

When does it work?

The Effect of a Smart Meter Mobile Application on Korean Residential Electricity Consumption

KAIST College of Business Graduate School of Green Growth Green Business and Policy

Clara Nam Daegon Cho Miyeon Jung

ENERTALK

ENCORED

Motivation

Residential Sector Electricity Consumption

 27% of world total final electricity consumption in 2016 was from residential sector (IEA, 2018)

Source : IEA electricity statistics

In South Korea...

- The electricity consumption of the residential sector doubled since 2000
- Total electricity consumption increased in 2018: the highest growth has been driven by the residential sector (6.3% rise)

New Technology as a Solution?

South Korean's Smart meter coverage

Motivation

Smart meter feedback can lead to energy savings

- Smart meter can fill the 'information vacuum' → Increases the visibility of energy → Trigger energy saving behavior (Fisher, 2008)
- A smart metering program from Austria and Germany showed **an average of about 3.7% electricity consumption reduction** (Schleich et al., 2011)
- 42 empirical studies on smart meter feedback an average of 7% energy reduction (Kalin et al., 2015)
- Tailored messages, personalized information, and interactive tools would lead to higher user engagement which can result in energy usage reduction (Bager & Mundaca, 2017 & Schultz, 2015)
 - Is the reduction effect sustain in the long-term?
 Experiment vs. natural setting

C The saving effect is not persistent

- Device may **lose its novelty and the initial enthusiasm** fades away into the background of daily life (Buchanan et al., 2011)
- Knowledge (energy consumption) alone does not motivate the users to reduce their consumption (Hargreaves, 2010)
- A year after the smart meter intervention experiment with the same participants
 - ✓ The savings achieved during the study did not maintain after a year (Wemyss et al. 2019)

Can we conclude that smart meter is not effective in energy saving?

When does increased knowledge lead to behavioral change?

H1: When the smart meter app is monitored on any given day of the month, the electricity consumption decreases on the following days

H2: When the electricity consumption is increased or decreased by a consumer, he/she monitors the smart meter app on the following days

H3: When the smart meter app is monitored before or after entering the next progressive tariff stage, the electricity consumption decreases

The research was conducted in South Korea which has a unique electricity market

• Released in 2015 (1st Smart meter service provider in Korea)

- It is based on IoT technology measuring the electricity consumption of a household with the real-time information provided through the EnerTalk mobile application
- Improving In-home display's (IHD) shortcomings

*Majority of the users have used the EnerTalk more than 6 months (74%), thus we presumed that the users are aware of the information when they open the app

Panel electricity consumption observation data

- Observation period : 2017 9/1~11/30 (October)
- Daily consumption per household
- (Monthly) The total consumption for October month was aggregated based on individuals' billing date

Panel EnerTalk log-in data

- Observation period : 2017 9/1~11/30
- Binary data reveals the app check (binary variable)
 - User's last app log-in time

Table 1. Summary statistics

42nd IAEE International Conference, Montreal Canada

(1) Panel vector autoregression (PVAR)

Why PVAR? How?

- It can capture the endogeneity in the panel data, and reveal the relationship between endogenous variables meaning capturing **Interdependency with heterogeneity**
- The dynamic interactions between electricity consumption and real-time feedback or EnerTalk monitoring behavior will be examined

$$Y_{it} = \begin{pmatrix} AppCheck_{it} \\ Usage_{it} \end{pmatrix} = \sum_{s=1}^{P} \Phi_s \begin{pmatrix} AppCheck_{it-s} \\ Usage_{it-s} \end{pmatrix} + \begin{pmatrix} \delta_{1t} \\ \delta_{2t} \end{pmatrix} + \begin{pmatrix} f_{1i} \\ f_{2i} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1it} \\ \varepsilon_{2it} \end{pmatrix}$$

- $Y_{it} = (AppCheck_{it}, Usage_{it})$: two-element column vector for an individual household _i at time _t
- *_i* : Household individual
- t: Day
- *AppCheck* : EnerTalk mobile application engagement on the day (binary)
- Usage : Daily electricity consumption of each panel in kWh

(1) Panel vector autoregression (PVAR)

Lag Selection

Lag	J pvalue	MBIC	MAIC	MQIC
1	0.011	-106.358	-0.381	-37.325
2	0.136	-86.111	-6.629	-34.336
3	0.124	56.325	-3.337	-21.809
4	0.397	-30.424	-3.930	-13.166

	Dopondont variable			
	Dependent variable			
Independent variable	DailyUse _{i, t}	AppCheck _{i, t}		
DailyUse _{i,t-1}	0.301 (0.216)	0.059 (0.32)		
AppCheck _{<i>i</i>, <i>t</i>-1}	0.002 (0.013)	-0.011 (0.028)		
Observations	7872			

284

Two of three criteria suggest that Lag 1 is the appropriate length of the lag

Note:

Households

*** Significant at p < 0.01; ** Significant at p < 0.05; * Significant at p < 0.1

(2) Difference in differences

Decreased amount in the 2nd stage for those who checked EnerTalk during specific period in comparison to the 1st stage consumption (H3)

$$ln(E_{it}) = \alpha_i + \beta * Progressive2_{it} + (\gamma * AppCheckatT_i) * (Progressive2_{it}) + d_t + \varepsilon_{it}$$

Interpretation

- E_{it} : Daily electricity consumption in kWh measured by the smart meter of individual household
- α_i : Individual fixed effect (<u>no need for other control variables</u>)
- *Progressive*2 : Dates after an individual entered <u>2nd Progressive tariff stage</u>, >200kwh (binary)
- *AppCheckatT* : Those who checked EnerTalk at least once during 180~220kwh
 - Daily average consumption for those who entered the 2nd stage : **9.16 kwh**
 - <u>1~3 days before or after entering the 2nd stage of progressive tariff</u>
 - <u>72 panels out of 192 checked</u>
- d_t : time fixed effect

Statistically not significant for the total sample (n=192) for those who consumed over 200 kwh in October

Variables	Total			
AppChackatT * Progressive?	-0.010			
Appeneekati 110gressivez	(0.011)			
Drogrossivo?	-0.001			
r logi essivez	(0.009)			
Observations	5913			
Households	192			
Those who checked EnerTalk	72 (200/)			
180~220kwh range	72 (30%)			
R-Squared	0.049			

> "What if we consider the demographic characteristics of the panels?"

Different results depending on the subgroups

Variables	Housing	Housing	Household	Household	Child or	No child	Average	Average	Self-
	area	area ($\geq 99m^2$)) size 1~3	size > 3	children		Monthly	Monthly	efficacy
	(<99m ²)						income (< 4	income	score
							K USD)	$(\geq 4 \text{ K USD})$	top 25%
AppCheckatT *	-0.068***	0.014	-0.044**	0.014	0.008	-0.084***	-0.024	0.007	0.0187
Progressive2	(0.022)	(0.014)	(0.019)	(0.014)	(0.013)	(0.025)	(0.018)	(0.016)	(0.019)
Progressive2	0.048**	-0.017	0.046***	-0.027**	-0.009	0.035*	0.022	-0.004	-0.005
	(0.02)	(0.010)	(0.017)	(0.011)	(0.010)	(0.019)	(0.015)	(0.011)	(0.013)
Observations	1632	4281	2032	3881	4465	1448	2182	3546	2590
Households	53	139	66	126	145	47	71	115	84
R-Squared	0.083	0.052	0.059	0.074	0.08	0.08	0.055	0.077	0.049

Different results depending on the subgroups

Variables	Housing	Housing	Household	Household	Child or	No child	Average	Average	Self-
	area	area ($\geq 99m^2$)	size 1~3	size > 3	children		Monthly	Monthly	efficacy
	(<99m ²)						income (< 4	income	score
							K USD)	$(\geq 4 \text{ K USD})$	top 25%
AppCheckatT *	-0.068***	0.014	-0.044**	0.014	0.008	-0.084***	-0.024	0.007	0.0187
Progressive2	(0.022)	(0.014)	(0.019)	(0.014)	(0.013)	(0.025)	(0.018)	(0.016)	(0.019)
Progressive2	0.048**	-0.017	0.046***	-0.027**	-0.009	0.035*	0.022	-0.004	-0.005
	(0.02)	(0.010)	(0.017)	(0.011)	(0.010)	(0.019)	(0.015)	(0.011)	(0.013)
Observations	1632	4281	2032	3881	4465	1448	2182	3546	2590
Households	53	139	66	126	145	47	71	115	84
R-Squared	0.083	0.052	0.059	0.074	0.08	0.08	0.055	0.077	0.049

- ► -6.8% housing area 99m²
- -4.4% family with less than 3 people
- -8.4% user without a child

1. Findings & Implications:

- Long-term smart meter users do not sensitively react to the day-to-day feedback
 - ✓ Financial reward from saving can be too little to motivate
- Energy consumption feedback from EnerTalk was effective depending on the demographical subgroups
 - ✓ Tailored messages sent out near the next tariff stage can possibly delay entering into the next tariff stage by reducing its consumption
- Electricity consumption information alone is difficult to have a high app engagement (low app check frequency)
 - ✓ Contents on saving electricity tips, increase gamification features, etc.
- The research improved the understanding of smart meter users in a natural setting and discovered how people use the smart meter in their daily life
- The shortcoming of IHDs were significantly improved

2. Future study

- Extending the data collection duration and specifically <u>including summer or winter months</u>
- Including samples representing the entire population
- Electricity data of the smart meter users before installing the device
- Conducting the analysis where the electricity tariff is higher than Korea or with dynamic pricing scheme (Germany, USA, etc.)
- Conducting an intervention study concentrating on progressive stage

