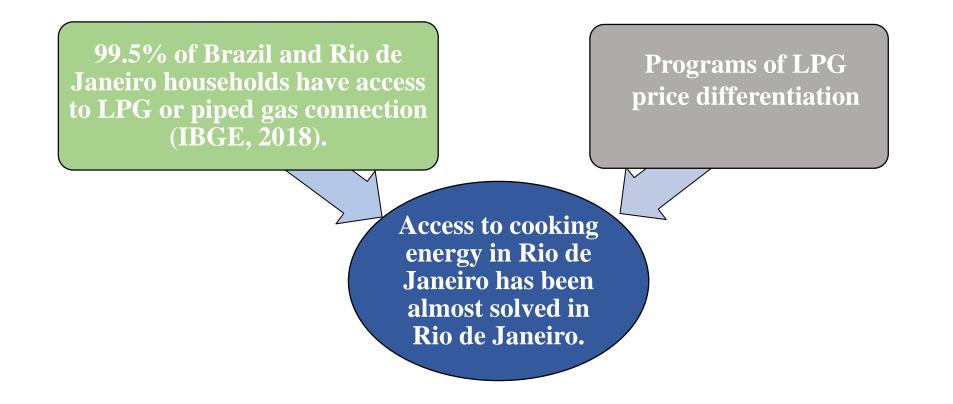
EVIDENCE OF HIDDEN DIMENSIONS THAT DETERMINE THE USE OF ENERGY FOR COOKING IN BRAZIL

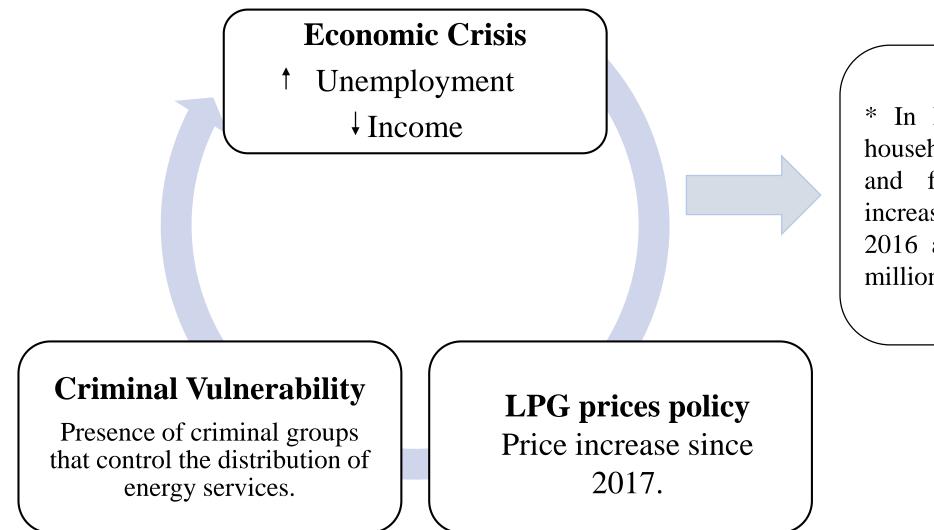
Yormy eliana melo poveda Luciano Losekann Niágara Rodrígues


1. Introduction

• The objective of this work is to examine household's accessibility to energy for cooking in Rio de Janeiro, Brazil.

• Data from the National Survey by Household Sample (PNAD from its portuguese initials) indicate that the Liquefied petroleum gas (LPG), a modern energy source, is being partially replaced by firewood and coal.

1. Introduction



There are other dimensions that interact and influence the use of energy for cooking. This is what we call the Hidden Dimensions of Energy for Cooking.

Universidade

Federal Fluminense

1. Introduction

* In Brazil, the number of households that used charcoal and firewood for cooking increased by 27% between 2016 and 2018, reaching 14 million households.

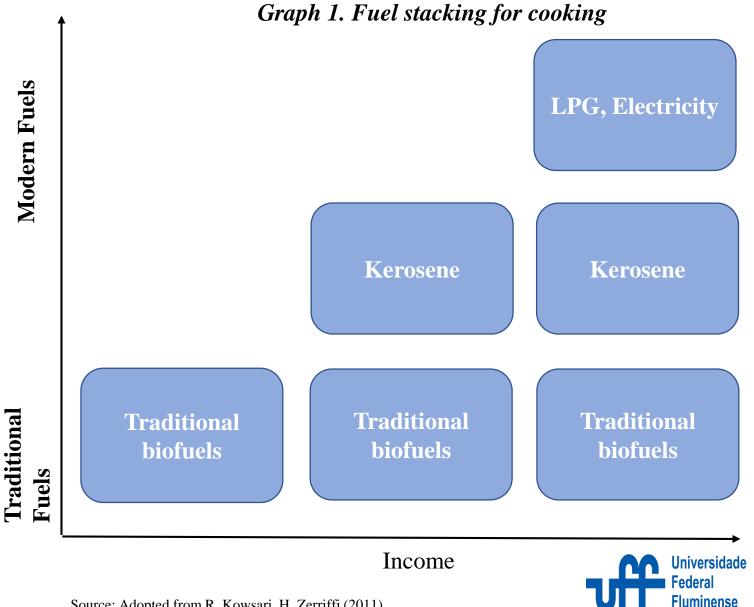
2. Household Fuel Use: Theoretical Literature

Energy Ladder Theory

Assumes a linear progression of fuel adoption that implies moving up the Ladder, means a corresponding abandonment of the lower level fuels. Fuel Stacking Theory

Households choose

to use a combination of fuels and conversión technologies depending on budget, preferences, and needs.



2.1 Fuel stacking Theory

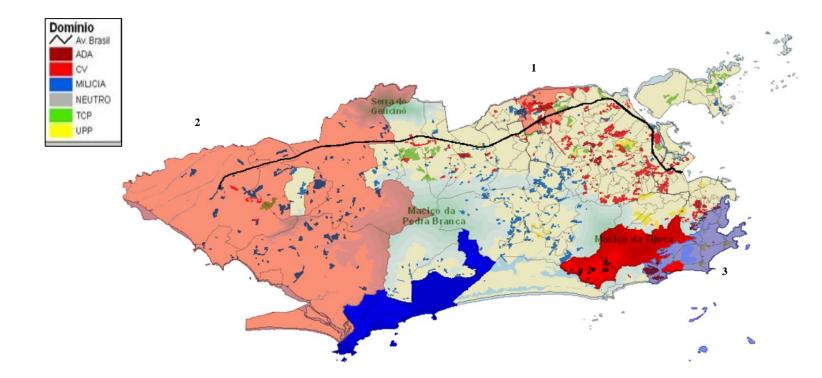
• Fuel stacking is associated with a variety of fuel usage patterns, in which households choose a combination of fuels from the lower and upper levels of the ladder.

- Indeed, **modern fuels** may serve only as **partial**, rather than perfect, **substitutes** for traditional fuels (Van der Kroon et al., 2013, 2014).
- Masera et al. (2000) noted that **fuel stacking** is common in both urban and rural areas of developing countries.

Source: Adopted from R. Kowsari, H. Zerriffi (2011)

2.1.1 Factors Determining Household Energy Choice in the Literature

Dimension	Factors					
Economic	• Income, expenditure, relative prices.					
Non-Economics	 Household size, household composition, age, labor, information. 					
Social	Level educational, gender.					
Cultural	• Preferences, practices, habits, lifestyle, ethnicity.					
Policy	 Subsidies, Energy Policy, Market and trade policies. 					
Physics environmental	Geographic location.					



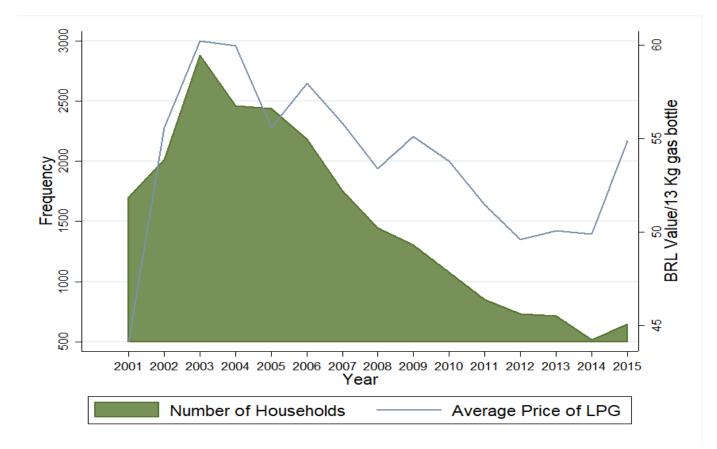
3. Hidden dimensions determining the use of energy for cooking in Rio de Janeiro

- Low public security, high levels of violence and the fear of criminal groups → obstacles to government to offer social services as:
 - Health and education
 - Access to the justice
 - Quality of electricity.
- Criminal groups (especially militia groups formed by former policemen) use tactics of violent coercion, extortion and illegal exploration of monopoly services:
 - Transport, cable TV, electricity, LPG.
 - In Rio de Janeiro, criminal factions control large slums.
- Higher prices of LPG, due to the territory control of criminal factions \rightarrow low-income consumers allocate a significant part of their budget for LPG acquisition and, eventually, replace them with firewood and charcoal.

3.1 Criminal Groups Distribution in Rio de Janeiro

 Regions with lower development indicators are controlled by Traffic (North Zone) and Militia (West Zone).

(1) North Zone(2) West Zone(3) South Zone

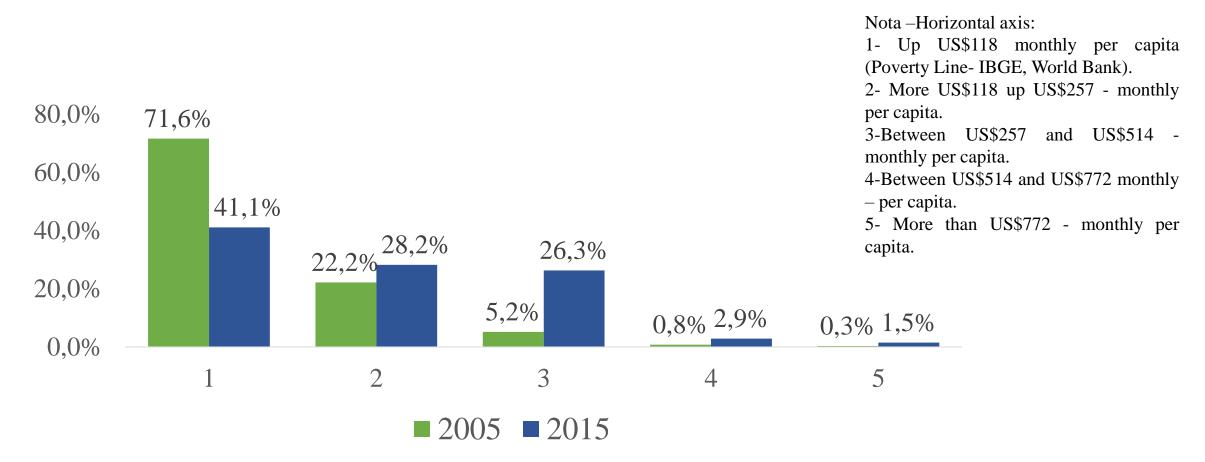

Fonte: Own Elaboration based em Zaluar (2012).

3.2 Driving Dimensions of Energy for cooking in Rio de Janeiro

Dimension	Definition	Sphere of action
Socio-Economic	• Associated with household income and its relation to fuel prices.	External
	• Factors such as the level of schooling, structure of the household.	Internal
Location	• The territory results from processes of control, domination and appropriation of physical space by state and non-state agents.	External
	• Energy deprivation is sensitive to neighbourhoods with presence of criminal groups.	
Political and Institutional	• It is associated to a culture of loose governance.	External
	• Expressed by the quality of public service provision and the bureaucracy; corruption.	
	Energy Policy	

3.3 LPG Price and Use of Firewood and Charcoal for Cooking in Urban Areas in Brazil, 2001-2015

- The Graph suggests that increases in the LPG price are related to a greater number of households (with lower incomes) that consume firewood and coal.
- This does not indicate causality or the integral substitution of modern sources for traditional fuels.
- The determinants of the choice of traditional sources is related to economic and social factors too.


3.4 Households using Firewood and Charcoal for Cooking in Brazil, 2016-2018

Variable	Area	2016	2017	2018	Variation 2018- 2016
Household (Number)	Brasil	11.038.385	12.223.059	14.061.355	27%
Household (Number)	Metropolitan regions in Brazil	1.542.099	1.736.005	2.042.526	32%
Household (Number)	Rio de Janeiro City	4.791	3.660	5.665	18%

Source: PNAD Continua, IBGE (2019)

3.5 Households Using Firewood and coal for Cooking, by Level Income Urban Areas in Brazil - 2005 and 2015

Source: Own elaboration based on PNAD, 2005 and 2015 (IBGE).

Note: the income level were constructed from the real per capita monthly income, prices of 2016.

Conclusions: Implications for Research

- This work does not present conclusions about the relationships between the called *hidden dimensions*.
- The current economic situation, the adoption of LPG prices and the location determining the deprivation of use modern energy sources for cooking in Brazil.
- The increasing of the use of firewood and coal for cooking in Brazil is going against the 2030 Agenda for Sustainable Development adopted in 2015.
- The next step would be a quantitative analysis spatial of institutional and economic dimension and its influence on the use energy for cooking in Rio de Janeiro.

Thank You!

Questions?

References

- Ahmad, S., & Puppim de Oliveira, J. (2015). Fuel switching in slum and non-slum households in urban India. Journal of Cleaner Production, 94, 130-136.
- Alem, Y., Beyene, A., Köhlin, G., & Mekonnen, A. (2016). Modeling household cooking fuel choice: A panel multinomial. Energy Economics, 59, 129-137.
- Bouzarovski, S., & Petrova, S. (2015). A global perspective on domestic energy deprivation: Overcoming the energy poverty-fuel poverty binary. Energy Research & Social Science, 10, 31-40.
- Davis, M. (1998). Rural household energy consumption The effects of access to electricity evidence from South Africa. *Energy Policy*, 26(3), 207-217.
- Farsi, M., Filippini, M., & Pachauri, S. (2007). Fuel choices in urban Indian households. *Environment and Development*, 12(06), 757-774.
- Gonçalves, L. d. (2017). Letalidade Violenta e Controle Ilegal do Território no Rio de Janeiro. Cadernos de Segurança Pública, 9 (8).
- Gupta, G., & Köhlin, G. (2006). Preferences for domestic fuel: Analysis with socio-economic factors and rankings in Kolkata, India. Ecological Economics, 57, 107-121.
- Heltberg, R. (2004). Fuel switching: evidence from eight developing countries. *Energy Economics*, 26, 869-887.
- Heltberg, R. (2005). Factors determining household fuel choice. Environment and Development Economics, 10, 337-361.
- Hosier, R., & Dowd, J. (1987). Household Fuel Choice in Zimbabwe: An Empirical Test of the Energy Ladder Hypothesis. Resources and Energy, 9, 347-361.
- Israel, D. (2002). Fuel choice in Developing countries: Evidence from Bolivia. Economic Development and Cultural Change, 50(4), 865-890.
- Lay, J., Ondraczek, J., & Stoever, J. (2013). Renewables in the energy transition: Evidence on solar home systems and lighting fuel choice in Kenya. *Energy Economics*, 40, 350-359.
- Lee, L.-T. (2013). Household energy mix in Uganda. Energy Economics, 39, 252-261.
- Masera, O., Saatkamp, B., & Kammen, D. (2000). From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model. *World Development*, 28(12), 2083-2103.
- Ouedraogo, B. (2006). Household energy preferences for cooking in urban Ouagadougou. Energy Policy(34), 3787-3795.
- Paudel, U., Khatri, U., & Prasad Pant, K. (2018). Understanding the determinants of household cooking fuel choice in Afghanistan: A multinomial logit estimation. *Energy*, 156, 55-62.
 Universidade

Federal Fluminense

• Zaluar, A. (2012). Juventude Violenta: Processos, Retrocessos e Novos Percursos. DADOS, 55(2), 327-365.