

Network Utilities Performance and Institutional Quality: Evidence from the Italian Electricity Sector

Golnoush Soroush^a, Tooraj Jamasb^b, Carlo Cambini^a, Manuel Llorca^b

^a Department of Management, Politecnico di Torino, Italy ^b Durham University Business School, Durham University, UK

42nd IAEE International Conference, Montreal, 2019

OVERVIEW

Background

Methodology

Data

Results

Conclusions

BACKGROUND

Despite almost three decades of electricity sector reforms, the performance of utilities across different regions of countries around the world seems to be diverse and non-homogenous.

Sources:

- Geographical differences;
- Diverse weather conditions;
- Economic development.

However, regional and local institutional settings, in which regulated firms operate, might also influence firms' overall performance.

The Italian electricity sector and institutional context

•ARERA (the Italian Regulatory Authority for Energy, Networks and the Environment) has applied incentive-based mechanisms since 2002 to improve productive efficiency and service quality measures (such as continuity of supply).

In Italy, there is a wide gap between performance of utilities located in northern and southern regions (Cambini et al., 2014; Capece et al., 2013). The sector also suffers from high number of interruptions, in particular in the southern part of the country (ARERA, 2017).

Italy has the largest regional disparity among OECD countries (OECD, 2018).

Historical differences between northern and southern regions raise the question whether the dissimilar levels of economic development and differences in quality of institutions, also affect the performance of electricity distribution utilities.

METHODOLOGY

Identifying determinants of cost inefficiency for electricity distribution utilities;

Stochastic Frontier Analysis (SFA) approach;

A set of cost functions estimated (three models);

Inefficiency determinants are modelled as:

- Regional-level economic factors:
 - Gross Value Added (GVA)
 - Employment rate
- Regional-level institutional quality measures:
 - Government effectiveness
 - Responsiveness towards citizens
 - Control of corruption
 - Rule of law

ESTIMATED MODELS

Three cost functions are estimated: Cobb-Douglas, Translog (ALS), Translog w. Modelled inefficiency term (RSCFG)

The general form of a stochastic cost frontier (ALS - Aigner et al. (1977)) can be presented as:

 $\ln TC_{it} = \ln f(y_{it}, p_{it}, x_{it}, \beta) + v_{it} + u_{it}$

RSCFG - Reifschneider & Stevenson (1991), Caudill & Ford (1993), Caudill et al. (1995)

$$\ln TC_{it} = \ln f(y_{it}, p_{it}, x_{it}, \beta) + v_{it} + \exp(z_{it}^{'}\delta) \cdot u_{it}^{*}$$
Scaling Property

where 'TC' is total utility cost, 'y' is a set of outputs (energy delivered, number of customers, SAIDI), 'p' prices of labour and capital inputs, 'x' are control variables (mountainside, area dummies), ' β ' are parameters to be estimated, ' z'_{it} ' is a set of environmental variables, ' δ ' is a set of parameters to be estimated, and ' u^*_{it} ' is a measure of "raw" inefficiency that does not depend on z'_{it} .

DATA

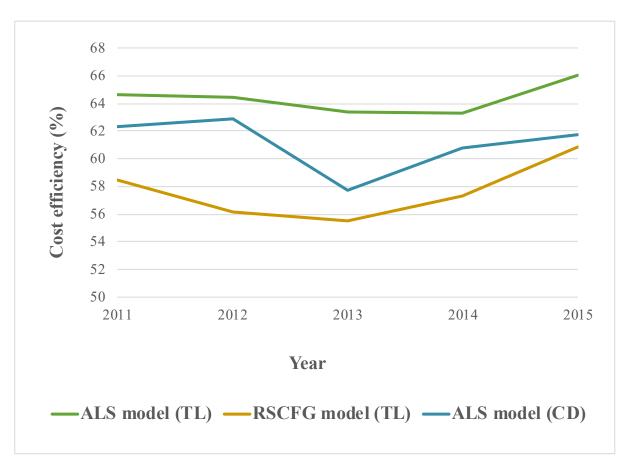
•Unique dataset constructed together with the Italian Authority (ARERA)

- •107 electricity distribution companies (excluding Enel)
- I 5 regions in 3 areas (north, south, center)
- Period of analysis: 2011 to 2015
- Panel dataset, unbalanced, 237 Observations
- Sources:
- Utilities' annual regulatory accounting data reported by the utilities to ARERA;
- ISTAT;
- Nifo and Vecchione (2014) dataset of institutional quality measures of Italian regions (based on World Governance Indicators).

RESULTS/1

Variable	ALS (Cobb-Douglas)			ALS (translog)			RSCFG (translog)		
	Est.		Std. Err.	Est.		Std. Err.	Est.		Std. Err.
Frontier									
Intercept	-1.737	***	0.157	-1.898	***	0.160	-1.971	***	0.078
In ENED	0.439	***	0.067	0.528	***	0.078	0.405	***	0.040
ln CUST	0.352	***	0.073	0.224	***	0.078	0.426	***	0.046
ln SAIDI	-0.040		0.025	-0.049	*	0.027	-0.080	***	0.011
In (KPR/LPR)	0.293	***	0.032	0.412	***	0.031	0.442	***	0.025
$\frac{1}{2}(\ln \text{ENED})^2$				-0.026		0.170	-0.117		0.118
$\frac{1}{2}(\ln \text{CUST})^2$				0.108		0.228	-0.101		0.149
$\frac{1}{2} (\ln \text{SAIDI})^2$				0.012		0.012	0.009		0.015
$\frac{1}{2} \left[\ln (\text{KPR/LPR})^2 \right]$				0.130	***	0.024	0.151	***	0.012
ln ENED \cdot ln CUST				-0.025		0.195	0.118		0.132
ln ENED · ln SAIDI				-0.013		0.048	0.050		0.037
ln ENED · ln (KPR/LPR)				-0.041		0.079	-0.043	**	0.039
ln CUST · ln SAIDI				0.054		0.051	-0.023		0.044
ln CUST · ln (KPR/LPR)				0.034		0.092	0.046	*	0.047
ln SAIDI · ln (KPR/LPR)				0.025		0.025	0.061	***	0.015
Centre	0.462	***	0.105	0.521	***	0.103	0.594	***	0.032
South	0.203		0.205	0.196		0.206	0.550	***	0.035
Mount	0.193	**	0.092	0.293	***	0.091	0.229	***	0.061
Corp	-0.064		0.078	0.024		0.071	-0.067	***	0.026

RESULTS/2



<i>Noise term</i> (σ_v^2)	-2.864	***	0.404	-3.171	***	0.500	-8.929	***	0.505
Inefficiency term (variance)									
Intercept	-0.614	***	0.194	-0.874	***	0.224	24.868	***	5.612
ln GVA							-4.972	*	2.697
Emp_Rate							55.97	***	8.211
Voice							-6.656	***	2.646
RoL							-4.545	**	2.233
Gov_Eff							-5.992	*	3.168
Corru_Ctrl							-17.15	***	4.044
North							-1.321	**	0.572
Т							0.030		0.079
Observations	237			237			237		
Log-likelihood	-163.314		-	-131.116			-94.630		
Chi-squared LR test	64.40 ***		7	72.97 ***			-		
Degrees of freedom	(10)			(8)			-		

RESULTS/3

- A similar pattern but a wide gap in the efficiency scores of ALS and RSCFG.
- •For RSCFG, the preferred model, the average efficiency score is equal to 58%.

CONCLUSIONS

Regional-level macroeconomic factors and quality of regional institutions have significant impact on the cost efficiency of distribution utilities.

- •Utilities located in regions with better institutional endowments show better performance scores.
- If any of the **institutional quality** measures is weakened, how **resources** are allocated and how utilities decide to use their available resources are impacted as well.
- Current regulatory approaches do not take this into account.

To compare performance of utilities on a **fair** basis when applying **benchmarking methods, regional diversity** in terms of institutional quality should be considered as well.

REFERENCES

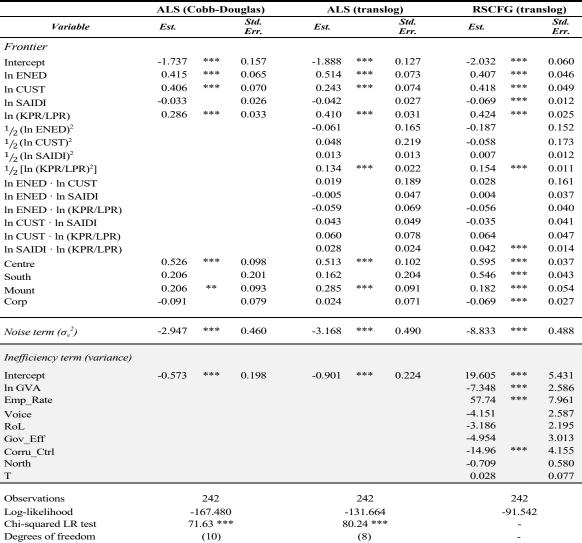
- •Borghi, E., Del Bo, C. and Florio, M. (2016). "Institutions and Firms productivity: Evidence from electricity distribution in the EU". Oxford Bulletin of Economics and Statistics, 78: 170-196.
- •Cambini, C., Croce, A. and Fumagalli, E. (2014). "Output-based incentive regulation in electricity distribution: Evidence from Italy". Energy Economics, 45: 205-216.
- •Cambini, C., Fumagalli, E. and Rondi, L. (2016). "Incentives to Quality and Investment: Evidence from Electricity Distribution in Italy". Journal of Regulatory Economics, 49: 1-32.
- Jamasb, T., Llorca, M., Khetrapal, P. and Thakur, T. (2018). "Institutions and performance of regulated firms: Evidence from electric utilities in the Indian states". EPRG working paper, No. 1809 and Cambridge working paper, No. 1823.
- •Lasagni, A., Nifo, A.M. and Vecchione, G. (2015). "Firm productivity and institutional quality: evidence from Italian industry". Journal of Regional Science, 55: 774-800.
- •Llorca, M., Orea, L. and Pollitt, M.G. (2016). "Efficiency and environmental factors in the US electricity transmission industry". Energy Economics, 55: 234-246.
- •Nifo, A. and Vecchione, G. (2014). "Do Institutions Play a Role in Skilled Migration? The Case of Italy". Regional Studies, 48: 1628-1649.

Thank you!

Appendix

MICRO REGIONS IN ITALY: REGIONAL SOCIO-ECONOMIC DISPARITY

POLITECNICO DI TORINO DIGEP- Department of Management and Production Engineering


IAEE MONTREAL, 2019 15

DESCRIPTIVE STATISTICS

Variable	Unit	Min.	Max.	Mean	Std. Dev.
Totex	Euros (2010)	5,656	315,185,156	11,209,170	39,082,340
ENED	MWh	673	11,334,422	393,498	1,573,321
CUST	No of Customers	10	1,626,019	51,661	206,264
SAIDI	Minutes	0.01	8,067	125.84	429.86
LPR	Euros (2010)	200	265,430	52,935	28,226
KPR	Euros (2010)	0.01	21,466	1,871	1,811
North	Dummy	0	1	0.87	0.33
Centre	Dummy	0	1	0.08	0.27
South	Dummy	0	1	0.05	0.21
Mount	Dummy	0	1	0.78	0.41
Corp	Dummy	0	1	0.78	0.41
Emp_Rate	%	39	68.72	65.58	5.28
GVA	Euros (2010)	14,295	33,822	30,273	4,854
Voice	Index	23	65	48.62	7.44
RoL	Index	30	81.70	69.84	12.17
Gov_Eff	Index	17.40	61.40	46.50	7.46
Corru_Ctrl	Index	61.40	97.30	90.43	5.86

ROBUSTNESS CHECK WITH ENEL

