

Preferences For Electric Vehicle Charging

A Latent Class Approach

IAEE International Conference Montréal, 05/30/2019

Hendrik Schmitz, Reinhard Madlener

FCN I Future Energy Consumer Needs and Behavior

1. Motivation E-Mobility as a focal point between energy and mobility transitions

Energy transition

- Reduce fossil fuel dependency and CO₂ emissions
 - Smart home integration

Charging behavior

 Charging preferences of (future) consumer groups

Preferences For Electric Mobility Charging | Hendrik Schmitz, Reinhard Madlener FCN | 05/30/2019

Mobility transition

Electric mobility driving and charging behavior

1. Motivation Research Gap

1. Motivation Research Gap

1. Motivation Research Gap

EV charging infrastructure investments are high & income streams are low (Ito et al. 2013)

Who is responsible? Car manufacturers, state, municipalities, energy companies? → Business case still missing

Offering charging solutions

Necessary to understand preferences of current and potential future EV drivers Some literature on single attributes of the charging process

Gap

Assessment of EV drivers' willingness to pay for different attributes of charging process (charging speed, location, and price; Hackbarth & Madlener 2013, 2016; Hidrue et al. 2011; Tanaka et al. 2014)

Gap

Charging behavior as a whole bundle including related services What kind of charging behavior is to be expected in a more mature EV market?

Solution

■ Sample size too small for field experiment → online experiment

Discrete choice experiment

- Measuring preferences for attributes indirectly by confronting respondents with hypothetical choice bundles
- Targeting potential EV customers

2. Methodology Discrete Choice Experiment

Introduction to respondents

"Assume that you regularly drive and charge an e-car. The range of the e-car is sufficient for your daily driving needs. Please imagine how and where you would like to charge the e-car's battery. Please assume that the two options are identical in all aspects not mentioned here, i.e. assume a generic e-car that is identical with respect to size, range, motor power etc."

		Tethered charging	Inductive charging	
ATTRIBUTES	Charging technology	(with cable) (without cable)		
	Waiting time for available charging station	0 min	30 min	
	Share of renewables	50 %	25 %	
	Charging cost per month	200€	100€	
		0	0	
		OPTION A	OPTION B	

E.ON Energy Research Center

2. Methodology Discrete Choice Experiment

- The number of both attributes and levels is limited so that respondents are not overburdened
- The design algorithm ensures that all levels appear on the same number of choice cards
- Individuals maximize their utility by choosing a particular charging solution
- Respondents are forced to consider tradeoffs between the attributes that define the two options A and B

	Overview of Attribute Levels									
ATTRIBUTES -	Place of charging	At home	At work	Roadside: Primary	Roadside: Secondary					
	Charging duration (full charge)	10 min	30 min	4 hours	8 hours					
	Charging technology	Tethered cha	arging (with cable)	Inductive charging (without cable)						
	Waiting time for available charging station	0 min	5 min	10 min	30 min					
	Share of renewables	25 %	50 %	75 %	100 %					
	Charging cost per month	50€	100€	150€	200€					
			γ I EV							

4. Latent Class Model Methodology

Multinomial Logit (MNL)

- Individuals maximize their utility by choosing a particular charging solution
- Homogeneous preferences, i.e. one coefficient for each attribute level

$$W_{in} = \beta_i + \beta_A A_i$$

Latent Class Models (LCM)

- Assumes the existence of classes within the population that are unobservable for the researcher
- Preferences differ between classes, but are homogeneous within groups
- One coefficient **per class** for each attribute level

$$W_{inc} = \beta_{ic} + \beta_{Ac} A_i$$

W = observed utility

i = option (A or B)

- β = coefficients
- A = attributes

c = class

4. Latent Class Model Estimation Results 1/3

10

	MNL	Latent Class Model							
Parameters		Class 1	Class 2	Class 3	Class 4	Class 5	Class 6		
Costs: 50 €	(base)	(base)	(base)	(base)	(base)	(base)	(base)		
Costs: 100 €	-0.61***	-0.77***	-2.32***	-0.76***	-0.61***	0.04	-0.45***		
Costs: 150 €	-1.22***	-1.39***	-4.39***	-1.60***	-1.19***	-0.11**	-0.82***		
Costs: 200 €	-1.91***	-2.19***	-7.01***	-2.47***	-2.07***	-0.20***	-1.46***		
N	4,097	812	1,280	775	291	693	246		
* p <0.1, ** p <0.05, **	^r p <0.1, ** p <0.05, *** p < 0.01								

Differences between classes in parameter values show preference heterogeneity

- Class 2 has a stronger than average preference for low costs
- Class 5 has a weaker preference for low costs

4. Latent Class Model Summary and Class Descriptions

Class	Description	Explanation	Ν
1	Homebodies	Strong preference for charging at home	812
2	Economical	Cost conscious	1,280
3	Impatient	Strong preference for faster charging	775
4	Environmentally indifferent	 RES share not significant strongest dislike for charging at work Technology not significant 	291
5	Techies	 Strongest preference for inductive charging RES share not significant Weak preference for lower costs Waiting time not significant Location not significant 	693
6	Ecological	 Strongest preference for green electricity Waiting time not significant Location not significant Technology not significant 	246

4. Latent Class Model Estimation Results 2/3

12

	MNL	Latent Class Model						
Parameters		Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	
Costs: 50 €	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Costs: 100 €	-0.61***	-0.77***	-2.32***	-0.76***	-0.61***	0.04	-0.45***	
Costs: 150 €	-1.22***	-1.39***	-4.39***	-1.60***	-1.19***	-0.11**	-0.82***	
Costs: 200 €	-1.91***	-2.19***	-7.01***	-2.47***	-2.07***	-0.20***	-1.46***	
Place: at home	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Place: roadside (primary)	-0.65***	-2.41***	-0.65***	-0.47***	-1.29***	-0.07	-0.48	
Place: roadside (secondary)	-0.52***	-1.80***	-0.45***	-0.32*	-1.12***	-0.01	-0.40	
Place: at work	-0.35***	-0.58***	-0.26	-0.23	-2.60***	-0.02	-0.16	
Duration: 10 min	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Duration: 30 min	-0.10***	-0.15**	-0.08	-0.52***	0.15	-0.11**	0.00	
Duration: 4 h	-0.55***	-0.80***	-0.71***	-2.24***	-0.43***	-0.10**	-0.35**	
Duration: 8 h	-0.96***	-1.32***	-1.30***	-3.87***	-0.72***	-0.20***	-0.81***	

Preferences For Electric Mobility Charging | Hendrik Schmitz, Reinhard Madlener FCN | 05/30/2019

4. Latent Class Model Estimation Results 3/3

	MNL	Latent Class Model						
Parameters	-	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	
Tech: tethered	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Tech: inductive	0.11***	0.14***	0.07*	0.22***	-0.13	0.23***	0.09	
Wait: 0 min	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Wait: 5 min	0.01	0.02	-0.05	-0.12	-0.12	0.08	-0.15	
Wait: 10 min	-0.03	-0.13	-0.20	-0.22	-0.29	0.12	-0.20	
Wait: 30 min	-0.25***	-0.68***	-0.47***	-0.73***	-0.63**	0.05	-0.27	
Green: 25%	(base)	(base)	(base)	(base)	(base)	(base)	(base)	
Green: 50%	0.19***	0.33***	0.32***	0.27***	0.04	-0.00	1.84***	
Green: 75%	0.29***	0.39***	0.41***	0.45***	0.06	0.01	3.16***	
Green: 100%	0.42***	0.49***	0.61***	0.47***	0.08	0.09	4.63***	
Class Probability	-	0.198	0.312	0.189	0.071	0.169	0.060	

<u>* p <0.1, ** p <0.05, *** p < 0.01</u>

13 Preferences For Electric Mobility Charging | Hendrik Schmitz, Reinhard Madlener FCN | 05/30/2019

For a reduction in charging duration from 8 hours to 4 hours, people are willing to pay... (in €/month)

	Previous model	Latent Class Model							
Group	-	Class 1 Homebodies	Class 2 Economical	Class 3 Impatient	Class 4 Environ. Indiff.	Class 5 Techies	Class 6 Ecological		
No. of people	4,097	812	1,280	775	291	693	246		
WTP in €/month	33.56	33.07	12.72	106.69	23.72	90.31	51.61		

For an increase of green electricity used for charging from 25% to 100%, people are willing to pay... (in €/month)

	Previous model	Latent Class Model							
Group	-	Class 1 Homebodies	Class 2 Economical	Class 3 Impatient	Class 4 Environ. Indiff.	Class 5 Techies	Class 6 Ecological		
WTP in €/month	34.40	31.73	13.05	30.67	-	-	517.04		

Symbol: "-" Not statistically significant

14

→Significant differences in preferences between classes: Class economical has lowest WTP, impatient the highest WTP for faster charging.

5. Conclusions and Future Research

Preferences For Electric Mobility Charging | Hendrik Schmitz, Reinhard Madlener FCN | 05/30/2019

5. Conclusions and Future Research

5. Conclusions and Future Research

Contact

E.ON Energy Research Center Institute for Future Energy Consumer Needs and Behavior (FCN) Mathieustraße 10 52074 Aachen Germany Stefanie Wolff, M.Sc. SWolff@eonerc.rwth-aachen.de

Hendrik Schmitz, M.Sc. RMadlener@eonerc.rwth-aachen HSchmitz@eonerc.rwth-aachen.de www.fcn.eonerc.rwth-aachen.de

Prof. Dr. Reinhard Madlener T +49 241 80 49820 F +49 241 80 49829 RMadlener@eonerc.rwth-aachen.de www.fcn.eonerc.rwth-aachen.de

References / Related Literature

- Hackbarth, André; Madlener, Reinhard (2013): Consumer preferences for alternative fuel vehicles. A discrete choice analysis. In: *Transportation Research Part D: Transport and Environment* 25, pp. 5–17.
- Hackbarth, André; Madlener, Reinhard (2016): Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany. In: *Transportation Research Part A: Policy and Practice* 85, pp. 89–111.
- Hidrue, Michael K.; Parsons, George R.; Kempton, Willett; Gardner, Meryl P. (2011): Willingness to pay for electric vehicles and their attributes. In: *Resource and Energy Economics* 33 (3), pp. 686–705.
- Ito, Nobuyuki; Takeuchi, Kenji; Managi, Shunsuke (2013): Willingness-to-pay for infrastructure investments for alternative fuel vehicles. In: *Transportation Research Part D: Transport and Environment* 18, pp. 1–8.
- Tanaka, Makoto; Ida, Takanori; Murakami, Kayo; Friedman, Lee (2014): Consumers? Willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan. In: *Transportation Research Part A: Policy and Practice* 70, pp. 194–209.

