	<u>COAL</u>	<u>OIL</u>	<u>GAS</u>
Unit of Fuel (UF)	Short ton	Barrel	Mcf
Aggregate UF	(1,000 tons)	(1,000 barrels)	(1,000 Mcf)
Тр/Тс	3	4.5	0.5
Tp/(Tp+Tc)	0.75	0.8182	0.333
CO₂ Tonne/UF	2.101	0.4102	0.0544
Tax per TonneCO ₂	\$20	\$20	\$20
Tax per UF	\$42.02	\$8.20	\$1.09
-P*	\$31.62	\$6.71	\$0.37
+P*	\$10.40	\$1.49	\$0.72

Table 1.Global Social Cost of Carbon in 2005 US Dollarsunder Different Assumptions (Nordhaus, 2014)

Scenario	2015	2020	2025	2030	2050
Base parameters:					
Baseline*	18.6	22.1	26.2	30.6	53.1
Optimal controls+	17.7	21.2	25.0	29.3	51.5
2°C limit damage function:					
Maximum†	47.6	60.1	75.5	94.4	216.4
Max of average+	25.0	30.6	37.1	44.7	87.9
Stern Review discounting:					
Uncalibrated*	89.8	103.7	117.4	131.3	190.0
Calibrated*	20.7	25.0	30.1	35.9	66.9
Alternative high discount*	6.4	7.7	9.2	10.9	19.6

Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches https://www.journals.uchicago.edu/ doi/10.1086/676035?mobileUi=0&

Journal of the Association of Environmental and Resource Economists, 2014

Stodder, Carbon Tax - Montreal 5/30/2019

Guivarch and Rogelj (2017) "Carbon price variations in 2°C scenarios explored," *Report of the High–Level Commission on Carbon Prices,* World Bank, United Nations.

WINTER 2010 VOL. 51 NO. 2

Why Forecasts Fail. What to Do Instead

Spyros Makridakis, Robin M. Hogarth and Anil Gaba

Christopher Sims 2011 Nobel Speech

[VARs] are statistical descriptions of time series, with no accompanying story In my earliest work with VAR's (1980a; 1980b) I <u>interpreted them with informal</u> <u>theory</u>.... It was possible, however, to introduce theory explicitly, **but** <u>with</u> <u>restraint</u>, so that VARs became usable for policy analysis.

4 Benefits of VAR Modeling:

- 1) Fewer variables, lower data requirements to achieve reasonable DoF.
- 2) Theory is not built-in but implicit, interpreted.
- **3)** All explanatory variables are historical, <u>known</u>. Lags mean fewer 'forecasts within the forecast.'
- **4)** Best of all 30 years of experience show VARs are usually more accurate than structural models.
- * **Points 1), 2) and 3)** help **explain 4).** VARs focus on the final whats, not all the intervening whys & hows. For predictions, this Less is often More.

Quantiy vs. Price Controls: Good Old Supply & Demand!

<u>"Prices vs. Quantities," Weitzman (1974)</u>

5/30/2019

Either Control Equivalent - If No Uncertainty!

Steep Decline in Marginal Benefits => <u>Quantity</u> Controls (Market Permits)

Gradual Decline in Marginal Benefits => <u>Cost Controls</u> (Carbon Taxes)

Vector Error Correction Estimates Sample (6 lag-adjusted): 1987M01 – 2018M0; Included observations: 368 after adjustments; t-statistics in []; *, **, and *** => 10%, 5%, and 1% level of significance

Cointegrating Equation:	CO2(-1)	GASAV_QC(-1)	PETAV_QC(-1)	COALAV_QC(-1)
	1.0000	-5.52E-05	-0.017606	-0.001495
		[-5.02987]***	[-10.7610]***	[-10.0958]***
Error Correction	D(CO2)	D(GASAV_QC)	D(PETAV_QC)	D(COALAV_QC)
Response:	-1.198501	51.44285	0.302807	2.896766
	[-8.72333]***	[0.87700]	[1.32202]	[1.56038]
R-squared	0.330816	0.497483	0.63725	0.273663
Adj. R-squared	0.242004	0.430791	0.589108	0.177266

Cointegrating							
Equation:	GASAV_QC(-1)	PETAV_QC(-1)	COALAV_QC(-1)	GAS_PCT_PT(-1)	PET_PCT_PT(-1)	COAL_PCEIT_PT(-1)	CO2(-1)
	1.0000	305.5484	48.78128	34457.1	-6742.623	-9104.467	-28644.33
		[3.78299]***	[7.31423]***	[1.08550]	[-2.80778]***	[-1.56436]	[-10.711]***
Error Correction	D(GASAV_QC)	D(PETAV_QC)	D(COALAV_QC)	D(GAS_PCT)	D(PET_PCT)	D(COAL_PCEIT)	D(CO2)
Response:	:-0.00357	-1.26E-06	-1.49E-04	2.12E-07	-2.46E-06	-1.32E-07	4.04E-05
	[-1.66351]*	[-0.14910]	[-2.21786]**	[1.74550]*	[-3.05754]***	[-0.46106]	[8.1054]***
R-squared	0.330816	0.497483	0.63725	0.273663	0.403839	0.370257	0.556133
Adj. R-squared	0.242004	0.430791	0.589108	0.177266	0.324719	0.28668	0.497224

COAL

GAS

OIL

CO2 Output

No Treatment

Price Controls

Quantity Control

Stodder, Carbon Tax - Montreal 5/30/2019

The growing importance of renewables <u>not modeled</u> here. (Time series are too short.)

But a carbon tax boost for renewables implies both:

* lower fossil-fuel use (for all 3 fuels), and
* lower CO₂ output than forecast here.

Solar 'Levelized' (i.e., Marginal) Costs

http://public.woodmac.com/public/views/solar-next-shale

For Paper or Questions, please contact me at

jstodder@bu.edu