Numerical Examples

Conclusions 000

Economic and Environmental Consequences of Market Power in the South-East Europe Regional Electricity Market

Verena Višković^a Yihsu Chen^b Afzal S. Siddiqui^c Makoto Tanaka^d

^aUniversity College London

^bUniversity of California at Santa Cruz

^cUniversity College London, Stockholm University, and HEC Montréal

^dNational Graduate Institute for Policy Studies

Introduction 0000 Mathematical Formulatio

Numerical Examples

Conclusions 000

Table of Contents

2 Mathematical Formulation

3 Numerical Examples

Introduction

Mathematical Formulation

Numerical Examples

Conclusions 000

Introduction

Introduction	Mathematical Formulation	Numerical Examples	Conclusions
000			
Motivation			

South-East Europe Regional Electricity Market (SEE-REM)

• SEE-REM comprises both EU members subject to the EU Emissions Trading System (ETS) and non-EU members exempt from it

Introduction	Mathematical Formulation	Numerical Examples	Conclusions
0000			
Motivation			

Electricity and Permit Markets

- Exercise of market power in an electricity market has attracted attention in the literature, whereas the interaction of a product and permit market both subject to market power has been less investigated (Kolstad and Wolak, 2003)
- Manipulation of electricity and permit prices can affect carbon leakage as electricity imports increase from regions without environmental regulation (Fischer and Fox, 2012)
- Regional electricity markets with partial coverage of cap-and-trade (C&T) systems are vulnerable to emission leakage (Burtraw et al., 2006; Višković et al., 2017)
- Stackelberg leader firm could manipulate prices in both electricity and permit markets (Chen et al., 2018)

Introduction	Mathematical Formulation	Numerical Examples	Conclusions
0000			
Contribution			

Research Objective

- Assess market power in both electricity and CO₂ permit markets under a C&T scheme in a transmission-constrained test network of SEE-REM
- Incentives of a strategic producer, Enel, which owns 23% of the capacity in Italy
- Stackelberg leader-follower model of power market
- Compare perfect competition, market power in electricity markets only, and market power in both electricity and permit markets

Introduction	Mathematical Formulation	Numerical Examples	Conclusions
0000			
Contribution			
	Findir	ıgs	

- Under environmental regulation, Stackelberg leader, Enel, may produce more output in total than that in perfect competition, while fringe firms in Italy decrease their outputs
- Enel has the incentive to withhold coal to lower the C&T permit price when it has market power in both electricity and permit markets
- Carbon leakage in non-ETS countries of SEE-REM under environmental regulation
- In total, emissions decrease in SEE-REM as environmental regulation becomes more stringent in spite of carbon leakage

Introduction 0000 Mathematical Formulation

Numerical Examples

Conclusions 000

Mathematical Formulation

Introduction 0000	Mathematical Formulation	Numerical Examples	Conclusions 000		
	000000	000000000000000000000000000000000000000	000		
Setup					
	Catum				

Setup

- Linear inverse demand function at each node, $D_{t,n}^{int} - D_{t,n}^{slp} d_{t,n}$, thus quadratic gross benefit function
- Generation, $x_{t,n,i,u}$, with constant marginal costs, $C_{n,i,u}$, generation capacities, $X_{n,i,u}$, and emission rates, $E_{n,i,u}$
- Cap, Z, in a C&T with shadow permit price, ho
- DC load flow, $f_{t,\ell}$, based on network transfer admittance, $H_{n,\ell}$, and incidence, $A_{n,\ell}$, with voltage angles, $v_{t,n}$
- Transmission capacities, $K_{t,\ell}$
- Perfect competition [PC], Stackelberg with tax [S-T], Stackelberg with C&T [S]

Stackelberg Model of Power Market

- Upper-level problem: leader firm maximises profit w.r.t generation levels of units, $x_{t,n,s,u}$, anticipating the outcomes of the lower-level problems
- Lower-level problems:
 - Follower firms maximise profit from power generation, $x_{t,n,j,u}$
 - Welfare-maximising ISO manages flows, $f_{t,\ell}$, and consumption, $d_{t,n}$
 - Market clearing of emissions permits under a C&T
- Lower-level problems can be formulated as a single optimisation problem, i.e., quadratic program (QP)
- Bi-level problem is recast as a mathematical program with equilibrium constraints (MPEC), which is converted into a mixed-integer quadratic program (MIQP)

Introduction
Setup

Numerical Examples

Conclusions 000

Bi-Level Modelling

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_t \left[\sum_{n} \left(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^2 - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \right) \right]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \leq 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
 (2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell AC} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t, n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_{t} \Big[\sum_{n} \Big(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \Big) \Big]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \leq 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
(2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^-), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell AC} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t,n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_{t} \Big[\sum_{n} \Big(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \Big) \Big]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \leq 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
(2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^-), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell^{AC}} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t,n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_{t} \Big[\sum_{n} \Big(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \Big) \Big]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \leq 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
(2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell^{AC}} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t, n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_{t} \Big[\sum_{n} \Big(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \Big) \Big]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \leq 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
(2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell AC} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t, n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
QP			

$$\max_{\Xi} \sum_{t} N_{t} \Big[\sum_{n} \Big(D_{t,n}^{int} d_{t,n} - \frac{1}{2} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{j} \sum_{u \in \mathcal{U}_{n,j}} C_{n,j,u} x_{t,n,j,u} \Big) \Big]$$
(1)

s.t.
$$N_t(x_{t,n,j,u} - X_{n,j,u}) \le 0 \quad (\beta_{t,n,j,u}), \quad \forall t, n, j, u \in \mathcal{U}_{n,j}$$
(2)

$$N_t(-f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}), \ \forall t,\ell$$
(3)

$$N_t(f_{t,\ell} - K_{t,\ell}) \le 0 \ (\mu_{t,\ell}^+), \ \forall t,\ell$$

$$\tag{4}$$

$$N_t(f_{t,\ell^{AC}} - \sum_{n^{AC} \in \mathcal{N}^{AC}} H_{n^{AC},\ell^{AC}} v_{t,n^{AC}}) = 0 \ (\gamma_{t,\ell^{AC}}), \ \forall t,\ell^{AC} \in \mathcal{L}^{AC}$$

$$N_t \left(d_{t,n} - \sum_i \sum_{u \in \mathcal{U}_{n,i}} x_{t,n,i,u} + \sum_{\ell} A_{n,\ell} f_{t,\ell} \right) = 0 \ (\lambda_{t,n}), \ \forall t, n$$
(6)

$$-Z + \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u \in \mathcal{U}_{n,i}} N_t E_{n,i,u} x_{t,n,i,u} \le 0 \quad (\rho)$$
(7)

	Mathematical Formulation	Numerical Examples	Conclusions
	0000000		
QP			

KKT Conditions for Lower Level

$$0 \leq x_{t,n,j,u} \perp N_t \left(-\lambda_{t,n} + C_{n,j,u} + \rho E_{n,j,u} + \beta_{t,n,j,u} \right) \geq 0, \ \forall t, j, u \in \mathcal{U}_{n,j}, n \in \mathcal{N}^{ETS}$$

$$0 \leq x_{t,n,j,u} \perp N_t \left(-\lambda_{t,n} + C_{n,j,u} + \beta_{t,n,j,u} \right) \geq 0, \ \forall t, j, u \in \mathcal{U}_{n,j}, n \in \mathcal{N} \setminus \mathcal{N}^{ETS}$$
(9)

$$0 \leq d_{t,n} \perp N_t \left(-D_{t,n}^{int} + D_{t,n}^{slp} d_{t,n} + \lambda_{t,n} \right) \geq 0, \ \forall t, n$$

$$\tag{10}$$

$$f_{t,\ell AC} \text{ u.r.s. } N_t \Big(-\sum_{nAC \in \mathcal{N}AC} \lambda_{t,nACA_{nAC,\ell}AC} - \gamma_{t,\ell AC} + \mu_{t,\ell AC}^- - \mu_{t,\ell AC}^+ \Big) = 0,$$
$$\forall t, \ell^{AC} \in \mathcal{L}^{AC} \tag{11}$$

$$f_{t,\ell} \text{ u.r.s. } N_t \Big(-\sum_n \lambda_{t,n} A_{n,\ell} + \mu_{t,\ell}^- - \mu_{t,\ell}^+ \Big) = 0, \ \forall t, \ell \in \mathcal{L} \setminus \mathcal{L}^{AC}$$
(12)

$$v_{t,nAC} \text{ u.r.s. } N_t \Big(\sum_{\ell AC \in \mathcal{L}AC} H_{nAC,\ell AC} \gamma_{t,\ell AC} \Big) = 0, \forall t, n^{AC} \in \mathcal{N}^{AC}$$
(13)

$$0 \le \beta_{t,n,j,u} \perp N_t(X_{n,j,u} - x_{t,n,j,u}) \ge 0, \ \forall t, n, j, u$$
(14)

$$\gamma_{t,\ell AC} \text{ u.r.s. } N_t \left(f_{t,\ell AC} - \sum_{nAC \in \mathcal{N}AC} H_{nAC,\ell AC} v_{t,nAC} \right) = 0, \ \forall t, \ell^{AC} \in \mathcal{L}^{AC}$$
(15)

$$0 \leq \mu_{t,\ell}^- \perp N_t(f_{t,\ell} + K_{t,\ell}) \geq 0, \ \forall t,\ell$$
(16)

$$0 \le \mu_{t,\ell}^+ \perp N_t (-f_{t,\ell} + K_{t,\ell}) \ge 0, \ \forall t,\ell$$
⁽¹⁷⁾

$$\lambda_{t,n} \text{ u.r.s. } N_t \left(d_{t,n} - \sum_i \sum_u x_{t,n,i,u} + \sum_\ell A_{n,\ell} f_{t,\ell} \right) = 0, \ \forall t,n$$
(18)

$$0 \le \rho \perp Z - \sum_{t} \sum_{n \in \mathcal{N}^{ETS}} \sum_{i} \sum_{u} N_{t} E_{n,i,u} x_{t,n,i,u} \ge 0$$
⁽¹⁹⁾

MPEC	

Numerical Examples

Conclusions 000

Upper-Level MPEC

$$\max_{\Gamma \cup \Xi \cup \Psi} \sum_{t} N_t \left(\sum_{n} \sum_{u \in \mathcal{U}_{n,s}} \left(\lambda_{t,n} - (C_{n,s,u} + \rho E_{n,s,u}) \right) x_{t,n,s,u} \right)$$
(20)

s.t. $N_t (x_{t,n,s,u} - X_{n,s,u}) \leq 0 \quad (\beta_{t,n,s,u}), \quad \forall t, n, u \in \mathcal{U}_{n,s}$

s.t.
$$N_t(x_{t,n,s,u} - X_{n,s,u}) \le 0 \quad (\beta_{t,n,s,u}), \ \forall t, n, u \in \mathcal{U}_{n,s}$$

$$(21)$$

Lower-level KKT conditions (8) - (19)

where $\Gamma \equiv \{x_{t,n,s,u} \ge 0\}$ and $\Psi \equiv \{\beta_{t,n,j,u} \ge 0, \gamma_{t,\ell^{AC}}, \lambda_{t,n}, \mu_{t,\ell}^- \ge 0, \mu_{t,\ell}^+ \ge 0, \rho \ge 0\}$

MPEC	

Numerical Examples

Conclusions 000

Upper-Level MPEC

$$\max_{\Gamma \cup \Xi \cup \Psi} \sum_{t} N_t \Biggl(\sum_{n} \sum_{u \in \mathcal{U}_{n,s}} \Bigl(\lambda_{t,n} - (C_{n,s,u} + \rho E_{n,s,u}) \Bigr) x_{t,n,s,u} \Biggr)$$
(20)

s.t.
$$N_t(x_{t,n,s,u} - X_{n,s,u}) \leq 0 \ (\beta_{t,n,s,u}), \ \forall t, n, u \in \mathcal{U}_{n,s}$$

$$(21)$$

Lower-level KKT conditions (8) - (19)

where
$$\Gamma \equiv \{x_{t,n,s,u} \geq 0\}$$
 and
 $\Psi \equiv \{\beta_{t,n,j,u} \geq 0, \gamma_{t,\ell^{AC}}, \lambda_{t,n}, \mu_{t,\ell}^- \geq 0, \mu_{t,\ell}^+ \geq 0, \rho \geq 0\}$

MDEC	

Numerical Examples

Conclusions 000

Upper-Level MPEC

$$\max_{\Gamma \cup \Xi \cup \Psi} \sum_{t} N_t \Biggl(\sum_{n} \sum_{u \in \mathcal{U}_{n,s}} \Bigl(\lambda_{t,n} - (C_{n,s,u} + \rho E_{n,s,u}) \Bigr) x_{t,n,s,u} \Biggr)$$
(20)

s.t.
$$N_t(x_{t,n,s,u} - X_{n,s,u}) \leq 0 \quad (\beta_{t,n,s,u}), \quad \forall t, n, u \in \mathcal{U}_{n,s}$$

$$(21)$$

Lower-level KKT conditions (8) - (19)

where
$$\Gamma \equiv \{x_{t,n,s,u} \geq 0\}$$
 and
 $\Psi \equiv \{\beta_{t,n,j,u} \geq 0, \gamma_{t,\ell^{AC}}, \lambda_{t,n}, \mu_{t,\ell}^- \geq 0, \mu_{t,\ell}^+ \geq 0, \rho \geq 0\}$

Introduction	Mathematical Formulation	Numerical Examples	Conclusions
	000000		
MPEC			

Resolution of Non-Linearities

 Apply QP strong duality to convexify bilinear terms in objective function (Dorn, 1960; Huppmann and Egerer, 2015)

$$\sum_{t} N_{t} \left(\sum_{n} D_{t,n}^{int} d_{t,n} - \sum_{n} D_{t,n}^{slp} d_{t,n}^{2} - \sum_{\ell} (\mu_{t,\ell}^{-} + \mu_{t,\ell}^{+}) K_{t,\ell} - \sum_{n} \sum_{i} \sum_{u} C_{n,i,u} x_{t,n,i,u} - \sum_{n} \sum_{j} \sum_{u} \beta_{t,n,j,u} X_{n,j,u} \right) - \rho Z$$
(22)

- Complementarity conditions, i.e., $0 \le a \perp b \ge 0$, are resolved disjunctively as $a \le Mw; b \le M(1-w); a, b \ge 0; w \in \{0, 1\}$ (Fortuny-Amat and McCarl, 1981)
- MPEC may be rendered as an MIQP

Introduction 0000 Mathematical Formulation 0000000 Numerical Examples

Conclusions 000

Numerical Examples

Data			
Data	0000000	000000000000	000
0000	0000000	00000000000	000
Introduction	Mathematical Formulation	Numerical Examples	Conclusions

- Net out non-hydro renewable production from demand
- Time is represented by taking 4 representative hours for each of the 12 months of the year 2013
- Derive the load curve based on the number of hours in time block

	Number of days in month			
Blocks	31	28	30	
Base load	520	470	504	
Shoulder load	186	168	180	
Peak load	30	27	28	
Super-peak load	8	7	8	

	Mathematical Formulation	Numerical Examples	Conclusions
		0000000000	
Ď. i			

Technology Availability and Scenarios

Technology	Natural Gas	Coal	Oil	Nuclear	Lignite
Availability factor (%)	75	84	86	90	85

Scenario	Description
PC-B0 to PC-B40	Perfect competition with ETS cap equal to 0%-40%
	reduction in emissions
S-T-B0 to S-T-B40	Stackelberg with carbon tax equal
5-1-00 10 5-1-040	to the respective PC scenario permit price
S-B0 to S-B40	Stackelberg with ETS cap equal to 0%-40%
5-00 10 5-040	reduction in emissions

• Assume that the Stackelberg leader is Enel, which owns 23% of the capacity in Italy

	Mathematical Formulation	Numerical Examples	Conclusions
		0000000000	
Data			

SEE-REM Network Topology

• Stylised 22-node network of SEE-REM that spans EU and non-EU countries

	Mathematical Formulation	Numerical Examples	Conclusions
0000		0000000000	
Results Summary			

Total Production (GWh) by Enel and Fringes in Italy

• Total outputs by Enel and Fringes in Italy decrease as environmental regulation becomes more stringent

Total Production (GWh) by Enel

- Stackelberg leader, Enel, attempts to maintain its output level to make profits
- Under environmental regulation, Enel strategically produces more output in total than that in perfect competition

Total Production (GWh) by Fringes in Italy

• This is at the expense of fringes, which produce less output in total than that in perfect competition under environmental regulation

	Mathematical Formulation	Numerical Examples	Conclusions
		00000000000	
Results Summary			

Coal Production (GWh) by Enel

- Enel decreases its "dirtier" coal production as environmental regulation becomes more stringent
- Coal production can be greater than that in perfect competition (B40)

	Mathematical Formulation	Numerical Examples	Conclusions
		00000000000	
Results Summary			

Coal Production (GWh) by Enel

• Compared to the case of exogenous tax, Enel has the incentive to withhold coal to lower the C&T permit price when it has market power in both electricity and permit markets

Natural-Gas Production (GWh) by Enel

- Enel even expands its "cleaner" natural-gas production as environmental regulation becomes more stringent to make up for decreases in "dirtier" coal production
- Natural-gas production can be greater than that in perfect competition (B20 and B40)

CO₂ Emissions (kt) in ETS Countries of SEE-REM

• CO₂ Emissions in ETS Countries of SEE-REM decrease as environmental regulation becomes more stringent

	Mathematical Formulation	Numerical Examples	Conclusions
		00000000000	
Results Summary			

CO₂ Emissions (kt) in Non-ETS Countries of SEE-REM

• Carbon leakage in non-ETS countries of SEE-REM under environmental regulation

CO₂ Emissions (kt) in ETS and Non-ETS Countries of SEE-REM

• In total, emissions decrease in SEE-REM as environmental regulation becomes more stringent

Numerical Examples

Conclusions

Conclusions

Introduction 0000 Conclusions	Mathematical Formulation	Numerical Examples	Conclusions •OO
Summary			

- Allow for market power in both product and permit markets to assess its impact on generation output and leakage
 - Under environmental regulation, Stackelberg leader, Enel, may produce more output in total than that in perfect competition at the expense of fringes
 - Enel has the incentive to withhold coal to lower the C&T permit price by exercising market power
 - Carbon leakage within SEE-REM might not be significant
- Future work: expand analysis outside SEE-REM, examine investment decisions

Conclusions	
	Mathematical Formulation

Numerical Examples

Conclusions

Appendix: Generation Mix under S-T

Introduction
Conclusions

Appendix: Generation Mix under S

