

Massachusetts Institute of Technology

Economic and Social Effects of Residential Electricity Tariff Design

Scott Burger, Christopher Knittel, Ignacio Pérez-Arriaga, Ian Schneider, Frederik vom Scheidt

Electricity tariffs, customer behavior and systemwide costs are strongly connected

Prices influence how we consume electricity

- Meta analysis of time-varying tariffs [Faruqui et al. 2017]
 - 337 treatments
 - 63 tariff pilots
 - nine countries
- Over 94% of treatments finding non-zero customer response
- "Price-based demand response is real and predictable"

Consumption behavior determines system costs

Consumption behavior determines system costs

Capacity [GW]

One key objective of tariffs design is to minimize overall system costs

But current tariff designs have inefficiencies that increase system costs

Three obvious inefficiencies with current rate design:

- Fixed costs recovered volumetrically
- Not time-based
- Not location-based

Dynamic inefficiencies are exacerbated by the growth of DERs

With inefficient tariffs, DER growth can raise or shift system costs

Inefficient tariffs have distributional impacts

Distributional Effects of Solar Adoption with Volumetric Tariffs

Can some tariff designs help improve welfare?

Can some tariff designs help improve welfare?

- Economic theory says yes. Many proposed improvements in existing literature.
- We test a few of these using hourly customer data.
- Then, we examine impacts on low-income customers and propose simple measures to mitigate impacts on low-income customers.

To evaluate alternative tariffs we use metering data from Chicago, USA

100.170 anonymized households

Consumption January-December 2016

30-minute smart meter readings

Heating type

Datenquelle: Commonwealth Edison, Citizens Utility Board Illinois

We create and evaluate five innovative tariffs designs

We compute tariff effects on customer expenditures and welfare for three scenarios

- Elasticities
 - 1. $\varepsilon = 0$
 - 2. $\varepsilon = -0,1$
 - 3. $\varepsilon = -0,3$

Formula

$$d_{i,h}^{new} = d_{i,h}^{old} * \left(\frac{p_h^{new}}{p_h^{old}}\right)^{\varepsilon}$$

- Rebalancing
- → Adjustment of fixed charges to ensure full cost recovery for nonenergy costs

Table 4: Aggregate change in consumer surplus by tariff

Elasticity Case	Flat-NCDC	CPP-10	RTP-Volumetric	RTP-CCC
$\epsilon = -0.1$	\$983,429	\$445,683	\$125,181	\$10,036,693
$\epsilon = -0.3$	$$3,\!130,\!361$	$$1,\!478,\!859$	\$390,054	\$29,237,459

\$100-300 / household / year

Yet: minimizing overall system costs is not the only objective

Minimizing overall system costs in not the only objective

EU regulators: strong concerns regarding unknown distributional effects of new tariffs [ACER 2016]

USA regulators: rejection of >80% of requests to increase fixed charges, frequently stating potential effects on low-income customers [Trabish 2018], [Proudlove et al. 2018]

 \rightarrow Importance of assessing socioeconomic effects of new tariffs

ACER Agency for the Cooperation of Energy Regulators, 2016. ACER Market Monitoring Report 2015 - Key Insights and Recommendations. Luxemburg.

Trabish, H. (2018): \Are regulators starting to rethink fixed charges?" https://www.utilitydive.com/news/are-regulators-starting-to-rethink-fixed-charges/530417/, accessed: 2018-10-22.

Proudlove, A., B. Lips, and D. Sarkisian (2018): \50 States of Solar: Q2 2018 Quarterly Report, "Report, NC Clean Energy Technology Center.

Current tariffs in many U.S. locations help keep rates low for low-income customers

Figure 1: Annual electricity expenditures under the Flat (default) ComEd tariff

Matching consumption data with census data enables broad socioeconomic analyses

Socioeconomic data

Geographic data: Census Block Group (CBG)

Distribution of household income in each Census Block Group

- Nine discrete income classes
- Assumption: same income probability distribution for all households
- Bootstrapping to determine confidence intervals of results

Effects of tariffs on electricity bills of low-income households (scenario: $\varepsilon = 0$)

Tariff --- CPP-10 --- Flat-NCDC --- RTP-CCC --- RTP-Volumetric

Proposals for mitigating bill impacts: Progressive Fixed Charges

- Objective: Maintain overall system savings while avoiding undesired social effects
- Idea: Differentiating fixed charges according to certain customer criteria
- Two proposals for discriminating variables:
 - 1. Customer demand characteristics
 - 2. Customer income

Progressive fixed charges based on customer demand characteristics

	Average	Annual	Peak-To-	May	June	July	August	Consumption:	Consumption:	Consumption:
Income (\$1,000 USD)	Monthly	Peak	Off-Peak	Peak	Peak	Peak	Peak	5:30PM-	6:00PM-	6:30PM-
	Consumption	Demand	Ratio	Demand	Demand	Demand	Demand	6:00PM	6:30PM	7:00PM
<\$15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
\$15 - \$25	1.07	1.03	0.95	1.05	1.06	1.05	1.05	1.08	1.08	1.08
\$25 - \$35	1.10	1.06	0.95	1.09	1.09	1.09	1.09	1.12	1.12	1.11
\$35 - \$50	1.12	1.09	0.95	1.12	1.13	1.13	1.12	1.15	1.15	1.15
\$50 - \$75	1.14	1.13	0.97	1.17	1.17	1.17	1.16	1.18	1.18	1.18
\$75 - \$100	1.18	1.17	0.97	1.22	1.22	1.22	1.21	1.23	1.23	1.23
\$100 - \$125	1.20	1.19	0.97	1.25	1.26	1.25	1.25	1.26	1.26	1.26
\$125 - \$150	1.21	1.21	0.98	1.27	1.28	1.27	1.27	1.28	1.28	1.27
>\$150	1.25	1.29	1.02	1.36	1.35	1.34	1.33	1.32	1.33	1.32

 Table 5: Average Profile Variables by Income

Table 9: Average Profile Variables by Income

	Average	Annual	Peak-To-	May	June	July	August	Consumption:	Consumption:	Consumption:
Income (\$1,000 USD)	Monthly	Peak	Off-Peak	Peak	Peak	Peak	Peak	5:30PM-	6:00PM-	6:30PM-
	Consumption	Demand	Ratio	Demand	Demand	Demand	Demand	6:00PM	6:30PM	7:00PM
<\$15	464.53	3.98	15.01	2.81	3.13	3.25	3.24	141.83	144.77	146.26
\$15 - \$25	496.02	4.11	14.31	2.94	3.30	3.42	3.40	153.56	156.47	157.87
\$25 - \$35	509.26	4.23	14.22	3.04	3.42	3.53	3.52	158.59	161.60	163.04
\$35 - \$50	521.05	4.33	14.22	3.13	3.54	3.65	3.63	163.53	166.58	167.96
\$50 - \$75	530.48	4.49	14.49	3.27	3.67	3.79	3.76	167.72	170.97	172.34
\$75 - \$100	546.66	4.63	14.51	3.41	3.83	3.94	3.92	174.55	177.91	179.21
\$100 - \$125	556.69	4.74	14.56	3.52	3.94	4.06	4.03	179.03	182.63	183.94
\$125 - \$150	561.76	4.82	14.73	3.58	4.01	4.12	4.10	181.42	185.09	186.39
>\$150	578.45	5.14	15.34	3.82	4.23	4.35	4.32	187.63	192.09	193.67

Progressive fixed charges based on customer demand characteristics

Feasible with existing and available data

Risk of Type 1 and Type 2 errors

Inefficient incentives when changed frequently

Tariff colored RTP-CCC colored RTP-CCC-APD

Progressive fixed charges based on customer income

No Type 1 and Type 2 errors

Granular control over distributional effects

Additional sensitive customer data required

Limitations

- Consumption data
 - Cleaned according to "15/15 rule" before publishing
 - Not per se representative for US (or European) population
- Variable "household income" ignores number of residents in a household
- Assumptions for demand sensitivity:
 - All customer groups have the same elasticity
 - Customers react only to \$/kWh-prices
 - Cross-price elasticity is zero

Conclusion

- 1. Any transition to new tariffs creates winners and losers.
- 2. Moving volumetric components towards more time-varying prices benefits low-income customers (on average).
- 3. Transitioning to higher fixed charges causes higher average expenditures for low-income customers on average.
- 4. Differentiating fixed charges according to customer criteria can mitigate some or all of the undesirable distributional impacts while maintaining the desired economic efficiency benefits.

Massachusetts Institute of Technology

Thank you for your attention

Scott Burger, Christopher Knittel, Ignacio Pérez-Arriaga, Ian Schneider, Frederik vom Scheidt

