A Gas Cartels in the Market, Hype or Reality?

Fazel Moridi Farimani (Sharif university of Technology)
Seyed Reza Mirnezami (Sharif university of Technology)
IAEE International Conference – 2019

Background

- In late 2018, Qatar left the OPEC
- The announcement stressed on the Gas market
- Qatar is a key player in the GECF
- The issues of Gas cartel formation again drew attentions

Basic Questions?

- The Interaction Between Two Cartels and their members
- Which Countries Are Interested in Gas Cartel?
- Under Which Condition Gas Cartel agreement is Possible?
- The Effect of Gas Cartel Formation on P and Q of Oil and Gas

Countries Classification

- ► I: Export only oil, OPEC members: KSA, Kuwait, Iraq.
- II: Export only oil, not members of OPEC: UK, Syria.
- III: Export both oil and NG and OPEC members: Qatar, Iran, Algeria, Nigeria, Venezuela.
- IV: Export both oil and NG, not members of OPEC: Oman, Canada, Russia, Norway.
- V: Export only NG: Turkmenistan, Ukraine, Uzbekistan, Bahrain.

In The Model

- Group A: Export only oil, OPEC members: KSA, Kuwait, Iraq.
- Group B: Export both oil and NG, OPEC members: Qatar, Iran, Algeria, Nigeria, Venezuela.
- Group C: Export only NG: Turkmenistan, Ukraine, Uzbekistan, Bahrain.

Demand Function

$$P_i(Q_i, Q_j) = \alpha_i - \beta_i Q_i - \theta_i Q_j$$

for $i, j \in \{O, G\}$ and $i \neq j$

 P_i : Price of product i

 Q_i : Quantity of product i

 Q_j : Quantity of product j

 α_i : Maximum price of product i (intercept)

 β_i : Effect of the quantity of product i (direct effect)

 θ_i : Effect of the quantity of product j (indirect effect)

$$\beta_i, \beta_j \geq \theta_i, \theta_j \geq 0$$

Cost Function

Marginal cost of production is constant and the same for all producers of a given good.

Cartel Profit Function

• When the cartel is formed, members try to maximize the sum of their profit, which includes their profit in substitute market, λ_A and λ_C show their share in each market profit.

Cartel Profit Function (Cont.)

Scenario 1(base):

$$\pi_{OC}^{1} = \lambda_{A}\pi_{O} + (1 - \lambda_{A})\pi_{O} + \pi_{G,B}$$

$$\pi_{B}^{1} = (1 - \lambda_{A})\pi_{O} + \pi_{G,B}$$

$$\pi_{G,C}^{1} = q_{G,C}[(\alpha_{G} - \beta_{G}(q_{G,B} + q_{G,C}) - \theta_{G}Q_{O} - C_{G})]$$

Scenario 2:

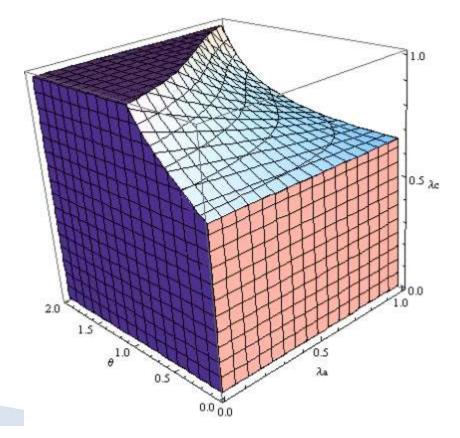
$$\pi_{OC}^{2} = \lambda_{A}\pi_{O} + (1 - \lambda_{A})\pi_{O} + (1 - \lambda_{C})\pi_{G}$$

$$\pi_{GC}^{2} = \lambda_{C}\pi_{G} + (1 - \lambda_{A})\pi_{O} + (1 - \lambda_{C})\pi_{G}$$

Stability of the Cartel and Bargaining Factors

- They form a cartel if they are better off in the cartel compared to staying out.
- $\pi_B^1 \leq \pi_B^2$ and $\pi_C^1 \leq \pi_C^2$
- Agreement possibilities for cartel formation:
 - With money transfer
 - Without money transfer

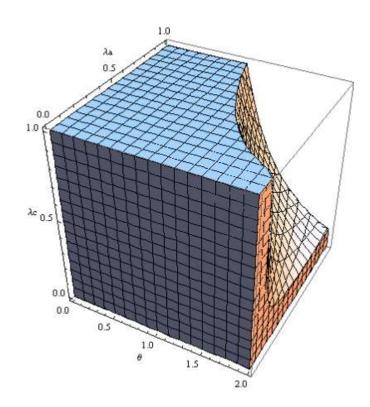
Results – The effect of Gas Cartel Formation on P and Q


- Theorem 1: Following the formation of the gas cartel, for any sets of parameters:
- i) Q_O increases
- ii) Q_G decreases
- iii) P_G increases
- Theorem 2:

The effects of the gas cartel formation on P_0 is ambiguous.

Results (Gas Cartel Formation Feasibility)

Theorem 3: There are some set of parameters such that there are no mutually beneficial political agreements.


Values of θ , λ_A , and λ_C for which the oil price increases after the formation of the gas cartel with $(\alpha=1,\beta=2,C=0)$

Results (Gas Cartel Formation Feasibility)

Theorem 4: There are some set of parameters such that there are no mutually beneficial monetary agreements

Values of θ , λ_A , and λ_C for which mutually beneficial monetary agreement is possible with $(\alpha=1,\beta=2$ and C=0)

Conclusion

- In reality, since no money transfer is possible, the cartel formation is feasible only in narrow region of λ_C and θ . Hence it vulnerable
- Findings implicitly indicate that λ_A is not a crucial factor impacting the formation of gas cartel.

Conclusion (Cont.)

- powerful and active members of OPEC who are also key players of gas market prefer a joint strategy for both oil and gas.
- But countries that have unbalanced portfolio of oil and gas supply may not be interested to remain in both if there is an efficient gas cartel.

Future Works

Including all five country groups and model their willingness to join the cartel and the effects of the new gas cartel on each group's profits.

Thank you

Literature Review

- ► General Cartel Behavior and Its Stability
 Harrington (2005), Feurestein (2005), Iwarani et al.(2007),
 Villar (2004), Choi et al (2009)
- Applied (Gas Cartel Formation and Its Effect) Ehrman (2006), Egging et al.(2009), Gabriel et al. (2010)

Method of Solving

- Four Different Level of Symmetric Parameter,
- Level One: all Parameters are symmetric except λ

$$\alpha_O = \alpha_G = \alpha$$
, $\beta_O = \beta_G = \beta$, $\theta_O = \theta_G = \theta$ and $C_O = C_G = C$

- Level Two: Only θ is Symmetric
- Level Three: θ and β are Symmetric
- Level Four: All parameters are Asymmetric

Equilibrium P, Q and Profits Scenario 1

$$\begin{split} Q_O^1 &= \frac{(\alpha - C) \ (\beta - \theta)}{2(\beta^2 - \theta^2) + \lambda_A \theta^2} \\ Q_{G,B}^1 &= \frac{(\alpha - C)(2\beta - \theta)(\beta + \theta(-1 + \lambda_A))}{3\beta(2(\beta^2 - \theta^2) + \lambda_A \theta^2)} \\ Q_{G,C}^1 &= \frac{(\alpha - C)(2(\beta^2 - \theta^2) + 2\theta^2\lambda_A - \beta\theta\lambda_A)}{3\beta(2(\beta^2 - \theta^2) + \lambda_A \theta^2)} \\ P_O^1 &= \frac{C(\beta + \theta(3\beta^2 - 2\beta\theta + \theta^2(-1 + \lambda_A))}{3\beta(2(\beta^2 - \theta^2) + \lambda_A \theta^2)} \\ &+ \frac{\alpha(3\beta^3 - \beta^2\theta - \theta^3(-1 + \lambda_A) + \beta\theta^2(-3 + 2\lambda_A))}{3\beta(2(\beta^2 - \theta^2) + \lambda_A \theta^2)} \\ P_G^1 &= \frac{C(\beta + \theta)(4\beta + \theta(-4 + \lambda_A)) + \alpha(2\beta^2 + 2\theta^2(-1 + \lambda_A) - \beta\theta\lambda_A)}{6\beta^2 + 3\theta^2(-2 + \lambda_A)} \end{split}$$

Equilibrium P, Q and Profits Scenario 1 (Cont.)

$$\pi_{A}^{1} = \frac{(\alpha - C)^{2}(\beta - \theta)\lambda_{A}(3\beta^{3} - \beta^{2}\theta - \theta^{3}(-1 + \lambda_{A}) + \beta\theta^{2}(-3 + 2\lambda_{A}))}{3\beta(2(\beta^{2} - \theta^{2}) + \lambda_{A}\theta^{2})^{2}}$$

$$\pi_{B}^{1} = \frac{-(\alpha - C)^{2}(2\beta^{3}\theta(9 - 7\lambda_{A}) + 5\theta^{4}(-1 + \lambda_{A})^{2} + \beta^{4}(-13 + 9\lambda_{A}))}{9\beta(2(\beta^{2} - \theta^{2}) + \lambda_{A}\theta^{2})^{2}} + \frac{-(\alpha - C)^{2}(\beta^{2}\theta^{2}(8 + \lambda_{A}(-17 + 8\lambda_{A})) - 2\beta^{3}(-1 + \lambda_{A})(-9 + 7\lambda_{A}))}{9\beta(2(\beta^{2} - \theta^{2}) + \lambda_{A}\theta^{2})^{2}}$$

$$\pi_{C}^{1} = \frac{(\alpha - C)^{2}(2\beta^{2} + 2\theta^{2}(-1 + \lambda_{A}) - \beta\theta\lambda_{A})^{2}}{9\beta(2(\beta^{2} - \theta^{2}) + \lambda_{A}\theta^{2})^{2}}$$

Equilibrium P, Q and Profits Scenario 2

$$Q_{O}^{2} = \frac{(\alpha - C)(2\beta + \theta(-2 + \lambda_{A}))}{4\beta^{2} - \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C})}$$

$$Q_{G}^{2} = \frac{(\alpha - C)(2\beta + \theta(-2 + \lambda_{C}))}{4\beta^{2} - \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C})}$$

$$P_{O}^{2} = \frac{-C(2\beta^{2} + \theta^{2}(-2 + \lambda_{A}) + \beta\theta\lambda_{C})}{-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C})} + \frac{\alpha(-2\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-1 + \lambda_{C}) + \beta\theta\lambda_{C})}{-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C})}$$

$$P_{G}^{2} = \frac{-C(2\beta^{2} + \theta^{2}(-2 + \lambda_{C}) + \beta\theta\lambda_{A})}{-4\beta^{2} + \theta^{2}(-2 + \lambda_{C})(-1 + \lambda_{A}) + \beta\theta\lambda_{A})} + \frac{\alpha(-2\beta^{2} + \theta^{2}(-2 + \lambda_{C})(-1 + \lambda_{A}) + \beta\theta\lambda_{A})}{-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C})}$$

Equilibrium P, Q and Profits Scenario 2(Cont.)

$$\pi_{A}^{2} = \frac{\lambda_{A}(\alpha - C)^{2}(2(\beta - \theta) + \theta\lambda_{C}))(2\beta^{2} - \theta^{2}(-2 + \lambda_{A})(-1 + \lambda_{C}) - \beta\theta\lambda_{C})}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}}$$

$$\pi_{B}^{2} = \frac{(\alpha - C)^{2}(2\theta^{3}(-2 + \lambda_{A})(-1 + \lambda_{A})(-2 + \lambda_{C})(-1 + \lambda_{C})}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}} - \frac{(\alpha - C)^{2}(4\beta^{3}(-2 + \lambda_{A} + \lambda_{C}) + 4\beta^{2}\theta(-2 + \lambda_{A} + \lambda_{C}))}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}} + \frac{(\alpha - C)^{2}\beta\theta^{2}(-8 + 3\lambda_{A}^{2}(-1 + \lambda_{C}) - 3(-4 + \lambda_{C})\lambda_{C})}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}} - \frac{(\alpha - C)^{2}\beta\theta^{2}(\lambda_{A}(12 + \lambda_{C}(-16 + 3\lambda_{C})))}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}}$$

$$\pi_{C}^{2} = \frac{\lambda_{C}(\alpha - C)^{2}(2(\beta - \theta) + \theta\lambda_{A}))(2\beta^{2} - \theta^{2}(-2 + \lambda_{C})(-1 + \lambda_{A}) - \beta\theta\lambda_{A})}{(-4\beta^{2} + \theta^{2}(-2 + \lambda_{A})(-2 + \lambda_{C}))^{2}}$$

Results – The effect of Gas Cartel Formation on P and Q

- Theorem 01: Following the formation of the gas cartel, for any sets of parameters:
- i) Q_o increases
- ii) Q_G decreases
- iii) P_G increases
- ▶ Theorem 02:

The effects of the gas cartel formation on Po is ambiguous.