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Motivation

▪ Portfolio owners in electricity markets often struggle to stay competitive

▪ On an everyday basis, this is even more evident for cogeneration units

− Non-deferrable heat demands may induce inflexibilities in electricity generation from 
CHP or Power-to-Heat conversion technologies

→ Heat and electricity storages are useful means to decouple supply and demand

Electricity prices and heat delivery present 
challenges for portfolio/asset management
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Motivation

▪ Optimal marketing of flexible portfolios needs to account for price uncertainty

▪ However, many small portfolio owners like municipalities often lack resources 
for elaborate market analysis

→Wanted: elaborate but easily replicable method to capture price uncertainty

→ Stochastic optimization?

Electricity price uncertainty – opportunity 
and threat for flexible portfolios
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Stochastic Optimization and its Merits

▪ Key characteristics of stochastic optimization/programming:

− Framework for modelling optimization problems under uncertainty

− Taking into account probability distributions of random variables

− Enabling decision-making

− on two- or even multi-stage decision problems

▪ New here: 

− Consideration of bidding into two subsequent spot markets 
(EEX: day-ahead and intraday)

− Only few works have considered simultaneous optimization of heat and electricity 
storage units

About stochastic optimization
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Specifics of the Used Model

▪ Portfolio optimization model:

− Adjusted unit commitment and bidding model implemented in GAMS, based on 
dissertation thesis by Kempgens (2018)

− Optimization of submitted piece-wise linear bidding functions to the market (EEX)

▪ Spot price uncertainties of quarter-hourly products are modelled with the 
approach of Pape, Vogler, Woll, Weber (2017)

− OLS regression, PCA, ARMA(1,1)-GARCH, 173 days rolling window approach

− Use of Monte Carlo Simulation to generate 1000 independent price paths

▪ Scenario Reduction by application of k-means algorithm (k: no. of clusters)

− k=1: point forecast for deterministic optimization, choice of k=15 and k=60 for 
stochastic optimization

− Hourly price is assumed to be the mean of quarter-hourly prices

▪ Heat demand for the next 60 hours is not modelled as uncertainty

Methodology: Uncertainty/Optimization 
Modelling
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Specifics of the Used Model

▪ For optimizationPeriod 1 to 365 

− Assign Parameters (Fuel costs, deterministic prices, price simulations, heat 
demand)

− 1st Optimization: Day-Ahead Auction

− Fixation of DA marketing results

− 2nd Optimization: Intraday Opening Auction

− Fixation of ID marketing results

− 3rd Optimization: Dispatch

− Fixation of generation for part of marketed hours, and quarter-hours (12 am- 12 am)

− Calculate profit (quarter-hourly resolution) for this period

− Rolling forward of horizon by 24 hours

▪ Calculate sum of profits

Stochastic Program (I) - Overview
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Specifics of the Used Model

▪ Rolling horizon approach:

Stochastic Program (II) – Day-Ahead and 
Intraday-Auctions
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Specifics of the Used Model

▪ Rolling horizon approach:

Stochastic Program (III) – Dispatch 
Optimization

30.05.2019

Optimization horizon

Node 01

Node n-m

Node n

Node 00

St
ar

t 
O

p
ti

m
iz

at
io

n

Stage 1 Stage 2

Hours
Quarter-hours

Timeframe:

Days
Hours

Day 1 Day 2 Day 3

1 5 9 13 17 21 1 5 9 13 17 211 5 9 13 17 21

t01 t05 t09 t13 t17 t21 t25 t29 t33 t37 t41 t45 t49 t53 t57

q 
001

q 
017

q 
033

q 
049

q 
065

q 
081

q 
097

q 
113

q 
129

q 
145

q 
161

q 
177

q 
193

q 
209

q 
225



Modelled Portfolio and Sensitivities

Assets in the portfolio
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Unit 
no.

Name 
/Type

Heating
grid

Additional units
in this grid

𝑷𝒆𝒍
𝒎𝒂𝒙 [kW] 𝑷𝒉𝒆𝒂𝒕

𝒎𝒂𝒙 [kW] 𝑷𝒆𝒍
𝒎𝒊𝒏 [kW]

1 CHP 1 1 2 peak boilers, 1 
heat storage

19 34 10

2 Heating
Pump 1

2 1 heat storage 3.02 16.157 -

3 Electric
Storage 
Heater

3 - 12 12 -

4 Heating
Pump 2

4 1 heat storage 5 15 -

5 Heating
Pump 3

5 1 heat storage 4.4 23.54 -

6 Electric 
Storage

- 50 - -

7 CHP 2 6 1 heat storage (ca. 
5,000 kWh)

420 540 210

8 CHP 3 7 1 peak boiler, 1 heat
storage

50 80 25



Modelled Portfolio and Sensitivities

Assets in the portfolio
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Results

First results, inc. battery storage of 50 kW
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WS EEV 17scen 62scen

Objective (€/year) -137,840 € -139,868 € -139,187 € n.a.

EVPI 2,025 € (1.5%) -

VSS - - 677 € (0.5%) n.a.

Computation Time 
per opt. (gap = 0.1%)

<1min <1min 0:02:46 2:15:39

?

→ Stochastic Optimization (17 scen) recovers one third of EVPI

-137,840

-2,025 +677



Results

▪ The Expected Value of Perfect Information (EVPI)

− Increases, when flexibility is added to the system

− Increases, when fuel costs and electricity revenues have similar magnitudes 

− Decreases, when heat demand is dominating dispatch decisions

▪ The Value of Stochastic Solution (VSS)

− Increases with a rising number of scenarios (but converges quickly)

− Is depending on EVPI levels

− No EVPI → no VSS

− However, a rise in EVPI levels does not have to translate to a higher VSS!

▪ Computation times are exploding quickly, especially when there are 
multiple district heating grids

Further (indicative) results of our sensitivity 
analyses
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Conclusion

▪ Stochastic optimization is a functional tool that may assist and improve 
the decision-making process when managing flexible assets

▪ However, in the given setup, there seems to be a limited additional 
value of stochastic optimization, possible reasons:

− Only one stochastic variable modelled

− Restrictiveness of heat demand is high in the given setting

→Optimal dispatch strategies do not differ very much between deterministic 
and stochastic optimization

▪ After surpassing a certain number of scenarios, additional value and 
optimization times are resulting in a non-reasonable cost/benefit ratio

− Optimization times not appropriate for related marketing decisions

Lessons learned
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Thank you very much for 
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