

Spot market price effects of reserve provision – analyses based on a parsimonious fundamental model

Philip Beran, Benjamin Böcker, Christoph Weber 42nd IAEE International Conference | Montréal May 30, 2019

> UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Motivation

1 Introduction & Motivation

- Various fundamental electricity market models have weaknesses in explaining price peaks and troughs.
 - One reason for this behaviour: No or insufficient consideration of provision of reserve.
- Reserve power is an important component of energy systems with a high proportion of renewable energies and thus plays a special role in the German energy transition.
- 1. What are the effects on the bidding curve from provision of reserve?
- 2. What are the effects on modelled fundamental electricity market prices from provision of reserve?

6 55 ME Fundamental 5 Day-ahead price [€/MWh] 22 00 52 07 57 22 Observed Mean error [€/MWh] 3 0 -2 -3 20 -4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 3 4 5 6 78 1 Hours

German Day-ahead market 2011-2015

UNIVERSITÄT

DUISBURG

Open-Minded

Spot market price effects of reserve provision – analyses based on a parsimonious fundamental model

Introduction & Motivation	1
Analytical model of reserve provision	2
Application: Integration into ParFuM	3
Conclusion	4
References	5

Market for control reserve

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

2 Analytical model of reserve provision

	Frequency Containment Reserves (FCR)	Automatic Frequency Restoration Reserves (FRR-a)	Manual Frequency Restoration Reserves (FRR-m)
Characteristics	 Reserve for frequency adjustment European setup (UCTE) Common cross border auction 	 Reserve for load flow regulation Conducted via a balancing signal from grid coupling stations 	• Reserve especially for compensation of power plant outages
Activation Time	30 Seconds	5 Minutes	Max. 15 Minutes
Tendering Procedure	Weekly	Weekly*	Daily
Tenders & Products	One tender for positive & negative control reserve	Separate tenders for positive & negative reserve for two distinct provision periods (peak/offpeak)*	Separate tenders for positive and negative control reserve for distinct 4-hour periods
Compensation	• Capacity (reservation) • Price (Pay-as-Bid Auction)	Capacity (Reservation) and Energy (activation)Price (Pay-as-Bid Auction)	

*) Since 12.07.2018: Daily tendering for FFR-a and block products instead of provision periods.

Analytics of efficient spot & reserve prices

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

2 Analytical model of reserve provision

- Which plants provide reserve capacity? Assumptions:
 - Conventional generation plants may only offer part of their capacity in reserve markets, reasons:
 - Limited plant load change rates
 - Minimum capacities due to must-run conditions
 - Capacity offered as positive reserve may not be simultaneously offered in the spot market

$$K^{Spot} + R^+ \le K^{max}$$

- Energy demand and reserve provision are jointly provided by available "online" capacity
- Reserve provision is limited by ramping capability of available (online) capacity α
- For economic reasons, it is best if the demanded reserve energy is provided by the marginal power plant K_m and adjacent units.
- First provider of reserve capacity

$$K_0 = D + R^+ - \frac{1}{\alpha}R^+$$

Must run capacity because of reserve provision

$$MR^{R^+} = \frac{\gamma}{\alpha}R^+$$

 $\alpha = Max.reserve\ cap.\ factor$ $\gamma = Min.\ capacity\ factor$ $D = Actual\ demand$ $K^{max} = Maximum\ capacity$ $K^{Spot} = Spot\ market\ capacity$ $R^+ = Reserve\ demand$

Cmp. Baldursson et al. (2017).

What about prices?

2 Analytical model of reserve provision

- Relation between spot market and reserve prices
 - Indifference condition for the first provider of reserve K_0 (if $K_0 > 0$)
 - Zero profit condition (if $K_0 < 0$) of the marginal plant

$$\alpha_m p_R = (1 - \alpha_m)(c_m - c_0)$$

 $p_{R} = p_{S} - c_{0}$

Spot market price

$$p_S = \begin{cases} c_m & K_0 \ge 0\\ c_0 & K_0 < 0 \end{cases}$$

Reserve market prices

$$p_{R} = \begin{cases} c_{m} - c_{0} & K_{0} \ge 0\\ \frac{1 - \alpha_{m}}{\alpha_{m}} (c_{m} - c_{0}) & K_{0} < 0 \end{cases}$$

UNIVERSITÄT DUISBURG ESSEN Open-Minded

> $p_R = Reserve \ market \ price$ $p_S = Spot \ market \ price$ $c_0 = Marginal \ costs \ of$ $first \ provider \ of \ reserve$ $c_m = Marginal \ costs \ of$ $marginal \ plant$ $lpha = Max. \ reserve \ cap. \ factor$

> > Cmp. Baldursson et al. (2019).

Analytical results

2 Analytical model of reserve provision

- Merit order effects of reserve provision
 - Available capacity in the spot market is reduced → Steeper bidding curve in the area of the marginal power plant
 - More capacity must be online: New must run block on the left side of the bidding curve → Shift of the bidding curve

UNIVERSITÄT

Open-Minded

- New shape of the bidding curve \tilde{b} :

$$\tilde{b}(x) = \begin{cases} m\left(x,\frac{\gamma}{\alpha}R^{+}\right) & f \ddot{u}r \ x < \frac{\gamma}{\alpha}R^{+} \\ b\left(x-\frac{\gamma}{\alpha}R^{+}\right) & f \ddot{u}r \ \frac{\gamma}{\alpha}R^{+} \le x \le K_{0} + \frac{\gamma}{\alpha}R^{+} \\ b\left(K_{0} + \frac{1}{1-\alpha-\gamma}\left(x-\left(K_{0} + \frac{\gamma}{\alpha}R^{+}\right)\right)\right) & x > K_{0} + \frac{\gamma}{\alpha}R^{+} \end{cases}$$

- Expected spot market price effects:
 - High residual demand: Slope is steeper around marginal power plant → Higher prices
 - − Low residual demand: Not enough online capacity for reserve procurement ($K_0 < 0$) → Additional online capacity needed → Spot market oversupply → negative spot market prices → Lower prices

Spot market price effects of reserve provision – analyses based on a parsimonious fundamental model

Introduction & Motivation	1
Analytical model of reserve provision	2
Application: Integration into ParFuM	3
Conclusion	4
References	5

Fundamental electricity market model ParFuM

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

- 3 Application: Integration into ParFuM
- Starting point:
 - "Merit order" (supply-stack) model
 - Heterogeneity of technology classes by estimates on minimum and maximum efficiency → Intervals of ascending costs
 - Considered technologies: Bio, Nuc, Lig, Coa, CCG, OCG, Oil, Rrh, Mis
 - Piecewise linear supply stack with mixed capacities
- Residual Load
 - $D_t = L_t W_t S_t CHP_t^{MR} TB_t$
- Detailed data on
 - Load

- Imports & Exports
- Renewable Infeed
 Availabilities
- Capacities
- Uncoupled time periods: No start-up costs or minimum operation times
- Spot market price results from the intersection of the supply and demand curve

30-May-2019

Fundamental electricity market model ParFuM – Base case (Fund0)

UNIVERSITÄT DUISBURG ESSEN Open-Minded

- 3 Application: Integration into ParFuM
- Hourly data for Germany between 01.01.2016 30.06.2018
- Base case: No consideration of reserve provision

Stats	Obs	Fund0
Mean	32.41	31.53
Min	-130.09	0.00
Max	163.52	87.55
SD	15.53	7.86
#Neg	347.00	0.00
Errors	Fund0	
ME	-0.87	
MAE	6.44	
RMSE	10.84	
R ²	0.52	

- Model shortcomings:
 - Problems with extreme prices (pos./neg.) \rightarrow No fundamental negative prices
 - Price volatility is too low

Fundamental electricity market model ParFuM – Reserve provision case (Fund1a)

UNIVERSITÄT DUISBURG ESSEN Open-Minded

3 Application: Integration into ParFuM

- Extension of the base case with general consideration of positive reserve:
 - Reserve cap. share α =0.1 Must-run-share γ =0.1 for all technologies

Spot market price effects of reserve provision – analyses based on a parsimonious fundamental model

Introduction & Motivation	1
Analytical model of reserve provision	2
Application: Integration into ParFuM	3
Conclusion	4
References	5

Conclusion

- Results
 - 1. What are the effects on the bidding curve from provision of reserve?
 - Available capacity in the spot market is reduced \rightarrow Steeper bidding curve
 - Must-run capacity increases \rightarrow Shift of the bidding curve
 - 2. What are the effects on modelled fundamental electricity market prices from provision of reserve?
 - Improvement of spot market model quality with regard to overall prices: MAE s reduced and S.D. increased.
 - Counter-intuitive effects with low but not extreme residual load (e.g. at night)
- Next steps
 - Distinction between FCR and FRRa
 - Distinction between positive and negative reserve products
 - Technology specific reserve- and must run-factors
 - Evaluation of fundamental reserve market prices

Positive reserve market

UNIVERSITÄT

D_U_I_S_B_U_R_G

Open-Minded

Thank you for your attention!

Philip Beran

House of Energy Markets & Finance University of Duisburg-Essen, Campus Essen Berliner Platz 6-8 45127 Essen Germany

philip.beran@uni-due.de

- Baldursson et al. (2017) Welfare optimal reliability and reserve provision in electricity markets with increasing shares of renewable energy sources. HEMF Working Paper, 5 (2017).
- Beran et al. (2019) Modelling German electricity wholesale spot prices with a parsimonious fundamental model Validation & application. Utilities Policy, 58 (2019) 27-39.
- Kallabis et al. (2016) The plunge in German electricity futures prices analysis using a parsimonious fundamental model. Energy Policy 95, 280-290.

