IAEE 2019 Analysis of Optimal Power Generation Mix in Japan to 2050, using Dynamic Multi-Sector Energy Economic Model

1/6/2019 Fujii-Komiyama Lab. NEM, UT, Doctoral Course 3 ISOGAI Motoi The University of Tokyo isogai@g.ecc.u-tokyo.ac.jp

- 1. Background
- 2. Modeling
- 3. Results
- 4. Summary and Future Works

Background

Background	Modeling	Results	Summary
Background			

How to ...

- Reduce the global CO₂ emissions?
- Solve the exhaustible resource problems?
- Operate nuclear power plants with citizens?
- Cooperate with countries for energy problems?

How to increase our economic, facing energy problems?

Fig. 1. The best mix of power generation in Japan in 2030, released in 2015 by Minister Economy, Trade and Industry (METI).

Develop a unique energy economic model, which can consider inter-industry linkages between economic multi-sectors including energy sectors

Contribute to framing the best energy/economic policy for a target region or regions

 Table. 1. Characteristics of Bottom-up and Top-down Energy Models.

Bottom-up

Top-down

Optimizing objective functions for a particular system deductively with assumptions. Optimizing objective functions for plural activities inductively with some real values.

Good at considering detailed technological constraints with high time/region resolution. **Good** at considering the competitive relationships between activities logically.

Difficult to analyze the whole system composed of plural activities.

Difficult to analyze each activity in detail with high resolution.

Dynamic Multi-Sector Energy Economic Model (DMSEE)

Fig. 2. Overview of the model from inputs to outputs.

Basic Information

Dynamic Multi-sector Energy Economic Model ...

- Is a linear programming which maximizes **utility function**.
- Targets JAPAN.
- Has 8 time points from 2015 to 2050.
- Has 24 TD sectors and a BU sector (Electricity sector)
- Considers outputs of BU sectors with high resolution, per 1 hour.
- Considers elasticities of substitutions with **CES** (Constant Elasticity of Substitutions) **function**, including Armington consumption for the process of TD production.

- A general equilibrium model elaborating the electricity sector with very high time resolution.
- Not calculated by the link of multiple models, but is completed in one model.
- A new formulate for relationship between investment and facility for Top-down sectors.

BackgroundModelingResultsSummaryBottom-up side (Electricity)

Fig. 3. Hourly Load Curve of each sector.

Fig. 4. Wind Hourly capacity factor for 365 days

Fig. 5. Solar Hourly capacity factor for 365 days

Nested General CES Production Function is (1).

$$\boldsymbol{z} = \left(\sum_{i} \boldsymbol{\mu}_{i} \left(\sum_{j} \boldsymbol{\nu}_{i,j} \boldsymbol{y}_{i,j}^{\rho_{i}}\right)^{\frac{\rho}{\rho_{i}}}\right)^{\frac{1}{\rho}}$$

Approximated,
$$\beta_{i,j,t} \cdot z_t \leq y_{i,j,t}$$
 (1)

Maximize
$$obj = \sum_{t} \sigma_t \left(util_{H_t} + util_{G_t} - tax_t \right)$$
 (4)
 $util_{H} = \left(\sum_{m}^{M} \boldsymbol{v}_{H_m} \boldsymbol{h}_{T_m}^{\rho} + \boldsymbol{v}_{H_{M+1}} \left(\sum_{e}^{E} \boldsymbol{h}_{B_e} \right)^{\rho} \right)^{\frac{1}{\rho}}$ (5)
 $util_{G} = \left(\sum_{m}^{M} \boldsymbol{v}_{G_m} \boldsymbol{g}_{T_m}^{\rho} + \boldsymbol{v}_{G_{M+1}} \left(\sum_{e}^{E} \boldsymbol{g}_{B_e} \right)^{\rho} \right)^{\frac{1}{\rho}}$ (6)

 σ : Discount Rate, *util*_H: Household Utility Function, *util*_G: Government Utility Function, *tax*: Tax, *h*: Household Consumptions, *g*: Government Consumptions, *M*, *E*: *T*he number of TD/BU Commodities, *v*: Calculated coefficients, ρ : Index derived from elasticity of substitutions

Background	Modeling	Results	Summary
Constraints			

Balance of demand and supply Investment and Capacity

$$\begin{aligned} h_{\rm B} + g_{\rm B} + a_{\rm B} + i_{\rm B} &= c_{\rm B} \\ h_{\rm T} + g_{\rm T} + a_{\rm T} + i_{\rm T} &= c_{\rm T} \end{aligned} \qquad k_{\rm B_t} = k_{\rm B_0} + \sum_{t'=0}^{t} F_{{\rm B}_{t,t'}} \eta_{{\rm I}_{t'}} i_{{\rm B}_{t'}} \quad (8) \\ (7) \qquad k_{\rm T_{t+1}} &= (1-\delta)k_{\rm T_t} + i_{\rm T_t}/RP_n \end{aligned}$$

$$\end{aligned}$$

h: Household Consumptions, *g*: Government Consumptions, *a*: Intermediate Consumptions, *i*: Investment, *c*: Sum of Consumptions, *F*: Matrix for investment, η_I : Construction cost, δ : Depreciation Rate,

Background	Modeling	Results	Summary
Constraints			

Balance of demand and supply Investment and Capacity

$$\begin{aligned} h_{\rm B} + g_{\rm B} + a_{\rm B} + i_{\rm B} \\ h_{\rm T} + g_{\rm T} + a_{\rm T} + i_{\rm T} \end{aligned} &= c_{\rm B} \\ (7) \quad k_{\rm T_{t+1}} = (1 - \delta)k_{\rm T_t} + i_{\rm T_t}/RP_n \end{aligned}$$

h: Household Consumptions, *g*: Government Consumptions, *a*: Intermediate Consumptions, *i*: Investment, *c*: Sum of Consumptions, *F*: Matrix for investment, η_I : Construction cost, δ : Depreciation Rate,

Production and Capacity

$$\eta \cdot \boldsymbol{p}_{\mathsf{B}} \leq \boldsymbol{k}_{\mathsf{B}}$$
$$\eta \cdot \boldsymbol{p}_{\mathsf{B}_{n}} \leq C u_{n} \cdot \boldsymbol{k}_{\mathsf{B}_{n}} \quad (n \in \{WindE, SolarE, HydroE\})$$
(10)

Constraints deriving from CES

$$\beta_{i,j,t} \cdot z_t \le y_{i,j,t} \tag{11}$$

 η : Factor to change production to capacity, *p*: production, *Cu*: Capacity Factor, β : Calculated coefficient

Background	Modeling	Results	Summary
Constraints			

(12)

(13)

THE UNIVERSITY OF TOKYO

Reserve Capacity

$$\sum_{pw} \boldsymbol{k}_{B_{pw}} \ge (1 + 0.05) \cdot \eta \cdot \boldsymbol{MaxLOAD}$$

Load Following Operation

 $p_{B_t} \le (1 + MaxLF)p_{B_{t+1}}$ $p_{B_t} \ge (1 + MinLF)p_{B_{t+1}}$

MaxLOAD: Max of electricity demand, MaxLF: Max Ratio, MinLF: Min Ratio,

Maintenance Operation

$$ap_{i,d} + \sum_{m=0}^{3} Ur_{m,d} m k_{m,d} = k_{B_i} \qquad \sum_{m=0}^{3} Ur_{m,d} m k_{m,d} \ge (1 - Up_i) k_{B_i}$$
$$\sum_{m=0}^{3} \sum_{d=0}^{365-1} Ur_{m,d} m k_{m,d} / 365 = (1 - Ua_i) k_{B_i} \qquad \eta \cdot p_{B_{i,d,t}} \le ap_{i,d}$$
(14)

ap: Operation capacity, *Ur*: Maintenance rate, *mk*: Maintenance capacity, *Up*: Day max operation rate, *Ua*: Year mean operation rate

Department of Nuclear Engineering and Management

Results

Background

Scenarios and Policy

Consumption Scenario

- Constant household/government consumptions from the initial
- Growth by 1.5% yearly especially for electricity consumptions

CO₂ tax and prohibition of new construction of Nuclear Power Plant (noN)

- Business As Usual case
- 50\$/t-CO₂ case
- 300\$/t-CO₂
- 300/t-CO₂ and noN

Today's Results

- Power Generation Mix
- CO₂ Emissions
- GDP

Power Generation in BAU case

Fig. 6. Power Generation Mix in BAU case

Comparison between Cases for Power Generation

Fig. 7. Power Generation Mix of each case

Comparison between Cases for Power Generation

Fig. 8. Power Generation Mix of each case

Fig. 9. Power generation mix and CO₂ emissions in 2050.

Fig. 9. Power generation mix and CO₂ emissions in 2050.

An Example of Power Generation at any T/D/M/Y

Fig. 10. Power Generation (above: in 2050 (\$50), below: in July, 2050 (\$300))

GDP growth

Fig. 11. GDP growth (standardized by value in 2015).

Summary and Future Works

Summary

Summary

DMSEE model suggests that...

- Gas-fired and Nuclear power are fundamental in Japan.
- restart and new construction of nuclear power plant are hoped.
- investment especially for PV plays important role to reduce CO₂.
- high CO₂ tax contributes increase of GDP, while utility of consumptions declines, by investment mainly for renewables.

Thank you for your attention!

Ľ