

Modelling Flexible Market Participants in Distribution Grids by Coupling an Agent Based Simulation with a Fundamental Model

Gerald Blumberg Christoph Weber

42nd IAEE INTERNATIONAL CONFERENCE LOCAL ENERGY, GLOBAL MARKETS

MONTREAL MAY 29 - JUNE 1, 2019

House of Energy Markets & Finance

Motivation

- Model framework
- Coupling an Agent-Based Simulation with a Fundamental Model
- Exemplary Results

Modelling Flexible Market Participants in Distribution Grids

Energy Markets

Modelling Flexible Market Participants in Distribution Grids

- Motivation ullet
- Model framework
- Coupling an Agent-Based Simulation with a Fundamental Model
- **Exemplary Results**

House of

& Finance

UNIVERSITÄT D U I S B U R G E S S E N

Increasing vRES Extension induces Flexibility Demand Which flexibilities do we need – and in which combination?

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Motivation

House of Energy Markets & Finance

05.06.2019

Decarbonisation not possible without vRES extension (given parallel nuclear phase out)

Weather dependent generation leads to different load flow situations within transmission **and distribution** grid

Flexibilization Potential mainly in Distribution Grid

Offen im Denken

Motivation

Flexibilization through...

- improved simulaneity of demand and supply
- temporal decoupling of demand and supply

by ...

- flexibilization of thermal plants
- network extensions
- demand side management
- storage extension
- sector coupling technolgies, e.g.
 - e-mobility (dumb/ smart charging/ V2G)
 - mini- & micro-CHPs
 - Heatpumps

A 44.4

Flexibilization Potential mainly in Distribution Grid

Offen im Denken

Motivation

Flexibilization through...

- improved simulaneity of demand and supply
- temporal decoupling of demand and supply

by ...

- flexibilization of thermal plants
- network extensions
- demand side management
- storage extension
- sector coupling technolgies, e.g.
 - e-mobility (dumb/ smart charging/ V2G)
 - mini- & micro-CHPs
 - Heatpumps

A 44.4

) distribution system

transmission system

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

Flexibilization Potential mainly in Distribution Grid

Motivation

- 1. Distribution grids will contribute massively to supply of flexibility options
 - →Coordination of multiple entities required
 - \rightarrow ICT, automatization and a smart coordination required
 - →Global market integration with temporary local markets to deal with network congestions
- 2. Distribution network extension planning must consider multiple impacts
 →Utilization of flexibility to limit network extensions to a cost efficient level
 →Grid operation and extension planning become two sides of the same coin
- 3. Future technology mix is driven by (private and business) investment decisions
 →Regulatory impact must be considered in detail
 - →Interactions between markets and distriution grid participants must be considerd

House of Energy Markets & Finance

Modelling Flexible Market Participants in Distribution Grids

- Motivation
- Model framework
- Coupling an Agent-Based Simulation with a Fundamental Model
- Exemplary Results

Integrated Distribution Grid Analysis

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Model framework

Approximized flexible agents in other areas

House of Energy Markets

& Finánce

DSO can conduct operational measures

Network extension and profitability assessment

House of **Energy Markets** & Finance

- Motivation ullet
- Model framework •
- Coupling an Agent-Based Simulation with a Fundamental Model ٠

Modelling Flexible Market Participants in Distribution Grids

Exemplary Results

UNIVERSITÄT DUISBURG ESSEN

Integrated Distribution Grid Analysis

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Coupling an Agent-Based Simulation with a Fundamental Model

agents in other areas

German electricity market influenced by all areas and conventional plants

DSO can conduct operational measures

Network extension and profitability assessment

Consecutive Model Interaction Process

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Coupling an Agent-Based Simulation with a Fundamental Model

ParFuM

Basic idea: piecewise linear supply curve

a) supply stack with heterogenous costs within the technology classes

Parsimonious Fundamental Model – ParFuM*

b) rearranged supply stack with mixed cost intervals.

 $Demand = Load (L) - CHP_mustrun - RES_infeed - TradeBalance (TB)$

* P. Beran; C. Pape; C. Weber (2019): Modelling German electricity wholesale spot prices with a parsimonious fundamental model – Validation & application. In: Utilities Policy 58, S. 27–39. DOI: 10.1016/j.jup.2019.01.008

UNIVERSITÄT

DUISBURG ESSEN

House of Energy Markets & Finance

Parsimonious Fundamental Model – ParFuM

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Coupling an Agent-Based Simulation with a Fundamental Model

House of Energy Markets & Finance

Motivation

- Model framework
- Coupling an Agent-Based Simulation with a Fundamental Model
- Exemplary Results

Modelling Flexible Market Participants in Distribution Grids

Price Levels in 2017 vs. historical "reference" price

D_U I S_B U R G E S S E N *Offen im Denken*

UNIVERSITÄT

Exemplary Results

Price Levels in 2035 vs. historical "reference" price

D_U I S_B U R G E S S E N *Offen im Denken*

UNIVERSITÄT

Exemplary Results

Operator- Behaviour and regulatory impact

Exemplary Results

Operator with PV and load

- Consumer electricity price (p^{con}) is roughly 4 times the priceforecast (regulatory price components!)
- If p^{con} > fixed-feed-in-tarif (FFIT) from PV
- → Maximize self-consumption
- \rightarrow Here: "new" PV with low FFIT
- → Usually: self-consumption is best
- For "older" PVs one could observe that PV energy is sold anyway

Operator- Behaviour – Market based storage utilization

Exemplary Results

Operator with PV, load and storage

Storage is used market based

UNIVERSITÄT

DUISBURG ESSEN

consumption

House of **Energy Markets** & Finance

Operator- Behaviour – Market based storage utilization

All results are preliminary

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

05.06.2019

Storage is used market based

Exemplary Results

Wrap up

Modelling Flexible Market Participants in Distribution Grids by Coupling an Agent Based Simulation with a Fundamental Model

- Modelling approach enables
 - assessment of flexible (and static) DG participants under consideration of market interactions and regulatory induced price components
 - distribution grid specific limitations are considered in detail
 - impacts of temporary local markets can be depicted
 - with acceptable computation time (strongly depends on grid)
- Research contributions
 - trade-off between conventional network extension and "smart" (operational) solutions
 - market integration of flexible, electricity based technologies / sector coupling
 - assessment of profitability under consideration of regulatory influence (\rightarrow investment incentives)

The work has been carried out as part of the research project Agent.GridPlan which is funded by the European Fund for Regional Development under grant agreement number EU-01-01-006.

Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk des Landes Nordrhein-Westfalen

EFRE.NRW 2017 Investitionen in Wachstum und Beschäftigung

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

Project partner: ie3 – TU Dortmund HEMF – University of Duisburg-Essen intulion GmbH Westnetz GmbH **FH-Dortmund**

Thank you for your attention

