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Philosophy

“Guessing” (i.e. inferring from statistical data) a probability law for unpre-
dictable future prices, interest rates, . . . is adding too much “information”
into the model, information that the mathematics will strive to exploit to its
ultimate consequences, which were not necessarily meant. A possible lack
of robustness to inadequate modelization.

e.g. the famous Samuelson model

dS/S = µdt+ σdb

implies that (interalia)

lim
n→∞

2n−1∑
k=0

[
S(2−n(k + 1)t)− S(2−nkt)

S(2−nkt)

]2

= σ2t
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Dynamic portfolio optimization
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Notation

• i = 0 : index of the risk-free asset (bonds),

• i = 1, . . . , n : indices of risky assets (stocks),

• Si : market price of asset i, normalized as ui = Si/S0,

• xi : number of shares of asset i in the portfolio,

• W =
∑n
i=0 xiSi : worth of the portfolio,

• ϕi = xiSi/W ,

• C = χW : consumption.
At each step, C(t) = χ(t)W (t),⇒W (t+) = (1− χ(t))W (t−)
then rearrange portfolio at fixed W choosing new ϕ(t). (= ϕ(t+).)

We use u, x, ϕ vectors in Rn without the 0 component.
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Dynamics

Reminder : Merton’s “continuous finance”

If we adopt a stochastic model of prices, one is obliged to choose a model
with independent increments to prevent the mathematics from trying to
“guess” (infer) future prices based upon past prices. In the continuous
trading fiction, this has led, ever since the times of Bachelier (1900) to the
adoption of models generating trajectories with unbounded variations.

The undisputed winner in current mathematical finance is “Samuelson’s
model”

dSi
Si

= µidt+ σidb

σi a row of coefficients, b a vector of independent normal brownian motions
17



Dynamics

We have more freedom sticking with discrete time dynamics.

Market

• t ∈ 0,1, . . . , T : time,

• τi(t) = (ui(t+ 1)− ui(t))/ui(t)

Portfolio

w(t+ 1) = [1 + ϕt(t)τ(t)][1− χ(t)]w(t)
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Utility

Let γ < 1. (1− γ measures risk aversion.)

Consumption: U(t, c) = p(t)1−γcγ e.g. p(t) = ρ exp[(T − t)/(1− γ)]

Bequest function: B(w) = Π1−γwγ

Overall utility: J = B(w(T )) +
T−1∑
t=0

U(t, c(t))

J = Π1−γw(T )γ +
T−1∑
t=0

p(t)1−γχ(t)γw(t)γ
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Dynamic programming

V (t, w) = max
χ,ϕ

[
EV

(
t+ 1, (1 + ϕtτ(t))(1− χ)w

)
+ p(t)1−γχγwγ

]
V (T,w) = Π1−γwγ

Solution

V (t, w) = P (t)1−γwγ , α1−γ(t) := max
ϕ

E[1 + ϕtτ(t)]γ ,

P (t) = α(t)P (t+ 1) + p(t) , P (T ) = Π , χ?(t) =
p(t)

P (t)
.
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Reminder: Merton’s problem

With the continuous “Samuelson” market model, Σ = σσt

∂V

∂t
+max

ϕ,χ

[
∂V

∂w
(ϕt(µ−µ0)−χ)w +

1

2
ϕtΣϕ

∂2V

∂w2
w2 + p1−γχγwγ

]
=0

V (T,w) = Π1−γwγ .

Solution

V (t, w) = P (t)1−γwγ , α =
γ

2(1− γ2)
(µ− µ0)tΣ−1(µ− µ0) ,

Ṗ + αP + p = 0 , ϕ? =
1

1− γ
Σ−1(µ− µ0) , χ?(t) =

p(t)

P (t)
.
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Market model

Let L(ϕ) = E[1 + ϕtτ(t)]γ.

Problem: Solve maxϕL(ϕ)

Usually, under the constraint ϕi ≥ 0 ,
∑n
i=1ϕi ≤ 1 (i.e. ϕ0 ≥ 0).

Depends on the model for τ(t) :=
u(t+ 1)− u(t)

u(t)

29



The empirical market model

Use a known time history {τ(s)}s<t of length `, choose a forget factor
a < 1 (such that a` is very small) and set

P{τ(t) = τ(t− k)} =
1− a
1− a`

ak−1

• Strength: “Guesses” no data. In that sense, the most “robust” model.

• Weaknesses: Purely numerical optimization (no analytical help).
Non stationary, the optimization in ϕ must be carried out at each step.
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The uniform interval model

τ(t) = µ+ σω(t),

σ a matrix, with
∑
j |σij| ≤ 1 + µi. Σ = σσt. ω ∈ C = [−1,1]n,

ωi(t) independently uniformly distributed ⇒ covar(τ) = (1/3)Σ

Let ψ := σtϕ, Ĉ the verticies of C, and for ω̂ ∈ Ĉ, ς(ω̂) =
∏
i ω̂i.

L(ϕ) =
1

2n
∏n
i=1(γ + i)ψi

∑
ω̂∈Ĉ

ς(ω̂)[1 + ϕt(µ+ σω̂)]γ+n.

Whence an (ugly but easy to code) closed form formula for ∇L(ϕ).

Strength: Easy to optimize, stationary⇒ single computation.
Weakness: Uses an artificial probability law.
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Option pricing

A joint work with

Stéphane Thiery and Naı̈ma El Farouq

ENSAM Lille,

and

University Blaise Pascal, Clermont-Ferrand

France
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Reminder: an option

A vanilla call (resp put) is a contract by which the seller agrees, if the buyer
so requires to sell (resp buy) him a given underlying asset (such as a stock)
at an agreed exercise price or strike K at (or whenever the buyer requests
no later than) an agreed exercize time T .

Can be seen as a contingent claim: a contract according to which the seller
will pay the buyer an agreed function M(·) of the underlying’s market price
S(t) at exercise time t ( = T for a european option, ≤ T for an american
option.)

The question is: how to price such a contract ?
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The function M
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Reminder: Black and Scholes

Merton’s idea: charge a premium equal to the cost of a portfolio made of
the underlying asset and riskless bonds, with return rate µ0,
which, if properly managed in a self-financed way replicates the option.

Black and Scholes solution with Samuelson’s model: portfolio worth
W (0, S(0)) where W (t, s) solves

∂W

∂t
− µ0W + µ0s

∂W

∂s
+

1

2
s2σ2∂

2W

∂s2
= 0 , W (T, s) = M(s) .

Has a closed form solution in terms of the erf functions.

(Owes nothing to probabilities! Due to the quadratic relative variation)
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“Robust” approach

• Represent the unpredictable disturbances (the underlying’s price or
price variations) as a set of possible time histories, (interval model).

• do not endow this set with a probability structure (too rich !),

• solve the hedging problem for all possible disturbances histories

• via a minimax control problem.
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Claims

• No reliance on a probability law for the future market prices

• Consistent theory of continuous and discrete hedging:

– fixed (continuous time) market model,

– discrete trading as a sampling of the continuous model,

– convergence;

• With transaction costs.
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Riskless rates and normalization

Riskless interest rate µ0. Necessarily the same when lending or borrowing.

T a fixed (final) time, R(t) = e−µ0(T−t) value of a riskless bond, used as
unit of monetary value. Normalized at R(T ) = 1.

MarketS(t) price of the underlying stock at time t. Set u(t) = S(t)
R(t).

Portfolio of x(t) shares of that comodity, set v(t) = x(t)S(t)
R(t) ,

plus a banking account equivalent to y(t) shares of (fictitious) bonds R,

for a total worth of w(t) = v(t) + y(t) riskless bonds.

In these “constant dollar” prices, no discounting on future gains or losses,
no interest on riskless lending and borrowing.
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unit of monetary value. Normalized at R(T ) = 1.

MarketS(t) price of the underlying stock at time t. Set u(t) = S(t)
R(t).

Portfolio of x(t) shares of that comodity, set v(t) = x(t)S(t)
R(t) ,

plus a banking account equivalent to y(t) shares of (fictitious) bonds R,

for a total worth of w(t) = v(t) + y(t) riskless bonds.

In these “constant dollar” prices, no discounting on future gains or losses,
no interest on riskless lending and borrowing.
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Riskless rates and normalization

Riskless interest rate µ0. Necessarily the same when lending or borrowing.
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Riskless rates and normalization

Riskless interest rate µ0. Necessarily the same when lending or borrowing.

T a fixed (final) time, R(t) = e−µ0(T−t) value of a riskless bond, used as
unit of monetary value. Normalized at R(T ) = 1.

Market S(t) price of the underlying stock at time t. Set u(t) = S(t)
R(t).

Portfolio of x(t) shares of that comodity, set v(t) = x(t)S(t)
R(t) ,

plus a banking account equivalent to y(t) shares of (fictitious) bonds R,

for a total worth of w(t) = v(t) + y(t) riskless bonds.

In these “constant dollar” prices (or “end-time values”), no discounting on
future gains or losses, no interest on riskless lending and borrowing.
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Interval market model

Underlying’s price u(t)

u(·) ∈ Ω = {absolutely continuous & ∃τ− < 0 τ+ > 0 | (?)}

∀t2 ≥ t1, exp(τ−(t2 − t1)) ≤
u(t2)

u(t1)
≤ exp(τ+(t2 − t1)) . (?)

Equivalently

u̇ = τu , τ(·) measurable, τ ∈ [τ−, τ+] .

discrete time

time step h, uk := u(kh),

exp(τ−h) ≤
uk+1

uk
≤ exp(τ+h) .
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Interval market model

Underlying’s price u(t)
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Portfolio model

Position v(t), (continuous) transaction rate ξc(t)

v̇ = τv + ξc, v(t+k ) = v(tk) + ξk .

Block buy or sale of an amount ξk at a time tk.

Total gains
∫ T

0
τv dt .

Transaction costs

Rates C+ > 0, C− < 0, cost Cεξ, ε = sign(ξ) .

Total cost
∫ T

0
Cεξ(t) dt+

∑
k

Cεkξk .
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Portfolio model

Position v(t), (continuous) transaction rate ξ(t)

v̇ = τv + ξ , ξ(t) = ξc(t) +
∑
k

ξkδ(t− tk)

Block buy or sale of an amount ξk at a time tk.

Total gains
∫ T

0
τ(t)v(t) dt .

Transaction costs

Rates C+ > 0, C− < 0, cost Cεξ, ε = sign(ξ) .

Total cost
∫ T
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∑
k

Cεkξk .
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Portfolio model

Position v(t), (continuous) transaction rate ξ(t)
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Portfolio model

Position v(t), (continuous) transaction rate ξ(t)

v̇ = τv + ξ , ξ(t) = ξc(t) +
∑
k

ξkδ(t− tk)

Block buy or sale of an amount ξk at a time tk.

Total gains
∫ T

0
τ(t)v(t) dt .

Transaction costs

Rates C+ > 0, C− < 0, cost Cεξ, ε = sign(ξ) .

Total cost
∫ T

0
Cεξc(t) dt+

∑
k

Cεkξk =
∫ T

0
Cεξ(t) dt .
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Portfolio model, closure

Classical closure expense M(u(T )) depends on the option type

Closure costs

Rates c−∈ [C−,0] and c+∈ [0, C+]. Total closure expenseN(u(T ), v(T )),

N(u, v) = w̌(T, u) + cε(v̌(T, u)− v) , ε = sign(v̌(T, u)− v) ,

where v̌(T, u) and w̌(T, u) depend on option type and the closure mode :
in cash, then N(u, v) = M(u) + cε(−v),
but other considerations lead to choose (v̌(T, u), w̌(T, u)) 6= (0,M(u)),
in kind, more complicated, but yields a nicer theory.
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Closure modes (vanilla call)

In cash

u < K u ≥ K
v̌(T, u) 0 u

1+c−

w̌(T, u) 0 u
1+c− −K

In kind

u ≤ K
1+c+

K
1+c+

≤ u ≤ K
1+c− u ≥ K

1+c−

v̌(T, u) 0 (1+c+)u−K
c+−c− u

w̌(T, u) 0 −c−v̌(T, u) u−K
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Market model

u̇ = τu , u(0) = u0 , τ ∈ [τ−, τ+] .

Portfolio model

v̇ = τv + ξ , v(0) = v0 , ξ(t) = ξc(t) +
∑
k ξkδ(t− tk) .

Closure

N(u, v) = w̌(T, u) + cε(v̌(T, u)− v) .

Total expense

J = N(u(T ), v(T )) +
∫ T

0
(−τv + Cεξ) dt .
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Hedging

Strategies

Admissible strategies : nonanticipative strategies ξ(·) = ϕ(u(·)).

Hedge (P (u), ϕ)

∀u(0), ∀τ(·) J(u(0), ϕ, τ(·)) ≤ P (u(0)) ,

Least pricing rule

P (u(0)) = sup
τ(·)

J(u(0), ϕ, τ(·)) ,

No arbitrage opportunity

P (u(0)) = min
ϕ

sup
τ(·)

J(u(0), ϕ, τ(·)) .
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Differential game

Dynamics

u̇ = τu , u(t0) = u0 , τ ∈ [τ−, τ+] ,

v̇ = τv + ξ , v(t0) = v0 , ξ(t) = ξc(t) +
∑
k

ξkδ(t− tk) .

Performance index

J(t0, u0, v0;ϕ(τ(·)), τ(·)) = N(u(T ), v(T )) +
∫ T
t0

(−τv + Cεξ) dt

W (t, u, v) = inf
ϕ

sup
τ(·)

J(t, u, v;ϕ(τ(·)), τ(·)) .
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QVI & DQVI

0 = min

{
∂W

∂t
+ max

τ∈[τ−,τ+]
τ

[
∂W

∂u
u+

(
∂W

∂v
− 1

)
v

]
,

∂W

∂t
min
ξ

[W (t, u, v + ξ)−W (t, u, v) + Cεξ]

}
.

0 = min

{
∂W

∂t
+ max

τ∈[τ−,τ+]
τ

[
∂W

∂u
u+

(
∂W

∂v
− 1

)
v

]
,

∂W

∂t

∂W

∂v
+ C+ , −

(
∂W

∂v
+ C−

)}
.

W (T, u, v) = N(u, v) .
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Characterization

Theorem 1 The Value function W is the viscosity solution of the DQVI.

Proof
W is a viscosity solution: Use the “Joshua transform” which transforms the
impulse control minimax control problem into a standard minimax control
problem of which the DQVI is the Isaacs equation.

The unique viscosity solution. A technical (long) uniqueness proof along
the lines of typical such proofs. The difficulty arises from the 0 infimum of
the impulse costs. (Aknowledgment: Naı̈ma el Farouq and Guy Barles.)
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Notation

S =

(
1 0
1 0

)
,

T =
1

q+ − q−

(
τ+q+ − τ−q− τ+ − τ−
−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
,

Vanilla call or put, closure in kind

q−(t) = max{(1 + c−) exp(τ−(T − t))− 1 , C−} ,

q+(t) = min{(1 + c+) exp(τ+(T − t))− 1 , C+} .
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Notation

S =

(
1 0
1 0

)
,

T =
1

q+ − q−

(
τ+q+ − τ−q− τ+ − τ−
−(τ+ − τ−)q+q− τ−q+ − τ+q−

)
,

Digital call or put, closure in cash

q−(t) = max{(1 + c−) exp(τ−(T − t))− 1 , C−} ,

q+(t) = max{(1 + c−)K/u− 1 , q−} .
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Fundamental PDE

V(t, u) =

(
v̌(t, u)
w̌(t, u)

)
.

Vt + T (Vuu− SV) = 0 ,

V(T, u) =

(
v̌(T, u)
w̌(T, u)

)
according to closure formulas.

Proposition The above P.D.E. has a single solution over [0, T ] for evry ter-
minal condition and T matrix defined above according to the option nature.
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Representation

Theorem 2 The function

W (t, u, v) = w̌(t, u) + qε(v̌(t, u)− v) , ε = sign(v̌ − v)

is a viscosity solution of the DQVI, hence the Value of the game problem.

Proof Long and difficult. Involves a detailed analysis of the field of optimal
trajectories and its singularities.
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Discrete dynamic game

We consider the same problem, with the same set of possible (maximizing)
disturbances, but where the minimizer is restricted to impulses only, and at
given time instants tk = kh, k ∈ N. We denote Wh

k (u, v) its Value.

uk+1 = (1 + τk)uk , τ ∈ [τ−h , τ
+
h ] ,

vk+1 = (1 + τk)(vk + ξk) ,

Admissible strategies ξk = ϕk(uk, vk), (or ξk = ϕk(uk−1, vk−1))

J(0, u0, v0;ϕ, {τk}) = N(uK, vK) +
K−1∑
k=0

[−τk(vk + ξk) + Cεξk] .

Wh
` (u, v) = inf

ϕ
sup
{τk}

J(`, u, v;ϕ, {τk}).
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Convergence

We interpolate the Wh
k (u, v) with Wh(t, u, v) for all t ∈ [0, T ] defined as

the Value of the game where the minimizer is allowed to make an impulse
at intital time t, then only a times tk = kh, k ∈ N, kh > t.

Theorem 3 Take h = 2−dT . As d → ∞, Wh converges monotoneously,
uniformly on any compact, to the Value W of the continuous time game.

Proof Wh decreases monotoneously because it is the same game where
the set of admissible minimizer’s stategies increases. Characterization of
its limit is similar to Cappuzzo-Dolcetta’s proof for control problems.
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Proof Wh decreases monotoneously because it is the same game where
the set of admissible minimizer’s stategies increases. Characterization of
its limit is similar to Cappuzzo-Dolcetta’s proof for control problems.
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Standard algorithm

The natural Isaacs equation of the discrete time game is Wh
K = N ,

Wh
k (u, v) =

min
ξ

max
τ

[
Wh
k+1((1 + τ)u, (1 + τ)(v + ξ))− τ(v + ξ) + Cεξ

]
Standard algorithm convex

Wh
k+1

2
(u, v) = max

τ∈[τ−,τ+]
[Wh

k+1((1 + τ)u, (1 + τ)v)− τv]

Wh
k (u, v) = min

ξ
[Wh

k+1
2
(u, v + ξ) + Cεξ] .
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Fast algorithm

Notation

Qε` = (qε` 1) , Vh` (u) =

 v̌h` (u)

w̌h` (u)

 ,

∆ = q+
k+1

2
− q−

k+1
2
, θε = 1 + τεh .

Algorithm

qε
k+1

2
= θεqεk+1 + τεh , qεk = εmin{εqε

k+1
2
, εCε}

Vhk (u) =
1

∆

 1 −1

−q−
k+1

2
q+
k+1

2

Q+
k+1V

h
k+1(θ+u)

Q−k+1V
h
k+1(θ−u)


105



Representation

Theorem 3 The Value of the discrete dynamical game is given by

Wh
k (u) = w̌hk(u) + qεk(v̌hk(u)− v) , ε = sign(v̌hk − v) .

Proof via a careful, but rather straightforward, analysis of the discrete Isaacs
equation.
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Phew !
For your attention
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Complements
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Joshua’s transform

Lemma: the value of the game is unchanged if trader restricted to jumps.

J’s transform: Let trader’s control be  ∈ {−1,0,1}, and ̄ := 1− ||.
Artificial “time” θ, state variables (t, u, v) , d(t, u, v)/dθ = (t′, u′, v′),

t′ = ̄, t(0) = 0, t(Θ) = T
u′ = ̄τu,
v′ = ̄τv + ,

J = N(u(Θ), v(Θ)) +
∫ Θ

0
(̄(−τv) + C)dθ.

This is an ordinary, free end-time (⇒Wθ = 0) game. Isaacs equation is:

0 = min
∈{−1,0,1}

max
τ∈[τ−,τ+]

{̄[Wt + τ(Wuu+ (Wv − 1)v] + [Wv + C]}

List the three possibilities for . Yields the DQVI.
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American option

A single line of code to add to the standard algorithm:

Wh
k (u, v) = max

{
M(u, v) ,

min
ξ

max
τ

[
Wh
k+1((1 + τ)u, (1 + τ)(v + ξ))− τ(v + ξ) + Cεξ

]}
Compute the second line as in the standard algorithm, and upon loading
the value computed into Wk(u, v), compare with M(u, v) and load the
largest.
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One step delayed information

If information on uk only available to act at step k + 1, replace

vk+1 = (1 + τk)(vk + ξk) ,

by

vk+1 = (1 + τk)vk + ξk .

The ensuing theory has not been worked out.
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