

Distributional Impacts of Carbon Taxation on South African Households

Jennifer Uju Okonkwo

Presented at: 42nd IAEE International Conference 2019 Montreal, Canada May 30, 2019

- Many countries are currently transitioning to low-carbon economies with South Africa at the forefront of these effort among African countries.
- The South African government plans to implement a carbon tax policy from June 1 2019.
- The introduction of a carbon tax to mitigate emissions is expected to be followed by an increase in prices of energy related products.

- South African Households are likely to be greatly affected since their energy-related expenditure accounted for almost 50% of their incomes in 2015.
- Households are heterogeneous in terms of economic, socio-economic, demographic and physical features.
- Thus, energy usage patterns differ substantially from one household to another, especially across income groups

4 Fig 1: Average Household Energy Expenditure C A U Shares by Income Deciles

- The main objective of this paper is to study how the implementation of a carbon tax policy affects different income groups in South Africa.
- A household demand system is estimated using the Quadratic Almost Ideal Demand System (QUAIDS) model to evaluate the distributional and welfare effects of carbon taxation in South Africa.

- **Previous Literature**
 - Computable General Equilibrium (CGE) model of Carbon taxation in South Africa.
 - van Heerden et al., 2006 (Energy J.); Alton et al., 2014 (Appl Energy); PMR 2016 (WB report);
 - Welfare effects of carbon taxation on Households using QUAIDS model.
 - West and Williams III, 2004 (JEEM); Rosas-Flores et al. 2017 (Energy Econ); Moshiri and Santillan 2018 (Energy Pol); Renner et al. 2018 (Energy Econ)

- This study contributes to the existing literature by providing empirical evidence on the distributional effects of the carbon tax in South Africa.
- It also provides an in-depth understanding of the welfare impacts of households as a result of the tax.

8

• Quadratic Almost Ideal Demand (QUAIDS) model developed by Banks et al 1997.

$$w_i = \alpha_i + \sum_{j=1}^n \gamma_{ij} \ln p_j + \beta_i \ln \left[\frac{m}{a(p)}\right] + \frac{\lambda_i}{b(p)} \left\{ \ln \left[\frac{m}{a(p)}\right] \right\}^2$$

Where: w_i denotes the budget share of the household for good i p_j is the price of good j

m is the total consumption expenditure

 $\ln a(p)$ is the transcendental log function

b(p) is the Cobb- Douglas price aggregator

 α_i , γ_{ij} , β_i and λ_i are parameters to be estimated by the model.

9

- South African Income and Expenditure Survey (IES) and the Living Conditions Survey (LCS) datasets conducted by Statistics South Africa (Stat SA).
- Four expenditure categories:

Two energy goods: electricity and transport Two non-energy goods: food and other goods

• Demographic variables: age of head, province, household size and type of settlement

10

- The results are presented in three steps:
 - •The elasticities calculated from the demand system estimation.
 - •The first and second-order welfare losses for income deciles and settlement type.
 - •The welfare effect from a lump-sum transfer.

Results

11

Christian-Albrechts-Universität zu Kiel

		Price			
		Electricity	Transport	Food	Other
$Budget \ elasticities$					
		0.505	1.252	0.947	1.050
		(0.005)	(0.006)	(0.002)	(0.002)
$Compensated \ elasticities$					
Demand	Electricity	-0.343	-0.387	-1.100	1.830
		(0.019)	(0.054)	(0.073)	(0.087)
	Transport	-0.180	-3.083	2.510	0.752
		(0.026)	(0.124)	(0.136)	(0.190)
	Food	-0.142	0.676	-0.639	0.106
		(0.009)	(0.037)	(0.070)	(0.077)
	Other	0.239	0.207	0.107	-0.553
		(0.011)	(0.052)	(0.078)	(0.115)
$Uncompensated \ elasticities$					
Demand	Electricity	-0.370	-0.444	-1.312	1.621
		(0.019)	(0.054)	(0.073)	(0.087)
	Transport	-0.248	-3.224	1.984	0.236
		(0.026)	(0.124)	(0.136)	(0.190)
	Food	-0.193	0.568	-1.037	-0.285
		(0.009)	(0.037)	(0.070)	(0.077)
	Other	0.182	0.088	-0.334	-0.986
		(0.011)	(0.052)	(0.078)	(0.115)

Table 2: Demand Elasticities

Welfare Losses from price changes as a result of carbon tax

Welfare losses from energy goods

Welfare losses by settlement type

Welfare losses by settlement

Lump-sum Tax Transfer

Conclusion

17

- The first-order effect overestimates the welfare loss.
- Electricity price changes is regressive while transportrelated price changes is progressive.
- Simultaneous price increases for the energy goods lead to a U-shaped welfare loss curve.
- Revenue recycling such as lump-sum transfers is important to reduce the adverse effects of the tax on the poor

