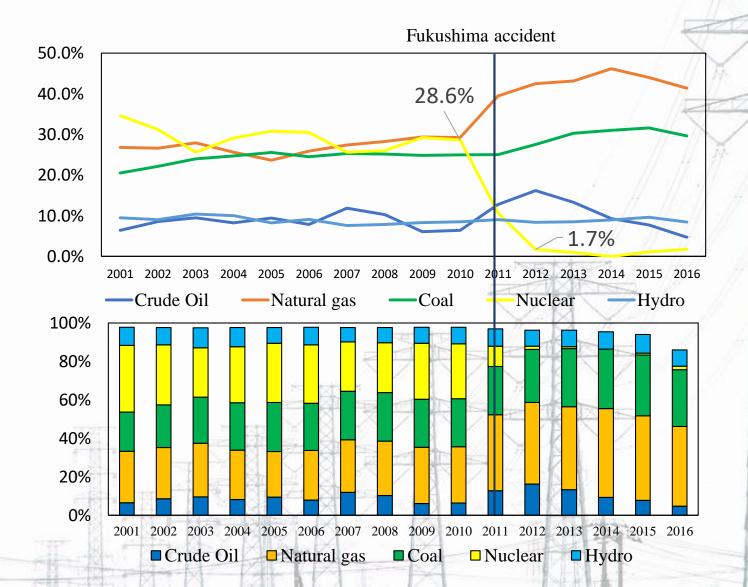


Analyzing the condition of Japanese electricity cost linkages by fossil fuel sources after the Fukushima disaster

Kentaka Aruga Graduate School of Humanities and Social Sciences Saitama University e-mail: kentaka.aruga@gmail.com



Contents

Gross power generation mix of Japan

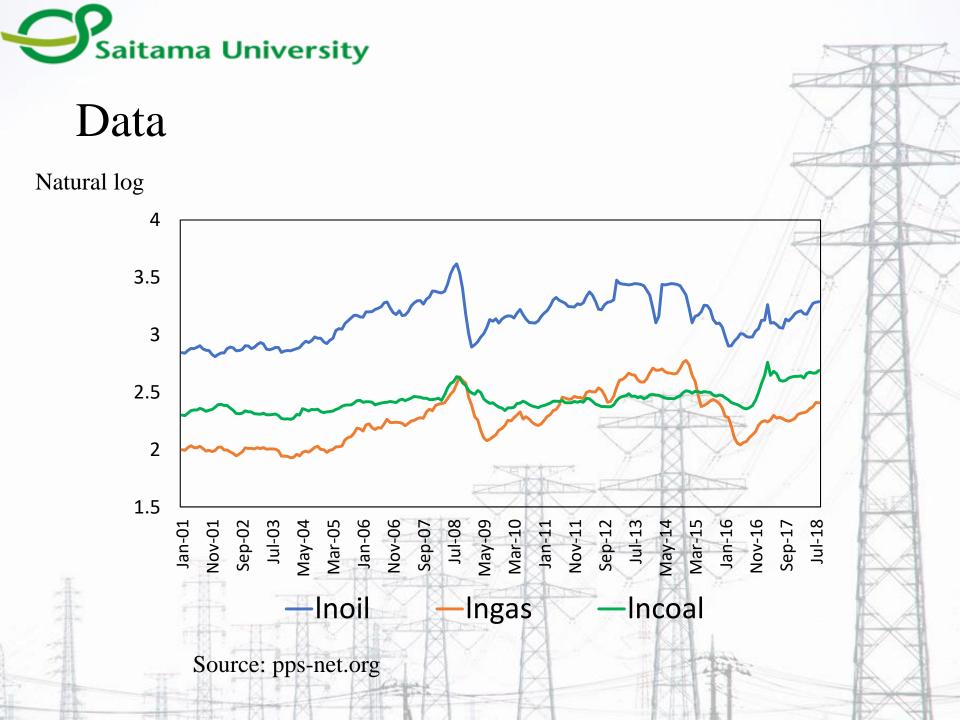
Research questions

To investigate the followings before and after the Fukushima accident.

- 1. The dynamics of the cost spreads among the three major fossil fuels (crude oil, natural gas, and coal).
- 2. The cointegration relationship (i.e., a systematic co-movement) between the costs of electricity generation from crude oil, natural gas, and coal.

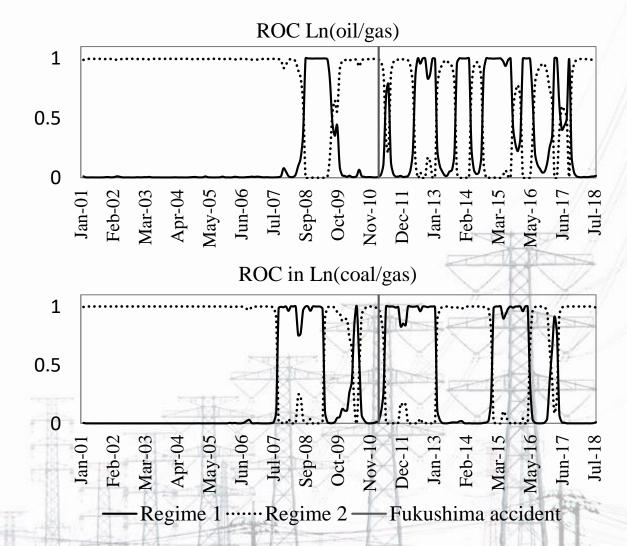
Relevant studies

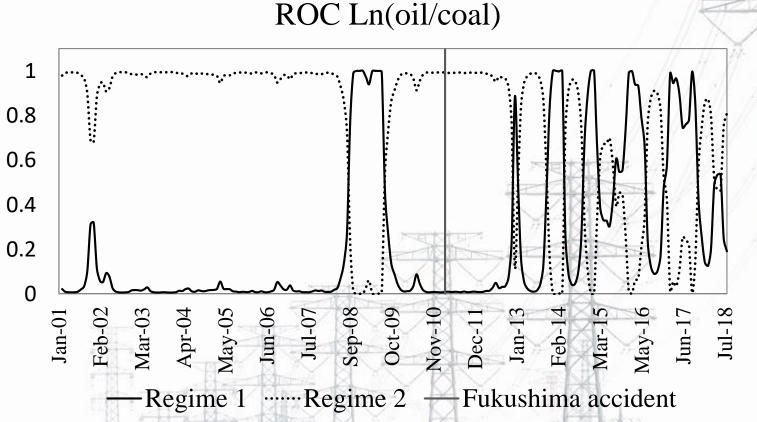
- Studies on changes in energy mix after the accident
 - Hayashi and Hughes (2013)
 - The Japanese government will increase the use of fossil fuels for electricity after the accident
 - Vivoda (2012)
 - In the short to medium term, the shares of imported oil, coal, and liquefied natural gas (LNG) would expand to compensate for the reduction in nuclear power generation.
- Studies on market integration among fossil fuels
 - Batten et al. (2017)
 - Brigida (2014)
 - Bachmeier and Griffin (2006)


Methods

Dynamics of the cost spreads

Markov regime switching model


Cointegration relationship



Markov switching smoothed regime probabilities (oil-gas and coal-gas cost spreads)

Markov switching smoothed regime probabilities (oil-coal cost spread)

Regime classification and its expected duration

		ROC Ln(oil/gas)		ROC Ln(oil/coal)			ROC Ln(coal/gas)		
Regime	Start	End	Expected duration	Start	End	Expected duration	Start	End	Expected duration
Regime 1	Sep-08	Aug-09	6.57	Sep-08	Aug-09	6.01	Oct-07	May-09	9.99
	Jun-11	Aug-11		Jan-13	Feb-13	;	May-10	Aug-10	
	Jun-12	Mar-13		Dec-13	May-14	Ļ	Jun-11	Mar-13	A the N
	Nov-13	May-14		Nov-14	Apr-15	i	Feb-15	May-16	
	Oct-14	Oct-15		Sep-15	Jul-16	j	Feb-17	May-17	
	Feb-16	Jul-16		Jan-17	Nov-17	,			H I X
	Mar-17	Jun-17		May-18	Jul-18		etxter	4 // ·	17 A.C.
	Sep-17	Oct-17				F	TAN	542	
Regime 2	Feb-01	Sep-08	19.20	Feb-01	Sep-08	19.92	Feb-01	Oct-07	26.13
	Aug-09	Jun-11		Aug-09	Jan-13		May-09	May-10	
	Aug-11	Jun-12		Feb-13	Dec-13		Aug-10	Jun-11	ALL ALL
	Mar-13	Nov-13		May-14	Nov-14	g X X	Mar-13	Feb-15	
	May-14	Oct-14	5	Apr-15	Sep-15		May-16	Feb-17	A N
	Oct-15	Feb-16		Jul-16	Jan-17		May-17	na	
	Jul-16	Mar-17	THE A	Nov-17	May-18	X Creek /			K
	Jun-17	Sep-17	A REAL	Jul-18	na	$\mathbf{X} \times \mathbf{X}$	X		(A)
	Oct-17	na	the first state	XX	6	X			

Note: Start represents the date when regime probabilities start to exceed 0.5 and end is the date when probabilities turn below

Implications from the MRSM

Switching from one regime to another

Become more frequent after the Fukushima accident

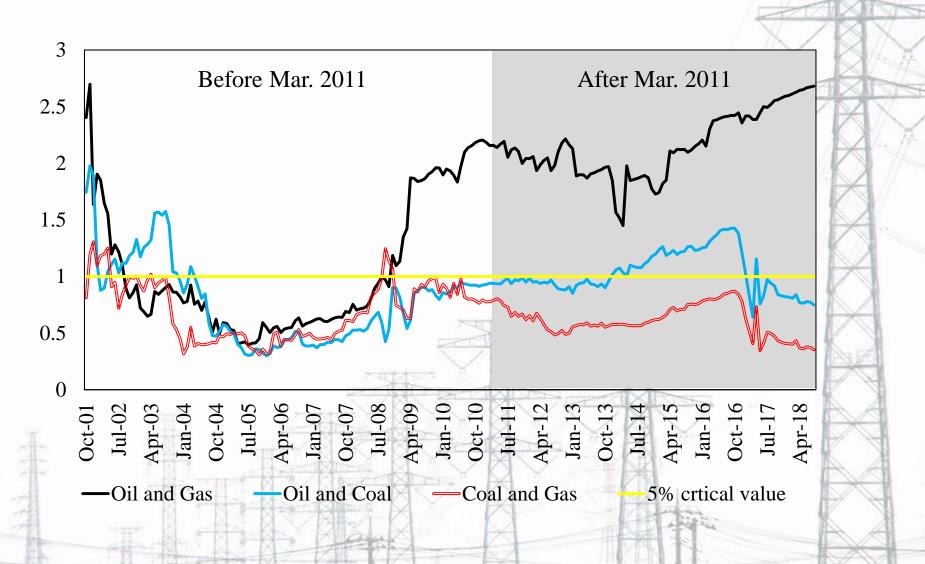
Time of the switching for oilgas and coal-gas cost ratios The timing of the switching was consistent with the accident

Stationarity tests

Before the accident (2001:1-2011:2)

	Level					First differences			
	ADF	PP	KPSS	IO	ADF	РР	KPSS	IO	
Crude oil	-2.486	-2.325	0.181 **	-2.366	-6.199 ***	-4.318 ***	0.042	-6.374 ***	
Natural gas	-2.558	-2.348	0.122 *	-1.489	-4.826 ***	-7.294 ***	0.052	-7.519 ***	
Coal	-2.327	-2.084	0.131 *	-1.190	-7.486 ***	-7.486 ***	0.054	-8.198 ***	
After the acc	cident (2011:3-2	2018:8)				SHE			
		First differences							
	ADF	РР	KPSS	IO	ADF	PP	KPSS	IO	
Crude oil	-2.702	-2.352	0.144 *	-3.846	-7.668 ***	-7.031 ***	0.080	-7.010 ***	
Natural gas	-2.382	-2.050	0.181 **	-3.762	-4.770 ***	-4.871 ***	0.134 *	-4.862 ***	
Coal	-3.300 *	-2.319	0.137 *	-1.614	-5.131 ***	-8.199 ***	0.039	-9.551 ***	
			A A A A A A A A A A A A A A A A A A A	NI- Personal Annual		W	100		

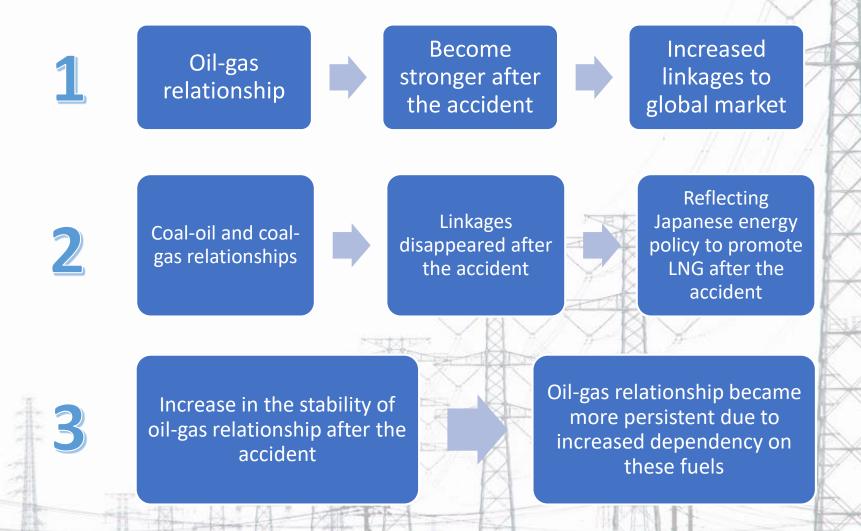
ADF, PP, and KPSS unit root tests include both constant and trend, and IO unit root test only includes a constant. ***, **, and * denotes significance at 1%, 5%, and 10% respectively.


Johansen tests

Before the accident (2001:1-2011:2)

Variables	H ₀ : rank=r	Trace test	Max test	Lag length	1 And					
Oil and Gas	r=0	19.555 *	15.866 *	4						
	r<=1	3.689	3.689	4						
Oil and Coal	r=0	21.961 **	17.015 **		Cointegrated					
	r<=1	4.946	4.946		Cointegrated					
Coal and Gas	r=0	20.378 **	16.728 **	2	## X					
Coal and Gas	r<=1	3.650	3.650							
After the accident	After the accident (2011:3-2018:8)									
Variables	H_0 : rank=r	Trace test	Max test	Lag length						
	H ₀ : rank=r r=0	Trace test 30.960 ***	Max test 28.582 ***		Cointegrated					
Variables Oil and Gas					Cointegrated					
Oil and Gas	r=0	30.960 ***	28.582 ***		Cointegrated					
	r=0 r<=1	30.960 *** 2.378	28.582 *** 2.378		Cointegrated					
Oil and Gas Oil and Coal	r=0 r<=1 r=0	30.960 *** 2.378 7.962	28.582 *** 2.378 6.070		- KA					
Oil and Gas	r=0 r<=1 r=0 r<=1	30.960 *** 2.378 7.962 1.892	28.582 *** 2.378 6.070 1.892		Not					
Oil and Gas Oil and Coal	r=0 r<=1 r=0 r<=1 r=0	30.960 *** 2.378 7.962 1.892 8.130	28.582 *** 2.378 6.070 1.892 7.257		Not					

Recursive trace test


Bierens-Martins tests

Before the accident (2001:1-2011:2)

Variables	Cheby shev Time Poly nomials	Τe	est statistic	P-value	
	m=1		7.93 **	0.019	
Oil and Gas	m=2		24.53 ***	0.000	Time variant
	m=4		37.81 ***	0.000	cointegration
	m=1		12.49 ***	0.002	relationships
Oil and Coal	m=2		25.96 ***	0.000	relationships
	m=4		32.08 ***	0.000	
	m=1		3.10	0.212	
Coal and Gas	m=2 m=4		5.68	0.224	
			14.12 **	0.028	
After the accident	t (2011:3-2018:8)	a V			Time invarian
Variables	Cheby shev Time Poly nomials	Te	est statistic	P-value	cointegration relationships
	m=1	C Rent	1.47	0.481	
Oil and Gas	m=2		13.54 ***	0.009	
	m=4	Q10	13.57 **	0.035	
Null hypothe	sis: Time invariant co	ointegr	ation	- ALTING	
			K)	THAT NE	

Implications from the cointegration tests

Conclusions

After the Fukushima accident

- 1. The dynamics of the fossil fuel cost relationships seemed to have changed.
 - Suggests that a flexible energy policy is more effective than fixed one.
- 2. Cost relationship between oil and gas became stronger while those between coal-oil and coal-gas linkages dissipated.
 - This implies that the Japanese electricity became more reliant on oil and gas after the accident.

Thank you for your attention!

kentaka.aruga@gmail.com