

Stochastic optimization under price uncertainty in auction-based electricity markets – A Case study

Christian Furtwängler Andreas Dietrich, Christoph Weber, 42nd IAEE International Conference Montreal, May 30, 2019

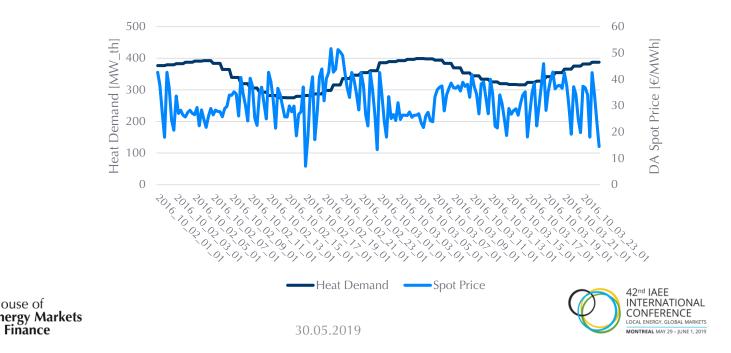
Offen im Denken

partly funded by:

Bundesministerium für Wirtschaft und Technologie

Electricity prices and heat delivery present challenges for portfolio/asset management

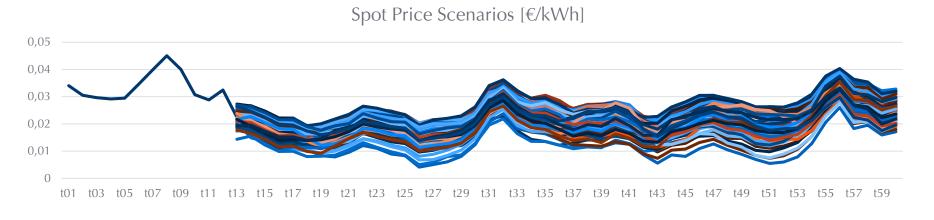
Motivation


- Portfolio owners in electricity markets often struggle to stay competitive
- On an everyday basis, this is even more evident for cogeneration units
 - Non-deferrable heat demands may induce inflexibilities in electricity generation from CHP or Power-to-Heat conversion technologies

UNIVERSITÄT

ISBURG

Offen im Denken


 \rightarrow Heat and electricity storages are useful means to decouple supply and demand

Electricity price uncertainty – opportunity and threat for flexible portfolios

Motivation

- Optimal marketing of flexible portfolios needs to account for price uncertainty
- However, many small portfolio owners like municipalities often lack resources for elaborate market analysis
- → Wanted: elaborate but easily replicable method to capture price uncertainty
- → Stochastic optimization?

UNIVERSITÄT D_U I S_B_U R G E S S E N Offen im Denken

Stochastic optimization under price uncertainty in auction-based electricity markets

Motivation	1
Stochastic Optimization and its Merits	2
Specifics of the Used Model	3
Modelled Portfolio and Sensitivities	4
Results	5
Conclusion	6

About stochastic optimization

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Stochastic Optimization and its Merits

- Key characteristics of stochastic optimization/programming:
 - Framework for modelling optimization problems under uncertainty
 - Taking into account **probability distributions** of random variables
 - Enabling decision-making
 - on two- or even multi-stage decision problems
- New here:
 - Consideration of bidding into two subsequent spot markets (EEX: day-ahead and intraday)
 - Only few works have considered simultaneous optimization of heat and electricity storage units

Methodology: Uncertainty/Optimization Modelling

Offen im Denken

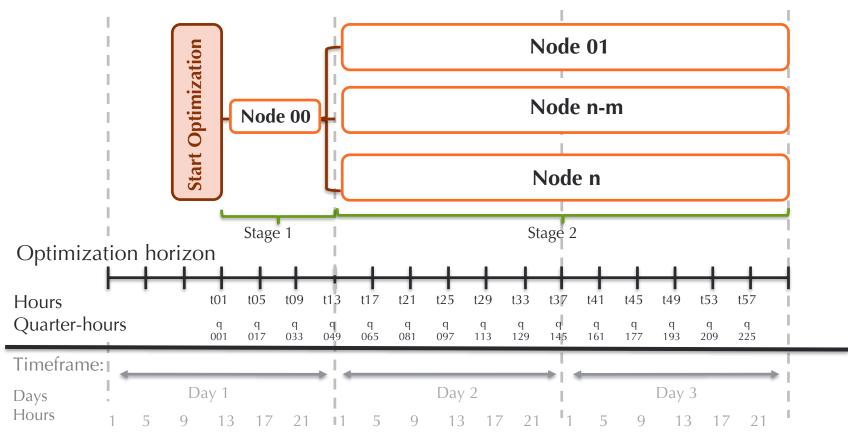
- Portfolio optimization model:
 - Adjusted unit commitment and bidding model implemented in GAMS, based on dissertation thesis by Kempgens (2018)
 - Optimization of submitted piece-wise linear bidding functions to the market (EEX)
- Spot price uncertainties of quarter-hourly products are modelled with the approach of Pape, Vogler, Woll, Weber (2017)
 - OLS regression, PCA, ARMA(1,1)-GARCH, 173 days rolling window approach
 - Use of Monte Carlo Simulation to generate 1000 independent price paths
- Scenario Reduction by application of k-means algorithm (k: no. of clusters)
 - k=1: point forecast for deterministic optimization, choice of k=15 and k=60 for stochastic optimization
 - Hourly price is assumed to be the mean of quarter-hourly prices
- Heat demand for the next 60 hours is not modelled as uncertainty

Stochastic Program (I) - Overview

UNIVERSITÄT DUISBURG ESSEN

Specifics of the Used Model

- For optimizationPeriod 1 to 365
 - Assign Parameters (Fuel costs, deterministic prices, price simulations, heat demand)
 - 1st Optimization: Day-Ahead Auction
 - Fixation of DA marketing results
 - 2nd Optimization: Intraday Opening Auction
 - Fixation of ID marketing results
 - 3rd Optimization: Dispatch
 - Fixation of generation for part of marketed hours, and quarter-hours (12 am- 12 am)
 - Calculate profit (quarter-hourly resolution) for this period
 - Rolling forward of horizon by 24 hours
- Calculate sum of profits

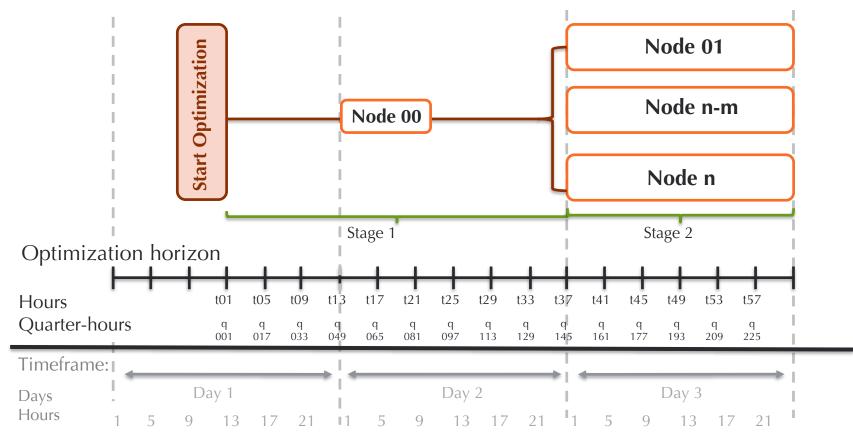

Stochastic Program (II) – Day-Ahead and Intraday-Auctions

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Specifics of the Used Model

Rolling horizon approach:


Stochastic Program (III) – Dispatch Optimization

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Specifics of the Used Model

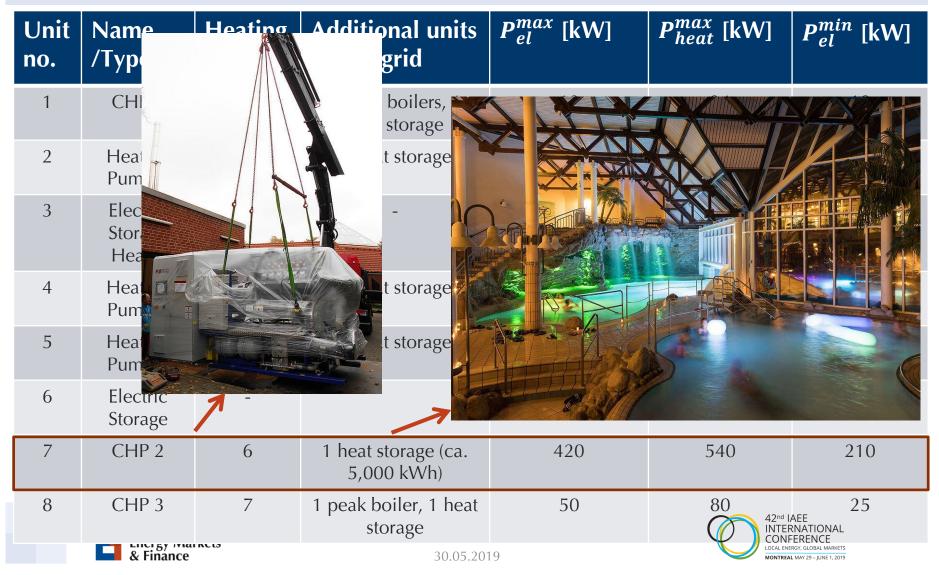
Rolling horizon approach:

Assets in the portfolio

Modelled Portfolio and Sensitivities

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

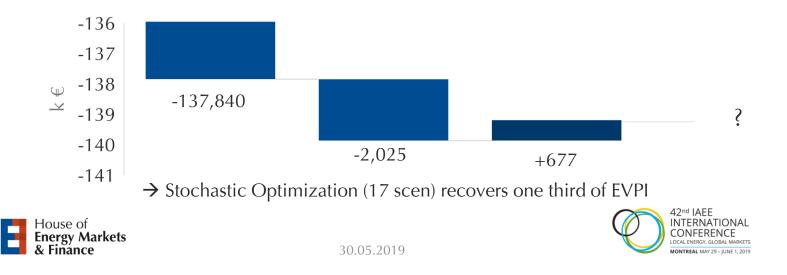

Unit no.	Name /Type	Heating grid	Additional units in this grid	P_{el}^{max} [kW]	P ^{max} _{heat} [kW]	P ^{min} _{el} [kW]
1	CHP 1	1	2 peak boilers, 1 heat storage	19	34	10
2	Heating Pump 1	2	1 heat storage	3.02	16.157	-
3	Electric Storage Heater	3	-	12	12	-
4	Heating Pump 2	4	1 heat storage	5	15	-
5	Heating Pump 3	5	1 heat storage	4.4	23.54	-
6	Electric Storage	-		50	-	-
7	CHP 2	6	1 heat storage (ca. 5,000 kWh)	420	540	210
8	CHP 3	7	1 peak boiler, 1 heat storage	50		25 NATIONAL ERENCE
	& Finance	INCIS	30.05.20	19	LOCAL ENE	RGY, GLOBAL MARKETS MAY 29 – JUNE 1, 2019

Assets in the portfolio

UNIVERSITÄT

Offen im Denken

Modelled Portfolio and Sensitivities


First results, inc. battery storage of 50 kW

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Results

	WS	EEV	17scen	62scen
Objective (€/year)	-137,840 €	-139,868 €	-139,187€	n.a.
EVPI	2,025€	(1.5%)		
VSS			677 € (0.5%)	n.a.
Computation Time per opt. (gap = 0.1%)	<1min	<1min	0:02:46	2:15:39

Further (indicative) results of our sensitivity analyses

Offen im Denken

UNIVERSITÄT

Results

- The Expected Value of Perfect Information (EVPI)
 - Increases, when flexibility is added to the system
 - Increases, when fuel costs and electricity revenues have similar magnitudes
 - Decreases, when heat demand is dominating dispatch decisions
- The Value of Stochastic Solution (VSS)
 - Increases with a rising number of scenarios (but converges quickly)
 - Is depending on EVPI levels
 - No EVPI → no VSS
 - However, a rise in EVPI levels does not have to translate to a higher VSS!
- Computation times are exploding quickly, especially when there are multiple district heating grids

- Stochastic optimization is a functional tool that may assist and improve the decision-making process when managing flexible assets
- However, in the given setup, there seems to be a limited additional value of stochastic optimization, possible reasons:
 - Only one stochastic variable modelled
 - Restrictiveness of heat demand is high in the given setting
 - → Optimal dispatch strategies do not differ very much between deterministic and stochastic optimization
- After surpassing a certain number of scenarios, additional value and optimization times are resulting in a non-reasonable cost/benefit ratio
 - Optimization times not appropriate for related marketing decisions

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Thank you very much for your attention!

Christian Furtwängler, M.Sc.

Chair for Management Science and Energy Economics Weststadttürme, Berliner Platz 6-8, D-45127 Essen

Mail: <u>christian.furtwaengler@uni-due.de</u> Tel: +49 201/183-6458

