Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

Investing in inflexible generation capacity

Bert Willems^{1,2}

¹Tilburg University

²Toulouse School of Economics

IAEE Conference - Montreal - 2019

MOTIVATION	Model	Equilibrium	Example	Conclusion
●0000	000	000	00000	000

Motivation

Model

Market Equilibrium

Example

MOTIVATION	Model	Equilibrium	Example	Conclusion
0000	000	000	00000	000

MOTIVATION

- ► Higher penetration of RES requires **more flexibility energy resources**
 - ► Flexible conventional generation
 - Storage operators
 - Demand response
- In an ideal, perfectly competitive market, spot prices will provide the right incentives
 - More volatile spot prices \rightarrow higher rewards for flexibility
- ► However, in practice market failures exist
 - Start-up costs: production costs are non-convex: Theory does not apply
 - Missing financial markets (forward contract does not hedge flexible generation)
 - Entry barrier or market power in operational stage
 - Spot prices do not reflect true scarcity (price cap, no linkage balancing & spot market)

MOTIVATION	Model	Equilibrium	Example	Conclusion
0000	000	000	00000	000

$\mathbf 2$ Market designs to deal with Start-up costs

MOTIVATION	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

DIFFERENT TREATMENT OF START-UP COSTS

Different treatment of start-up costs will affect investment patterns

EU Power Exchange

- Firms need to internalize start-up costs
- Bids \neq MC, as firm has to make provisions for start-up costs
- Inefficient scheduling as coordination is lacking

► US Power pool

- Side-payment provides compensation for start-up costs
- ► Side-payments might be a reward for inflexible generation.

MOTIVATION	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

Goal of this project

- ► Understand how market design affects equilibrium investment levels.
 - ▶ What is the effect of different treatment of start-up costs in US and EU?
 - ► We focus on (in)flexible conventional generation
- Analytical tractable model for optimal portfolio model with start-up costs
 - Continuum of technologies (base-load to peakers)
 - Continuum of firms: each firm is small and a price-taker
 - No risk aversion (missing financial markets does no matter)
 - ▶ No entry barriers: each firm makes zero profit in expectation

Motivation	Model	Equilibrium	Example	Conclusion
00000	●00	000	00000	000

Motivation

Model

Market Equilibrium

Example

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

Model: Demand Side

- Two representative demand periods, i = 1, 2
- ► Price responsive stochastic demand with additive price shocks

$$p_i = p(q) + \varepsilon_i$$

Shocks are independent with cumulative distribution $H(\varepsilon_i)$ on $[\varepsilon, \overline{\varepsilon}]$.

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

Model: Production costs

Continuum of technologies (base-load to peak) with marginal cost c on [c, c̄] with per period investment cost k(c) and adjustment cost α:

- Power plant can either be on or off: $q_i \in \{0, 1\}$
- **Opportunity cost** for producing one unit in period 1
 - If producing in period 2 for sure $(q_2 = 1)$: $c \alpha$
 - If not producing in period 2 for sure $(q_2 = 0)$: $c + \alpha$
- ► Aggregate market supply curve *G*(*c*) represents investment equilibrium

MOTIVATION MODE	Equilibrium	Example	Conclusion
00000 000	●00	00000	000

Motivation

Model

Market Equilibrium

Example

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

European market equilibrium

• Let h(c) be the probability that firm *c* produces. Free entry then requires

$$h(c) = \frac{\mathrm{d}k(c)}{\mathrm{d}c}$$

• Optimal bid is expected opportunity cost

$$b(c) = c - \alpha(2h(c) - 1)$$

Market clears

$$b(c) = p(G(c)) + \varepsilon(c)$$

• Probability of production h(c) depends on distribution of demand shock $H(\varepsilon)$

$$h(c) = 1 - H(\varepsilon(c))$$

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

US market equilibrium

- Given continuum of small firms, side-payment are not necessary in our model.
- ► **Free entry** still requires

$$h(c) = \frac{\mathrm{d}k(c)}{\mathrm{d}c}$$

• **Optimal bidding:** bid equal to marginal cost *c*

$$b(c) = c$$

Market clears

$$b(c) = p(G(c)) + \varepsilon(c)$$

▶ Probability of production *h*(*c*) depends on co-optimization problem

$$h(c) = \begin{cases} 1 - \int_{\varepsilon_L}^{2\varepsilon(c) - \varepsilon_L} H(2z(c) - \varepsilon_1) \, dH(\varepsilon_1) & \text{if } \varepsilon(c) - \alpha < \varepsilon_L \\ 1 - H(\varepsilon(c) - \alpha) - \int_{\varepsilon(c) - \alpha}^{\varepsilon(c) + \alpha} H(2z(c) - \varepsilon_1) dH(\varepsilon_1) & \text{if } \varepsilon_L \le \varepsilon(c) - \alpha \le \varepsilon_H \\ 1 - H(2\varepsilon(c) - \varepsilon_H) - \int_{2\varepsilon(c) - \varepsilon_H}^{\varepsilon_H} H(2z(c) - \varepsilon_1) dH(\varepsilon_1) & \text{if } \varepsilon_H \le \varepsilon(c) - \alpha \end{cases}$$

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	●0000	000

Motivation

Model

Market Equilibrium

Example

Motivation	Model	Equilibrium	Example	Conclusion
00000		000		000

Functional form

Available technologies / Technology Mix

$$k(c) = \frac{1}{2} \frac{(\overline{c} - c)^2}{\overline{c} - \underline{c}} \qquad h(c) = \frac{\overline{c} - c}{\overline{c} - \underline{c}}$$

► Inverse linear demand function

$$p = \varepsilon + p(q) = \varepsilon - \beta \cdot q$$

• Uniform Distribution $H(\varepsilon)$

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

EU Market design

- Peaker bids above cost
- Baseload bids below cost
- Firms sometimes sell below cost (for low demand) but make zero profits in expectation.

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

US MARKET DESIGN

 Price at which capacity is sold depends on realization of demand shock in other period.

00000 000 000 000 000	Motivation	Model	Equilibrium	Example	Conclusion
	00000	000	000	00000	000

Comparison US Vs EU

- ► US-market design is efficient
- EU-market design
 - less investment in peakers, more in basedload (long-run)
 - less efficient use of power plants (short-run)
 - In simulation results: short-run inefficiencies dominate

Motivation	Model	Equilibrium	Example	CONCLUSION
00000	000	000	00000	● 00

Motivation

Model

Market Equilibrium

Example

Motivation	Model	Equilibrium	Example	Conclusion
00000	000	000	00000	000

Conclusion

Complex US-style auctions are efficient

- ► allows for better inter-temporal operational decisions & optimal investments
- bidding requires less information about the market conditions (only own production cost)
- less risky for bidders (not selling below marginal cost)
- ► Efficiency result depends on assumption of small firms
 - Side-payments are not necessary
 - Numerical simulations are necessary if this assumption is dropped
- ► Simple EU-style auction
 - ► too little investment in peakers, too much in baseload
 - might depend on modeling assumptions.

Motivation	Model	Equilibrium	Example	CONCLUSION
00000	000	000	00000	000

Possible extensions

- Correlated demand shocks
- Technology specific adjustment cost $\alpha(c)$
- Endogenize adjustment $\cos \alpha$