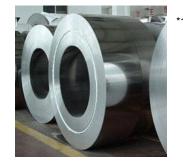
The 42nd IAEE International Conference May 29 - June 1, 2019 Montréal, Canada

Analysis of Energy Intensity of Basic Materials Industry in Japan

Junichiro Oda*, Keigo Akimoto Research Institute of Innovative Technology for the Earth (RITE) Kyoto, Japan


*Contact us: jun-oda@rite.or.jp

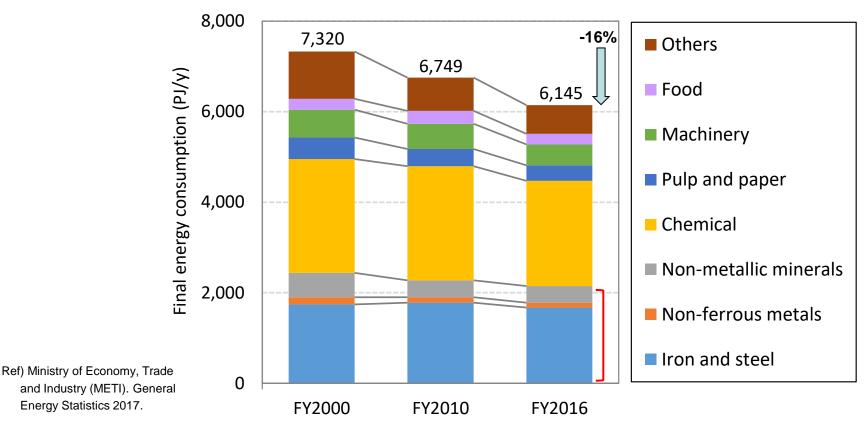
Contents

*1) http://japanese.galvanized-steelcoils.com/sale-5372291-astm-a1008-din16723-en10130-cold-rolled-steel-plate-sheet-for-oil-drum.html *2) http://www.jcassoc.or.jp/

*3) https://www.metelec.co.uk/

- 1. Introduction
- 2. Iron and steel sector

3. Cement sector



- 4. Non-ferrous metals sector
- 5. Summary

1. Introduction(1/2): background

- ✓ Energy consumption of Japanese industrial sector was decreasing
 - Factor 1 : improvement of energy intensity?
 - Factor 2 : decrease of production activity?

Final energy consumption of Japanese industrial sector

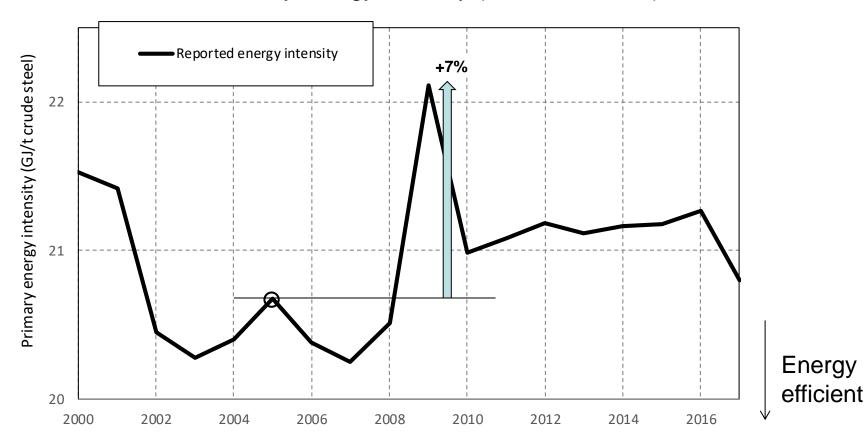
 \checkmark To fill in the tables' blanks and obtain an implication for climate mitigation policy

Profile of **primary** energy and production from 2000 to 2016

	Primary energy consumption	Primary energy intensity	Production
Iron and steel			Crude steel production: $106 \rightarrow 105 \text{ Mt} (-1.6\%)$
Cement			Cement production: 83 \rightarrow 59 Mt (-29%)

Profile of final energy and production from 2010 to 2016

	Final energy consumption	Final energy intensity index	Production <i>index</i>
Non-ferrous metals	116 → 106рј (-9%)		


2.1 Iron and steel sector

✓ We estimated (net) primary energy intensity (GJ/t crude steel) in the Japanese

steel sector based on METI (2017a,b,c)

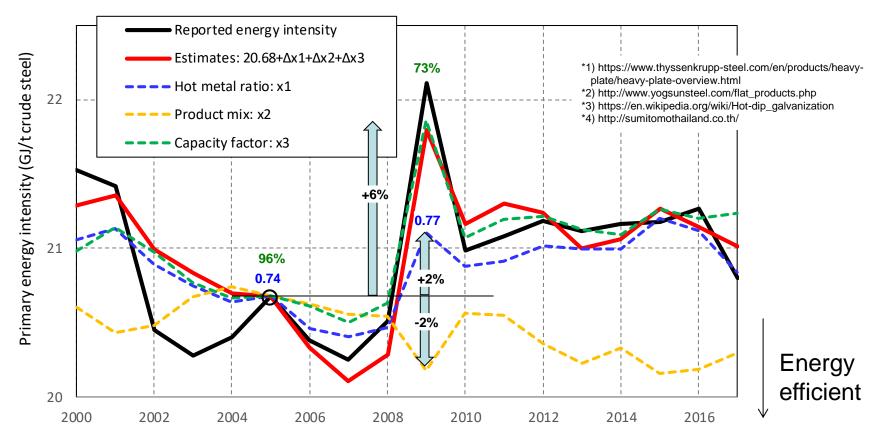
Ministry of Economy, Trade and Industry (METI), 2017a. General Energy Statistics 2017. METI, 2017b. Monthly Report of the Current Survey of Energy Consumption: Total-C.Y.2017. METI, 2017c. Yearbook of current production statistics 2017.

Primary energy intensity (GJ/t crude steel)

2.2 Decomposition of energy intensity: iron and steel sector ₆

Investigated factor:

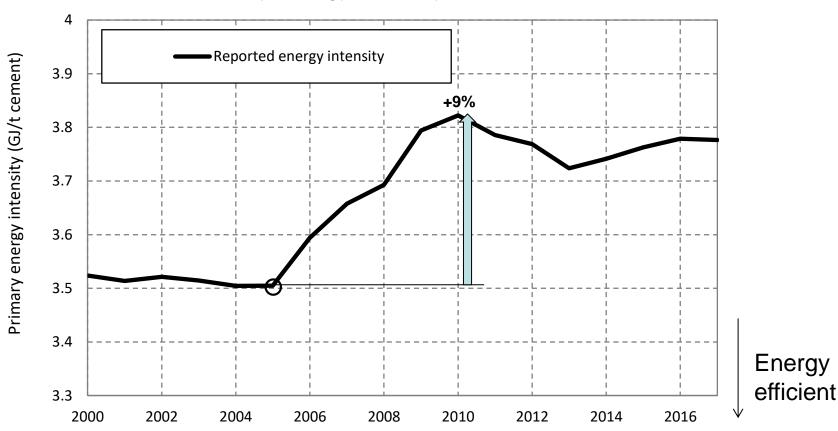
x1_Hot metal ratio


≈ Pig iron ratio, Non-scrap ratio
 Primary steel ratio,
 Blast furnace ratio, Non-EAF ratio

x3_Capacity factor

= Utilization rate, Production/capacity

Primary energy intensity and its determinants



3.1 Cement sector

✓ We estimated (net) primary energy intensity (GJ/t cement) in the Japanese cement

sector based on METI (2017a,b,c)

Ministry of Economy, Trade and Industry (METI), 2017a. General Energy Statistics 2017. METI, 2017b. Monthly Report of the Current Survey of Energy Consumption: Total-C.Y.2017. METI, 2017c. Yearbook of current production statistics 2017.

Primary energy intensity (GJ/t cement)

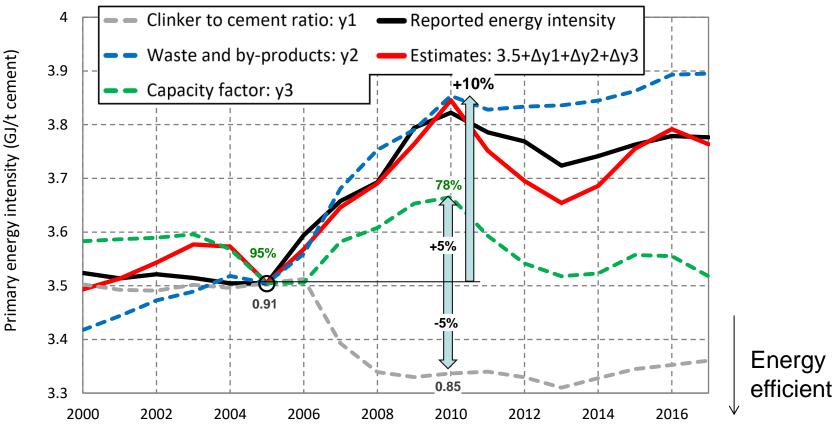
3.2 Decomposition of energy intensity: cement sector

✓ Investigated factor:

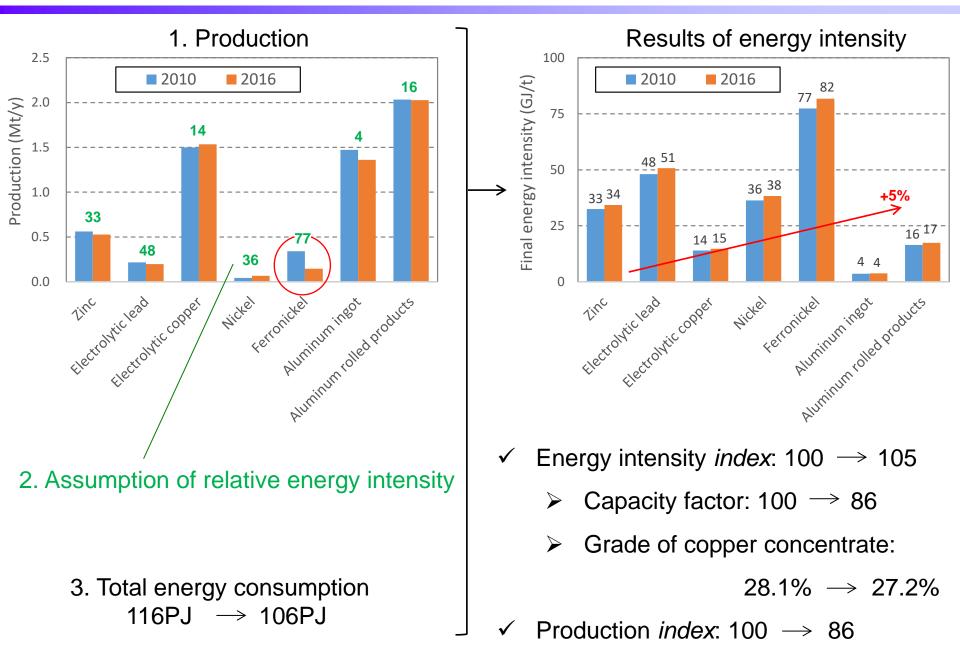
y1_Clinker to cement ratio

y2_Waste and by-products

Input of sewage sludge and industrial sludge Cement production


x3_Capacity factor

*2


= Utilization rate, Production/capacity

 *1) http://www.jcassoc.or.jp/
 *2) https://www.nikkei.com/article/DGX NASDD290PI_R00C12A3M10900/

Primary energy intensity and its determinants

4. Non-ferrous metals sector

5. Summary(1/2)

 ✓ We empirically investigated energy intensity and its determinants of steel, cement, and non-ferrous metals sectors in Japan

$2000 \rightarrow 2016$	Primary energy consumption	Primary energy intensity	Production
Iron and steel			Crude steel production: $106 \rightarrow 105 \text{ Mt} (-1.6\%)$
Cement			Cement production: 83 \rightarrow 59 Mt (-29%)

2010→2016	Final energy consumption	Final energy intensity index	Production <i>index</i>
Non-ferrous metals	116 → 106 _{PJ} (-9%)		

5. Summary(1/2)

- ✓ We empirically investigated energy intensity and its determinants of steel, cement, and non-ferrous metals sectors in Japan
- ✓ Only in the steel sector energy intensity has been improved, all three sectors' production activity levels were decreasing

$2000 \rightarrow 2016$	Primary energy consumption	Primary energy intensity	Production
Iron and steel	2290 → 2230pj (-2.8%)	$\begin{array}{rrr} 21.5 & \longrightarrow & 21.3 \text{GJ/tcs} \\ (-1.2\%) \end{array}$	Crude steel production: $106 \rightarrow 105 \text{ Mt} (-1.6\%)$
Cement	294 → 223 _{PJ} (-24%)	$3.52 \longrightarrow 3.78$ GJ/t cement (+7%)	Cement production: 83 \rightarrow 59 Mt (-29%)

2010→2016	Final energy consumption	Final energy intensity index	Production <i>index</i>
Non-ferrous	116 → 106 _{РЈ}	100 → 105	100 → 86
metals	(-9%)	(+5%)	(-14%)

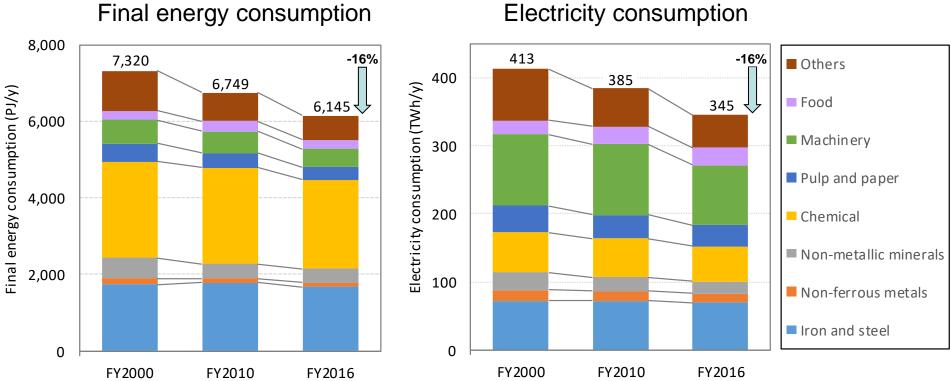
5. Summary(1/2)

- We empirically investigated energy intensity and its determinants of steel, cement, and non-ferrous metals sectors in Japan
- Only in the steel sector energy intensity has been improved, all three sectors' \checkmark production activity levels were decreasing
- Dominant factor of energy consumption decline was production decline not energy \checkmark intensity improvement

Rate of change					
	Energy consumption Energy intensity		Production		
(from 2000 to 2016)	-2.8%	-1.2%	-1.6%		
Cement (from 2000 to 2016)	-24/0		-29%		
Non-ferrous metals (from 2010 to 2016)	-9%	+5%	-14%		

5. Summary(2/2)

Decomposition analysis of energy intensity suggests:


- Key factor of energy intensity transition:
 - Iron and steel ← capacity factor(CF), hot metal ratio, and product mix
 - Cement

 waste (sludge) input, CF, and clinker to cement ratio \geq
 - Non-ferrous metals \leftarrow CF, grade of raw material input \geq
- Not only internal efforts, e.g., investment on energy saving tech., but also external \checkmark factors affected the consequence of energy intensity transition

Rate of change					
	Energy consumption	Production			
(from 2000 to 2016)	-2.8%	-1.2%	-1.6%		
Cement (from 2000 to 2016)	-24%	+7%	-29%		
Non-ferrous metals (from 2010 to 2016)	-9%	+5%	-14%		

Final energy v.s. electricity

Japanese industrial sector

Electricity consumption