The Effect of Subsidy Removal on Gasoline and Diesel Fuel Consumption and Carbon Emissions

Carol Dahl
and

Lindon Belshe
42 ${ }^{\text {nd }}$ IAEE Conference: LOCAL Energy, Global Markets
Montreal, Canada
May 29-June 1, 2019

Gasoline and Diesel Prices Vary Widely November 2008

Source: GTZ (2009)

Varying Prices

18 countries subsidize gasoline and diesel
13 countries subsidize diesel only
Most countries were taxing fuels sometimes quite heavily

4

Gasoline vs. Diesel Taxes in Europe has Encouraged Diese (2008)

Transport fuel policies

Revenue After World War II

Momentum Towards Rationalizing Pricing

 Socio-economic FactorsEquity
Budget Burden of subsidy
Etc.

Externalities

CO2 Emissions Local Pollutants Traffic Accidents Congestion

Rationalize Transport Fuel

Prices

Price $=$ Direct Cost + Indirect Cost + Externalities

Cost

Etc.

Outline

Introduction

Schemes for Rationalizing Transport Fuel Prices
Policy Scenarios and Impact Analysis
Conclusion

Rationalize prices

Externalities Cost
Indirect
Cost
Direct
Cost

Rationalize prices

Direct $=$ Retail $\boldsymbol{-} \boldsymbol{t a x}$
IEA (2011) tax for 25 countries
Where tax not available
Direct $=P_{\text {iw }}$ (1+margin)
$P_{i w}$ closest of three international ports
NYH, ARA, Singapore
picked margin that minimized
total squared error (TSE)
direct and Piw
margin of 46.8\%

10
 Indirect Cost $=$ Road Maintenance Cost

GTZ (2007)
$\$ 0.10$ per liter trunk roads
\$0.03-0.05 per liter for urban road and transit
Statistics Norway
$\mathbf{3 2 \%}$ of road maintenance cost = labor wages
78 \%=material cost.
Adjust labor cost minimum wage ratio of each country (Wj) to U.S.

$$
M C_{R d}^{j}=M C_{R d} \times\left[0.32 \times \frac{W_{j}}{W_{U . S}}+0.68\right]
$$

11

Three Externalities

Externality: Direct Driver
Global Externalities (CO2 emissions): Fuel Combustion
Local air pollutant: Fuel Combustion
Traffic accidents: Kilometers Traveled
Working on
Congestion: Kilometers Traveled
Others not considered
Noise: Kilometers Traveled
Water pollution: Kilometers Traveled
Vehicle and Tire Disposal: Kilometers Traveled

12

Cost of Externalities - Climate Change

U.S. Interagency Working Group Social Cost CO2 $=\mathbf{\$ 2 1}$ per ton EU CO2 trades around this number

Adjustment CO2/GDP per capita Adjustment
purchasing power parity
exchange rate
in local currency per dollar

13

Cost of Externalities - Climate Change

Adjustment Multiplied by country specific fleet for Fleet
Efficiency emissions adjustment factor (FEAFj) CO2 emitted by every ton of oil equivalent. (IEA's (2011))

Conversion to Fuel Type
converted from dollars per TOE to dollars per gallon of gasoline dollars per gallon of diesel

14

Cost of Externalities - Local Pollutants

National Research Council (NRC 2009)
lifecycle cost of local pollutants damages gasoline 29.02 cents per gallon and diesel at 46.65 cents per gallon respectively assuming 30 percent of cost in combustion phase adjusting for inflation marginal cost of 9.0 cents per gallon for gasoline 14.5 cents per gallon for diesel

15

Cost of Externalities - Local Pollutants

highest damage from local pollutants premature mortality (NRC 2009) marginal cost of local pollutants adjusted by country to reflect the value of statistical life $\left(V S L_{j}\right)$

$$
\begin{aligned}
M C_{L P, i}^{j} & =M C_{L P, i}^{U S} \times \frac{V S L_{j}}{V S L_{U S}} \times \frac{(N O X+V O C)_{j}}{(N O X+V O C)_{U S}} \\
\frac{V S L_{j}}{V S L_{U . S .}} & =\left(\frac{\text { Real GDP/Capita }_{j}}{\text { Real GDP/Capita }_{\text {U.S. }}}\right)^{\eta_{v S L}}
\end{aligned}
$$

16

Cost of Externalities - Traffic Accidents

International Road Federation (2010)

reports fatalities

 applying Parry's (2011) approach to fatalities reported by IRF leads to remarkably high costs we assume that 15% of fatalities are externalities$$
M C_{A C}^{j}=\frac{\text { Traffic Fatalities }(\mathrm{j}) \times \mathrm{VSL}_{\mathrm{j}} \times 15 \%}{\mathrm{Q}_{\mathrm{j}}}
$$

converted to cents per gallon of gasoline and diesel multiply by $280.2 \& 317.6$ ton of oil equivalent per gallon

17

Gasoline Prices Map

Diesel Prices Map

- $\mathbf{P}_{\mathrm{d}}<$ Direct Cost

$\leq \mathbf{P}_{\mathrm{d}}<$ Direct Cost + Rd Mnt

$$
\square \leq \mathbf{P}_{\mathrm{d}}<\text { Direct Cost }+ \text { Rd Mnt }+
$$ Externalities Cost

$\square \leq P_{d}$
Not Considered

Use Price Elasticities in Dahl (2011) to Evaluate

Price and income elasticities for $\mathbf{1 2 3}$ countries
> 98\% of gasoline and diesel used in transportation
From static models
Initially hold income and population constant

$$
Q_{i 2}=Q_{i}\left(\frac{P_{i 2}}{P_{i}}\right)^{\beta_{2}}
$$

20

Gasoline Price Elasticities Stratified by GDP per Capita and Price
Price 2008 cents per Gallon

		<106.8	$106.8-267$	>267
GDP	$<\$ 10680$	-0.15	-0.22	-0.26
per	$\$ 10680-\$ 21360$	-0.11	-0.24	0.32
Capita	$>\$ 21360$	-0.22	-0.22	-0.33

Notes: 1 gallon $=3.785$ liters
Source: Dahl (2012). Price and GDP per capita converted from 2006 to 2008 \$ using the U.S. CPI of 1.068 from
ftp://ftp.bls.gov/pub//special.requests/cpilcpiai.ixt

Diesel Picie Easidities Statifid by GOOP Pec Capita and Pice

Pice 2008 cerlisper Gallon

		<267	3267
GDP per	\$\$6020	-0.22	-0.30
Capita	$\$ \$ 16020$	-0.13	-0.27

Nbes. 1 gallon $=3.795$ liters
Source: Dall (2012). Pice and GDP per capila converted fom 2OOB to $2008 \$$ \$ sing the

22

Three Rationalization Scenarios:

1. Remove fuel subsidies
2. Add road maintenance cost
3. Add externality costs
elasticities adjusted as prices increase
demand price elasticities become more elastic

Reduction in Fuel Consumption

\% Change in Demand by Fuel Gasoline 12.9\%

\square Diesel
8.1\%

Remove Subsidy

Add Road
Maintenance Cost

Add Cost of
Externalities

24
 \% Change in Emissions by Fuel

■ Gasoline Diesel

Remove Subsidy

Add Road
Maintenance Cost

Add Cost of
Externalities

