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Planning for a risky world

Disaster response
• Robust design of emergency response 
networks.

• Design of sensor networks and 
communication systems to manage 
responses to hurricanes, tsunamis, nuclear 
disasters and terrorist attacks.

Disease
• Management of medical personnel, 
equipment and vaccines to respond to a 
disease outbreak.

• Robust design of supply chains to mitigate 
the disruption of transportation systems.



Managing the Grid

Electric Power Grid
• What is the impact of high percentages of 
power from intermittent sources such as 
wind and solar?

• How will energy storage change the 
stability of the grid?

Urban power grids
• How should New York City plan load 
curtailments as electric vehicles push the 
grid to capacity?

• How should local utilities plan load 
curtailments when demands cannot be met?

PJM Backbone network
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Batteries Ultracapacitors

FlywheelsHydroelectric



Heterogeneous storage portfolios

Wind



Challenges

 Real-time control
» Scheduling aircraft, pilots, generators, tankers
» Electricity resource allocation
» Trading on the spot market

 Near-term tactical planning
» Can I accept a customer request?
» Should I lease equipment?
» How much energy can I commit to with my wind turbines?

 Strategic planning
» What is the right equipment mix?
» What energy investments should I make?
» How do I meet renewable portfolio standards?



Deterministic modeling

 For deterministic problems, we speak the language 
of mathematical programming
» For static problems

» For time-staged problems
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Arguably Dantzig’s biggest 
achievement, more so than 
the simplex algorithm, was 
his articulation of 
optimization problems in a 
standard format, which has 
given algorithmic 
researchers a common 
language.



Stochastic modeling

 The system state:

 , , System state, where:
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Stochastic modeling

 The decision variable:

Routing
Assigning people or equipment

Purchase
Repair
Invest
Store
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Stochastic modeling

 Exogenous information:











 ˆ ˆ ˆNew information = , ,t t t tW R D 

ˆ Delays, breakdowns, exogenous purchases
ˆ New demands to be served
ˆ Exogenous changes in parameters.
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Stochastic modeling

 The transition function
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Known as the:
“Transition function”
“Transfer function”
“System model”
“Plant model”
“Model”



Stochastic modeling

 The objective function

Given a system model (transition function)

» We have to find the best policy, which is a function that 
maps states to feasible actions, using only the 
information available when the decision is made.
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t t
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Decision function (policy)State variableContribution functionFinding the best policy
Expectation over all
random outcomes
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Stochastic programming

Markov decision processes

Simulation optimization

Stochastic search

Reinforcement learning

Optimal control

Policy search

learningQ 

Model predictive control

On-policy learning Off-policy learning



What is a policy?

 1) Myopic policies
» Take the action that maximizes contribution (or minimizes 

cost) for just the current time period:

» We can parameterize myopic policies with bonus and 
penalties to encourage good long-term behavior.

» Sometimes there are tunable parameters
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What is a policy?

 2) Lookahead policies - Plan over the next T 
periods, but implement only the action it tells you 
to do now.
» Deterministic forecast

» Stochastic programming (e.g. two-stage)

» Rolling/receding horizon procedures
» Model predictive control
» Rollout heuristics
» Tree search (decision trees)
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What is a policy?

 3) Policy function approximations
» Lookup table

• When in this state, take this action.
» Parameterized functions

• If the inventory is less than s, order up to S.
» Regression models

» Neural networks

 2
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What is a policy?

 4) Policies based on value function approximations
» We approximate the value function and solve

» where
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Approximations

 There are three classes of approximation strategies 
(for policies and value functions):
» Lookup table

• Given a discrete state, return a discrete action or value

» Parametric models
• Linear models (linear in the parameters)
• Nonlinear models (e.g. an (s,S) inventory policy)
• Neural networks

» Nonparametric models
• Kernel regression
• Dirichlet process-based models



Outline

 A brief look at lookahead policies



Lookahead policies
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 Following a lookahead policy

What is a policy?
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 Following a lookahead policy
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 Following a lookahead policy

What is a policy?
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 Following a lookahead policy

What is a policy?



Lookahead policies

 The curse of time horizons

(3 secs) (1 min)

Simulation horizon (days)

(1 hr) (2.5 hrs)

(12 hrs)

(29 hrs)

(50 hrs)



Lookahead policies

 From rolling horizon to stochastic programming to 
dynamic programming:
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Lookahead policies

When do you use each policy?
» Use a lookahead policy if the behavior of                           

is a complex function of     . 
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DrierAverage over 30
flow forecast scenarios

15% exceedence
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15% exceedence
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85% exceedence

Stochastic programming for hydroelectric power planning (Morton et al)  



Lookahead policies

When do you use each policy?
» Use a value function approximation when the 

relationship is simpler:

 1 1min ( )
tx t t t tc x EV S  

Supplies
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 Value function approximations



Value function approximations

We can find the best decision by solving 
Bellman’s equation:

» We find the value of being in each state by stepping 
backward through time.

 1 1( ) min ( , ) ( ) |t t t t t t t tx
V S C S x E V S S 

 


Given the value of being in state          
at time t+1….

1tS We can find the value of being in 
state        at time t.tS



Value function approximations

 The challenge of dynamic programming:

 Problem: Curse of dimensionality

  1 1( ) min ( , ) ( ) |t t t t t t t tx
V S C S x E V S S 

 


Three curses

State space
Outcome space
Action space (feasible region)



Value function approximations

 The computational challenge:

How do we find              ? 1 1( )t tV S 

How do we compute the expectation? 

How do we find the optimal solution? 

  1 1( ) min ( , ) ( ) |t t t t t t t tx
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Value function approximations

 Classical ADP
» Most applications of ADP focus on the challenge of 

handling multidimensional state variables
» Start with

» Now replace the value function with some sort of 
approximation

  1 1( ) min ( , ) ( ) |t t t t t t t tx
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Value function approximations

 Approximating the value function:
» We might approximate the value function using a 

simple polynomial

» .. or a more complicated one:

» Most of the time, we write this in the form of basis 
functions:

2
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Value function approximations

 But we are not out of the woods…
» Assume we have an approximate value function.
» We still have to solve a problem that looks like

» This means we still have to deal with an optimization 
problem (might be a linear, nonlinear or integer 
program) with an expectation. 
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The post-decision state

 New concept:
» The “pre-decision” state variable:

•
• Same as a “decision node” in a decision tree. 

» The “post-decision” state variable:
•

• Same as an “outcome node” in a decision tree.
• Also known as:

– “Afterstate” variable (Sutton and Barto)
– “End-of-period state” (Judd)

The information required to make a decision t tS x

The state of what we know immediately after we
         make a decision.

x
tS 



The post-decision state

 Representations of the post-decision state:
» Decision trees:

» Q-learning:

» Transition function with expectation:
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The post-decision state

 An inventory problem:
» Our basic inventory equation:

» where

» Using pre- and post-decision states:
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The post-decision state

 Pre-decision, state-action, and post-decision

Pre-decision state State Action Post-decision state

93  states 93 9 state-action pairs 93  states



The post-decision state
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Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 
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Simulation

Deterministic
optimization

Recursive
statistics



Approximating value functions

 Approximations for resource allocation problems
» Linear (in the resource state):

» Piecewise linear, separable:

» Indexed PWL separable:

» Benders cuts
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Approximate dynamic programming

t



Approximate dynamic programming



Approximate dynamic programming



Approximate dynamic programming
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Approximate value iteration

 Features
» Scales to ultra large scale 

applications (but, “single 
layer”).

» Handles high-dimensional 
decision vectors and complex 
state variables.

» Fast, stable convergence.
» Handles virtually any type of 

uncertainty, and complex 
physical processes.

» Near-optimal solutions.



Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 
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“on policy learning”



Approximate value iteration

 The bad news:
» For one problem, we can prove it converges and prove 

that it converge so slowly as to be absolutely useless 
(e.g.         Iterations).

» Provably convergent algorithms running on small 
problems can be shown to diverge initially, with 
extremely slow convergence.

» The attraction of “solving” the curse of dimensionality 
using statistical models (“basis functions”) is illusory –
the simplicity of approximating a complex value 
function is replaced with severe convergence issues.

2010



Simple problems can be hard
 Single state, single action

» Approximate value iteration
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Simple problems can be hard

Optimal solution

Q-learning

61 0 1 065 1 061 1 0

 Small state-action space, noisy observations
» Q-learning, optimized stepsize
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 Fitting basis functions
» If the basis functions are not perfect, the fit depends on 

the states we visit.  If we visit the wrong states, we may 
get a terrible fit.

Parametric approximations

V(S)

States  S



 Fitting basis functions
» If the basis functions are not perfect, the fit depends on 

the states we visit.  If we visit the wrong states, we may 
get a terrible fit.

Parametric approximations

V(S)

States  S



Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 
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Approximate policy iteration

Step 1: Start with a pre-decision state 
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain     . 
Step 2b: Update the value function approximation

Step 2c: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 3: Update           using                 and return to step 1. 
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Approximate policy iteration

Step 1: Start with a pre-decision state 
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain     . 
Step 2b: Update the value function approximation

Step 2c: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 3: Update           using                 and return to step 1. 
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Algorithms

 Classical approximate dynamic programming
» We can estimate the value of being in a state using

» Use recursive least squares to update      .
» Our policy is then given by

» This is known as Bellman error minimization. 
» Can scale to problems with thousands or millions of 

parameters, but can be highly unstable.
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Algorithms

 But what if we simply view    as a static design 
parameter?

» This is known as policy search.  It builds on classical 
fields such as

• Stochastic search
• Simulation optimization

» Very stable, but it is generally limited to problems with 
a much smaller number of parameters.
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Managing uncertainty

Wind speed

Electricity prices

Demand

Wind, prices and loads….



Algorithms

 Approximate policy iteration vs. policy search
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Algorithms

 Approximate policy iteration vs. policy search
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Outline

 A blood management example



Blood management

Managing blood inventories



Blood management

Managing blood inventories over time
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Solve this as a 
linear program.
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Updating the value function approximation

 Estimate the gradient at 
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Updating the value function approximation

 Update the value function at 
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Updating the value function approximation

 Update the value function at ,
1

x n
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Updating the value function approximation

 Update the value function at ,
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Outline

 An energy policy model
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The energy resource planning problem

 The investment problem:

oil
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Energy resource modeling

 Hourly electricity dispatch

Hour t Hour t+1



Energy resource modeling

 Hourly electricity dispatch

Value of holding water in the reservoir 
for future time periods.

Hour t



Energy resource modeling



Energy resource modeling
2011



Hour 1 2 3 4 8760
2011

1 2



Energy resource modeling

2011 2012 2013 2014 2030



Energy resource modeling

2011 2012 2013 2014 2030



Energy resource modeling

2011 2012 2013 2014 2030

5 seconds      5 seconds      5 seconds    5 seconds      ….     5 seconds



Energy resource modeling
 Use statistical methods to learn the 

value of resources in the future.
 Resources may be:

» Stored energy
• Hydro
• Flywheel energy
• …

» Storage capacity
• Batteries
• Flywheels
• Compressed air

» Energy transmission capacity
• Transmission lines
• Gas lines
• Shipping capacity

» Energy production sources
• Wind mills
• Solar panels
• Nuclear power plants

Amount of resource
Va

lu
e

( )t tV R

Unlike our transportation 
applications, these functions are 
continuous.
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 Optimal from linear program

Energy resource modeling

Optimal from linear program
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 Approximate dynamic programming

Energy resource modeling

ADP solution
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 ADP vs optimal reservoir levels for stochastic rainfall
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Solving the subproblem

Locomotives

Baltimore

Charlotte

Trains
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Atlanta The value of six-axle high-
adhesion locomotives in Baltimore

The value of locomotives in Baltimore
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Stochastic optimization

 Deterministic training  Stochastic training

Number of locomotives
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Stochastic optimization
 Train delay with uncertain transit times and yard delays

Train delay using deterministically trained VFAs

Train delay using stochastically trained VFAs
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 How do we do it?

» The stochastic model keeps more power in inventory.  The 
challenge is knowing when and where.

Laboratory testing

Time period within simulation

Stochastic training

Deterministic training



Other ADP projects
 Schneider National

» Optimizes assignments of 6,000 drivers over 30 days, 50,000 
variables per time period.  Drivers modeled using 15 dimensional 
attribute vector. Model closely matches historical performance.

 Embraer
» Optimize inventories of 700 high value spare parts over multiple 

locations, balancing cost and service.

 Netjets
» Optimize the fleet mix of 15 types of aircraft over 20 years, 

capturing daily variations in demand and equipment substitutions.

 Car distribution at Norfolk Southern
» Optimize thousands of freight cars over multiweek horizon 

capturing uncertainty in demands and transit times, while modeling 
detailed information process.



 Second edition!

» Due September, 2011.
» Major revision.  Complete 

restructuring and rewriting 
of middle third of the 
book.

» 300 new/rewritten pages
» Covers policy search in 

depth, along with high 
structured approach to 
value function 
approximations.
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