Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
0	000	000000	0		0

Cost and Uncertainty in Overplanting the Design of Offshore Wind Farms

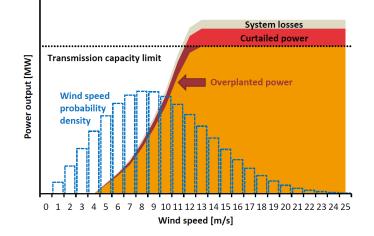
Esteve Borràs Mora^{1,2} James Spelling ² Adriaan H. van der Weijde ³ Marie Berthelot²

¹Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE), University of Edinburgh Edinburgh, EH9 3JL, UK

> ²EDF Energy R&D UK Centre Interchange, 81-85 Station Road, Croydon, CR0 2AJ, UK

 3 University of Edinburgh School of Engineering and the Alan Turing Institute Faraday Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3DW, UK

IAEE International Conference 2019 - Local Energy, Global Markets May 29 - June 1



Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
•	000	000000	0		0

Motivation

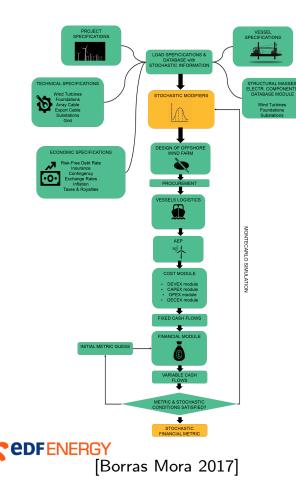
- Farms subjected to a maximum export capacity agreed with the TSO
- Generators can export up to their contracted maximum export capacity
- Majority of the time offshore wind farms are not generating at full power
- Can overplanting result in better overall economics despite power output being curtailed at generations' peaks?

[Wolter et al. 2016]

Overplanting

Optimising the offshore wind capacity to the fixed electrical infrastructure

Motivation	Modelling	Ca
0	00	0
Offshore Wind	Cost Modelling Tool	


Case Study and Results 000000

Conclusions and Future Work O

References

Questions O

Offshore Wind Cost Modelling Tool

Characteristics

- Aim : rapidly evaluate the financial performance of a farm
- Inputs : project specifications, technology choices and market trends
- **Outputs** : financial metrics based on LCOE
- **Structure** : 4 main modules Design, Cost, Financial and Stochastic
- Stochastic Framework: Quantitative uncertainty management, Double loop Monte Carlo Simulation - inner loop within AEP

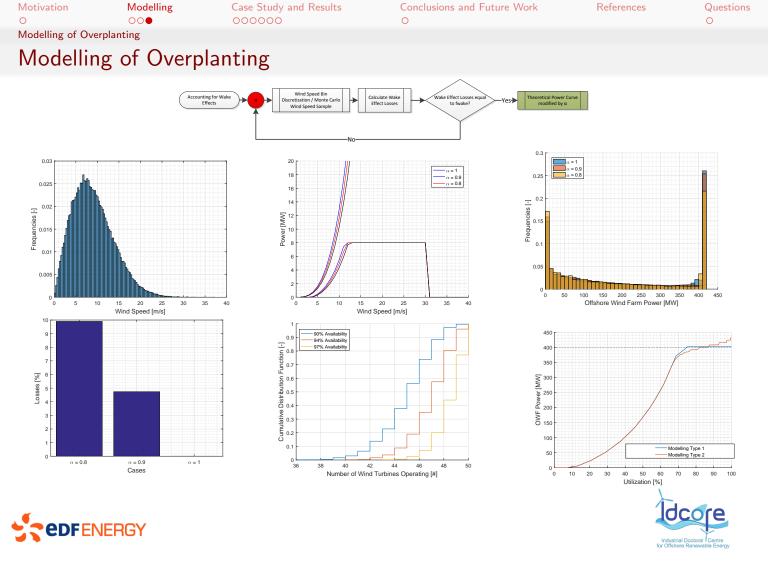
Motivation Modelling O OOO Factors Affecting Overplanting Case Study and Results

Conclusions and Future Work $\ensuremath{\mathsf{O}}$

References

Questions O

Factors Affecting Overplanting


[1]

Factors

- Ratio of wind turbine expenditure to electrical infrastructure
- Wind speed distribution
- Wind turbine availability
- Inter-array cable availability
- Wake effects
- Electrical losses
- Degradation factor

Motivation

Case Study

Case Study

Case Study and Results

Conclusions and Future Work O

References

Questions O

Reference Case

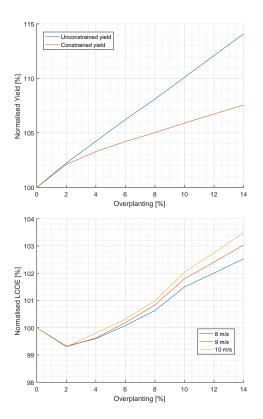
400MW commercial offshore wind farm 400MW fixed maximum export capacity 50-8MW WTGs 0-14% overplanting

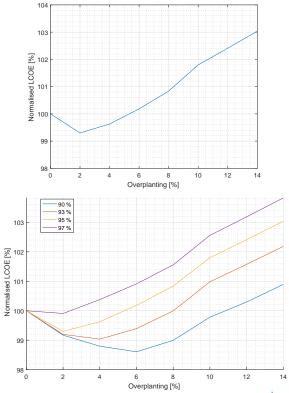
Modelling

2% overplanting = 1 additional WTG

Characteristic	Value	Uncertainty
Water Depth [m]	25	None
Distance from shore [km]	25	None
Mean Wind Speed @ 100m [m/s]	9	$\mathcal{N}(9, 0.1^2)$
Wind Turbine Availability [%]	95	$\mathcal{U}(90, 97)$
Inter-Array Cable Availability [%]	99	$\mathcal{U}(97, 99)$
Foundation Type [-]	Monopile	None
Electrical Infrastructure [-]	HVAC	None
Wind Turbine Type [-]	164-8 MW	None
Wake effect [%]	10	None
Degradation Factor [%]	0.5	None

Configurations


Capacity[MW] 400	WTG[MW] 4	Distance [km] 25	Depth[m] 25
1000	8	50	40
2000	12	75	60

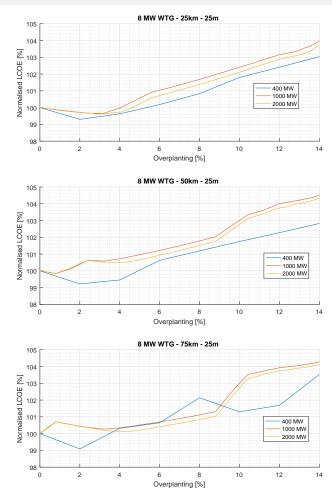


Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
0	000	00000	0		0
Deterministic Results	5				

Deterministic Results & Local Sensitivity Analysis

OFENERGY

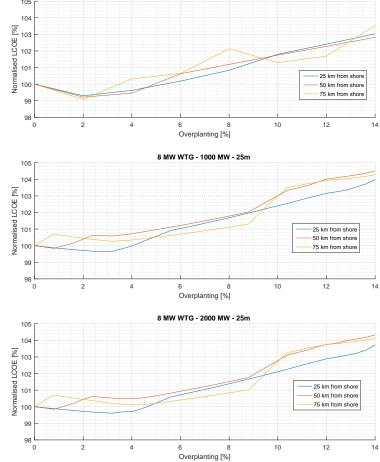
Motivation	Modelling
0	000
Local Sensitivity	Analysis

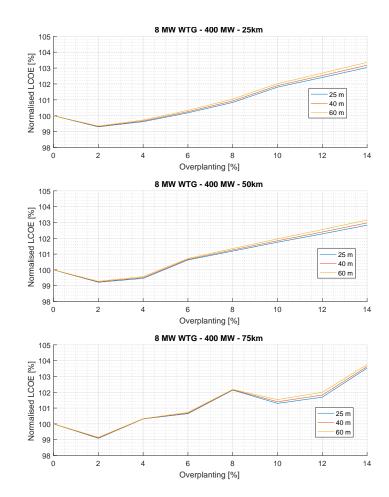

Case Study and Results

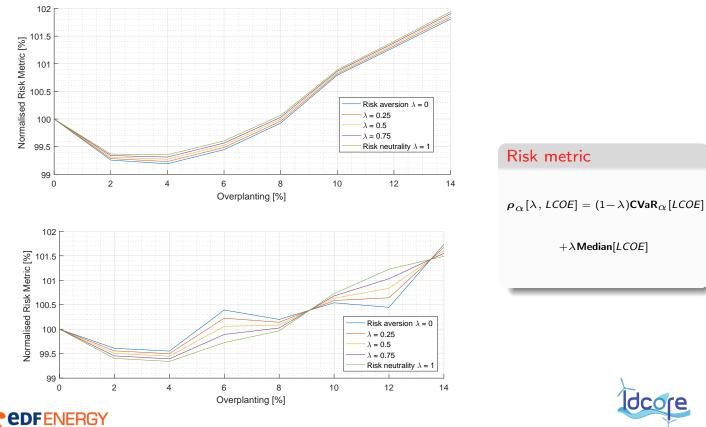
Conclusions and Future Work

Questions O

Local Sensitivity Analysis


Distance from Shore


Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
0	000	000000	0		0
Local Sensitivity	Analysis				
Capacity	1				
		105 m	VTG - 400 MW - 25m		


Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
0	000	000000	0		0
Local Sensitivity Ar	nalysis				
Water Depth					

edfenergy

Motivation	Modelling	Case Study and Results	Conclusions and Future Work	References	Questions
0	000	00000	0		0
Stochastic Results					
Stochastic Results $\rho_{\alpha}[\lambda, overplanting]$					

Industrial Doctoral Centre for Offshore Renewable Energy

Conclusions and Future Work

Modelling

Conclusions

- Development of a novel framework to evaluate overplanting under uncertainty
- Wind turbine availability is the most sensitive parameter to overplanting. Consequently, previous studies based on low wind turbine availabilities rates need to be revisited
- Optimal overplanting setup increased when considering the uncertainty quantification framework regardless of risk appetite (from 2% to 4%)
- Overplanting the reference farm from 2% to 8% gives a better result than with no overplanting for a risk neutral setting
- Wind farm capacities, turbine sizes and distances from shore are sensitive parameters to overplanting, whereas water depths play a secondary role
- Sites located further from shore, with bigger wind turbines and less units for a given wind farm capacity will most likely have small benefits from overplanting

Future Work

- How is overplanting influence by the degradation factor?
- How does risk aversion influence the decision for these new sites?

Motivation O	Modelling 000	Case Study and Results	Conclusions and Future Work O	References	Questions O
Referen	ces				
	Offshore Wind Far	rms". In: <i>Offshore Wind</i> 2011). <i>Connection Offer I</i>	om Deterministic to Stochastic Energy Conference 44.June. Policy & Process (COPP). Tec		1 for
	Forewind (2012). Selection Report.		t Chapter 6 Appendix B Offsh	ore Project Bounda	ary
	Grid, National (2008). Round 3 Offshore Wind Farm Connection Study. Tech. rep.				
	facilities". In: Ener	rgy Economics 61, pp. 87	7). "Optimal over installation 7–96. ISSN: 0140-9883. DOI: p://dx.doi.org/10.1016/j.e	-	
	Morris, Nigel (201 Commission for Er		Capacity Cap Installed Capaci	ty Cap. Tech. rep.	
		-	v (2002). "Conditional value-a nance 26, pp. 1443–1471.	t-risk for general lo	DSS
	TenneT (2015). <i>P</i>	OSITION PAPER Overp	lanting. Tech. rep. TenneT, pp	». 1 - 7.	
	Regimes". In: 15th	2016). "Overplanting in O Wind Integration Work .matsci.35.100303.110		Different Regulate	pry

Notivation	Modelling
)	000

Case Study and Results

Conclusions and Future Work O

Questions

Cost and Uncertainty in Overplanting the Design of Offshore Wind Farms

 ${\it Esteve.BorrasMora@edfenergy.com}$

Acknowledgements

This work is sponsored by EDF Energy R&D UK and the Industrial Doctoral Centre for Offshore Renewable Energy (IDCORE), a consortium of the University of Exeter, University of Edinburgh and University of Strathclyde. IDCORE is funded by both the Energy Technologies Institute and the Research Councils Energy Programme through grant number EP/J500847/1. Additional support came from the UK Engineering and Physical Sciences Research Council through grant number EP/P001173/1 (CESI).

