Finding the Best Policy: The Curious Case of Approximate Dynamic Programming

> Optimization Days May 2, 2011

Warren Powell *CASTLE Laboratory* **Princeton University** http://www.castlelab.princeton.edu

© 2011 Warren B. Powell, Princeton University

The fractional jet ownership industry

NetJets Inc.

Planning for a risky world

Disaster response

- Robust design of emergency response networks.
- Design of sensor networks and communication systems to manage responses to hurricanes, tsunamis, nuclear disasters and terrorist attacks.

Disease

- Management of medical personnel, equipment and vaccines to respond to a disease outbreak.
- Robust design of supply chains to mitigate the disruption of transportation systems.

Managing the Grid

Electric Power Grid

- What is the impact of high percentages of power from intermittent sources such as wind and solar?
- How will energy storage change the stability of the grid?

Urban power grids

- How should New York City plan load curtailments as electric vehicles push the grid to capacity?
- How should local utilities plan load curtailments when demands cannot be met?

Heterogeneous storage portfolios

Challenges

Real-time control

- » Scheduling aircraft, pilots, generators, tankers
- » Electricity resource allocation
- » Trading on the spot market

Near-term tactical planning

- » Can I accept a customer request?
- » Should I lease equipment?
- » How much energy can I commit to with my wind turbines?

Strategic planning

- » What is the right equipment mix?
- » What energy investments should I make?
- » How do I meet renewable portfolio standards?

Deterministic modeling

- For deterministic problems, we speak the language of mathematical programming
 - » For static problems

 $\min cx$ Ax = b $x \ge 0$

» For time-staged problems $\min \sum_{t=0}^{T} c_t x_t$ $A_t x_t - B_{t-1} x_{t-1} = b_t$ $D_t x_t \le u_t$ $x_t \ge 0$ Arguably Dantzig's biggest achievement, more so than the simplex algorithm, was his articulation of optimization problems in a standard format, which has given algorithmic researchers a common language.

The system state:

- $S_t = (R_t, D_t, \rho_t) =$ System state, where:
 - R_t = Resource state (how much capacity, reserves)
 - D_t = Market demands
 - ρ_t = "system parameters"

State of the technology (costs, performance)Climate, weather (temperature, rainfall, wind)Government policies (tax rebates on solar panels)Market prices (oil, coal)

■ The decision variable:

Exogenous information:

$$W_t = \text{New information} = \left(\hat{R}_t, \hat{D}_t, \hat{\rho}_t\right)$$

- \hat{R}_t = Delays, breakdowns, exogenous purchases \hat{D}_t = New demands to be served
- $\hat{\rho}_t$ = Exogenous changes in parameters.

■ The transition function

$$S_{t+1} = S^{M}(S_{t}, x_{t}, W_{t+1})$$

Known as the: "Transition function" "Transfer function" "System model" "Plant model" "Model"

■ The objective function

Given a system model (transition function)

$$S_{t+1} = S^M\left(S_t, x_t, W_{t+1}(\omega)\right)$$

» We have to find the best policy, which is a function that maps states to feasible actions, using only the information available when the decision is made.

Stochastic programming

Stochastic search

Model predictive ontrol Optimal control

Reinforcement learningQ – learningOn-policy learningOff-policy learning

Markov decision processes

Simulation optimization

Policy search

■ 1) Myopic policies

» Take the action that maximizes contribution (or minimizes cost) for just the current time period:

 $X^{M}(S_{t}) = \arg\min_{x_{t}} C(S_{t}, x_{t})$

- » We can parameterize myopic policies with bonus and penalties to encourage good long-term behavior.
- » Sometimes there are tunable parameters

 $X^{M}(S_{t} | \theta) = \arg \min_{x_{t}} C(S_{t}, x_{t} | \theta)$

- 2) Lookahead policies Plan over the next T periods, but implement only the action it tells you to do now.
 - » Deterministic forecast

$$X^{M}(S_{t}) = \arg\min_{x_{t}, x_{t+1}, \dots, x_{t+T}} C(S_{t}, x_{t}) + \sum_{t'=t+1}^{I} \gamma^{t'-t} C(S_{t'}, x_{t'})$$

- » Stochastic programming (e.g. two-stage) $X^{M}(S_{t}) = \underset{x_{t}, (x_{t+1}, \dots, x_{t+T})(\omega)}{\operatorname{arg\,min} C(S_{t}, x_{t})} + \sum_{\omega \in \Omega} p(\omega) \sum_{t'=t+1}^{T} \gamma^{t'-t} C(S_{t'}(\omega), x_{t'}(\omega))$
- » Rolling/receding horizon procedures
- » Model predictive control
- » Rollout heuristics
- » Tree search (decision trees)

■ 3) Policy function approximations

- » Lookup table
 - When in this state, take this action.
- » Parameterized functions
 - If the inventory is less than *s*, order up to *S*.
- » Regression models

$$X^{M}(S_{t} \mid \theta) = \theta_{0} + \theta_{1}S_{t} + \theta_{2}(S_{t})^{2}$$

» Neural networks

■ 4) Policies based on value function approximations

» We approximate the value function and solve

$$X^{M}(S_{t}) = \operatorname{arg\,min}_{x_{t}}\left(C(S_{t}, x_{t}) + \gamma E \overline{V}_{t+1}(S_{t+1})\right)$$

» where

$$S_{t+1} = S^{M}(S_{t}, x_{t}, W_{t+1})$$

Approximations

There are three classes of approximation strategies (for policies and value functions):

- » Lookup table
 - Given a discrete state, return a discrete action or value
- » Parametric models
 - Linear models (linear in the parameters)
 - Nonlinear models (e.g. an (s,S) inventory policy)
 - Neural networks
- » Nonparametric models
 - Kernel regression
 - Dirichlet process-based models

A brief look at lookahead policies

Following a lookahead policy

Following a lookahead policy

■ Following a lookahead policy

■ Following a lookahead policy

The curse of time horizons

From rolling horizon to stochastic programming to dynamic programming:

$$X^{M}(S_{t}) = \arg\min_{x_{t}, x_{t+1}, \dots, x_{t+T}} C(S_{t}, x_{t}) + \sum_{t'=t+1}^{T} \gamma^{t'-t} C(S_{t'}, x_{t'})$$

$$X^{M}(S_{t}) = \arg\min_{x_{t}, (x_{t+1}, \dots, x_{t+T})(\omega)} P(\omega) \sum_{t'=t+1}^{T} \gamma^{t'-t} C(S_{t'}(\omega), x_{t'}(\omega))$$

$$V_{t+1} \left(S_{t+1}(S_{t}, x_{t}, W_{t}(\omega)) \right)$$

$$V_{t+1} \left(S_{t+1}(S_{t}, x_{t}, W_{t}(\omega)) \right)$$

$$X^{M}(S_{t}) = \arg\min_{x_{t}} \left(C(S_{t}, x_{t}) + \gamma E \overline{V_{t+1}}(S_{t+1}) \right)$$

When do you use each policy? » Use a lookahead policy if the behavior of $\sum_{t'=t+1}^{T} \gamma^{t'-t} C(S_{t'}, x_{t'})$ is a complex function of x_t .

Stochastic programming for hydroelectric power planning (Morton et al)

■ When do you use each policy?

» Use a value function approximation when the relationship is simpler:

$$\min_{x_t} \left(c_t x_t + \gamma E \overline{V}_{t+1}(S_{t+1}) \right)$$

■ Value function approximations

Value function approximations

We can find the best decision by solving Bellman's equation:

$$V_t(S_t) = \min_{x \in \mathcal{X}} C_t(S_t, x_t) + E\{V_{t+1}(S_{t+1}) | S_t\}$$

We can find the value of being in state S_t at time *t*.

Given the value of being in state S_{t+1} at time t+1....

» We find the value of being in each state by stepping backward through time.

Value function approximations

■ The challenge of dynamic programming:

$$V_{t}(S_{t}) = \min_{x \in \mathcal{X}} \left(C_{t}(S_{t}, x_{t}) + E\left\{ V_{t+1}(S_{t+1}) \mid S_{t} \right\} \right)$$
■ The computational challenge:

Classical ADP

- » Most applications of ADP focus on the challenge of handling multidimensional state variables
- » Start with

$$V_t(S_t) = \min_{x \in \mathcal{X}} \left(C_t(S_t, x_t) + E\left\{ V_{t+1}(S_{t+1}) \,|\, S_t \right\} \right)$$

» Now replace the value function with some sort of approximation

$$V_{t+1}(S_{t+1}) \approx \overline{V}_{t+1}(S_{t+1})$$

- Approximating the value function:
 - » We might approximate the value function using a simple polynomial

$$\overline{V_t} (S_t \mid \theta) = \theta_0 + \theta_1 S_t + \theta_2 S_t^2$$

» .. or a more complicated one:

$$\overline{V_t} (S_t | \theta) = \theta_0 + \theta_1 S_t + \theta_2 S_t^2 + \theta_3 \ln(S_t) + \theta_4 \sin(S_t)$$

» Most of the time, we write this in the form of *basis functions:*

$$\overline{V_t} (S_t | \theta) = \sum_f \theta_f \phi_f(S_t)$$

■ But we are not out of the woods...

- » Assume we have an approximate value function.
- » We still have to solve a problem that looks like

$$V_t(S_t) = \min_{x \in \mathcal{X}} \left(C_t(S_t, x_t) + E \sum_{f \in \mathcal{F}} \theta_f \phi_f(S_{t+1}) \right)$$

» This means we still have to deal with an optimization problem (might be a linear, nonlinear or integer program) with an expectation.

■ New concept:

» The "pre-decision" state variable:

- S_t = The information required to make a decision x_t
- Same as a "decision node" in a decision tree.
- » The "post-decision" state variable:
 - S_t^x = The state of what we know immediately after we make a decision.
 - Same as an "outcome node" in a decision tree.
 - Also known as:
 - "Afterstate" variable (Sutton and Barto)
 - "End-of-period state" (Judd)

Representations of the post-decision state:

» Decision trees:

$$S_t^x = S^{M,x} \left(S_t, x_t \right)$$
$$S_{t+1} = S^{M,W} \left(S_t^x, W_{t+1} \right)$$

» Q-learning:

- $S_t^x = (S_t, x_t)$ State-action pair
- » Transition function with expectation:

$$S_t^x = S^M \left(S_t, x_t, \overline{W}_{t,t+1} \right)$$
 $\overline{W}_{t,t+1} = \text{Forecast of } W_{t+1} \text{ at time } t.$

An inventory problem:

» Our basic inventory equation:

$$R_{t+1} = \max\left\{0, R_t + x_t - \hat{D}_{t+1}\right\}$$

» where

 $R_{t} = \text{Inventory on hand at time } t$ $x_{t} = \text{Amount ordered}$ $\hat{D}_{t+1} = \text{Demand in next time period}$

» Using pre- and post-decision states:

$$R_{t}^{x} = R_{t} + x_{t}$$
 Pre- to post-
$$R_{t+1} = \max \left\{ R_{t}^{x} - \hat{D}_{t+1} \right\}$$
 Post- to pre-

■ Pre-decision, state-action, and post-decision

 3^9 states $3^9 \times 9$ state-action pairs 3^9 states

Pre- and post-decision attributes for a trucking problem:

Step 1: Start with a pre-decision state S_t^n

Step 2: Solve the deterministic optimization using

an approximate value function:

 $\hat{v}_t^n = \min_x \left(C_t(S_t^n, x_t) + \overline{V}_t^{n-1}(S^{M,x}(S_t^n, x_t)) \right)$ to obtain x_t^n .

Deterministic optimization

Step 3: Update the value function approximation Recursive $\overline{V}_{t-1}^{n}(S_{t-1}^{x,n}) = (1 - \alpha_{n-1})\overline{V}_{t-1}^{n-1}(S_{t-1}^{x,n}) + \alpha_{n-1}\hat{v}_{t-1}^{n}$

Step 4: Obtain Monte Carlo sample of $W_t(\omega^n)$ and compute the next pre-decision state: $S_{t+1}^{n} = S^{M}(S_{t}^{n}, x_{t}^{n}, W_{t+1}(\omega^{n}))$

Step 5: Return to step 1.

statistics

Simulation

Approximating value functions

- Approximations for resource allocation problems
 - » Linear (in the resource state):

$$\overline{V}_t(R_t^x) = \sum_{a \in \mathcal{A}} \overline{v}_{ta} \cdot R_{ta}^x$$

» Piecewise linear, separable:

$$\overline{V}_t(R_t^x) = \sum_{a \in \mathcal{A}} \overline{V}_{ta}(R_{ta}^x)$$

» Indexed PWL separable:

$$\overline{V_t}(R_t^x) = \sum_{a \in \mathcal{A}} \overline{V_{ta}} \left(R_{ta}^x \mid \text{"state of the world"} \right)$$

» Benders cuts

 $\min cx + z$ $z \ge a_i + b_i x$

■ With luck, your objective function improves

Features

- » Scales to ultra large scale applications (but, "single layer").
- » Handles high-dimensional decision vectors and complex state variables.
- » Fast, stable convergence.
- Handles virtually any type of uncertainty, and complex physical processes.
- » Near-optimal solutions.

■ The bad news:

- » For one problem, we can *prove* it converges and *prove* that it converge so slowly as to be absolutely useless (e.g. 10²⁰ Iterations).
- » Provably convergent algorithms running on small problems can be shown to *diverge* initially, with extremely slow convergence.
- » The attraction of "solving" the curse of dimensionality using statistical models ("basis functions") is illusory – the simplicity of approximating a complex value function is replaced with severe convergence issues.

Simple problems can be hard

- Single state, single action
 - » Approximate value iteration

$$\hat{v}^{n} = \hat{C}^{n} + \gamma \overline{V}^{n-1} \qquad \qquad \hat{C}^{n} \text{ sampled or observed}$$
$$\overline{V}^{n} = (1 - \alpha_{n-1})\overline{V}^{n-1} + \alpha_{n-1}\hat{v}^{n} \qquad \text{Stepsize } \alpha_{n-1} = \frac{1}{n}$$

Simple problems can be hard

Small state-action space, noisy observations

» Q-learning, optimized stepsize

$$\hat{q}^{n}(s,a) = \hat{C}^{n}(s,a) + \gamma \max_{a'} \overline{Q}^{n-1}(s',a')$$
$$\overline{Q}^{n}(s,a) = (1 - \alpha_{n-1})\overline{Q}^{n-1}(s,a) + \alpha_{n-1}\hat{q}^{n}(s,a)$$

Parametric approximations

Fitting basis functions

» If the basis functions are not perfect, the fit depends on the states we visit. If we visit the wrong states, we may get a terrible fit.

Parametric approximations

Fitting basis functions

» If the basis functions are not perfect, the fit depends on the states we visit. If we visit the wrong states, we may get a terrible fit.

Step 1: Start with a pre-decision state S_t^n

Step 2: Solve the deterministic optimization using

an approximate value function:

 $\hat{v}_t^n = \min_x \left(C_t(S_t^n, x_t) + \overline{V}_t^{n-1}(S^{M,x}(S_t^n, x_t)) \right)$ to obtain x_t^n . Deterministic optimization

Step 3: Update the value function approximation Recu $\overline{V}_{t-1}^{n}(S_{t-1}^{x,n}) = (1 - \alpha_{n-1})\overline{V}_{t-1}^{n-1}(S_{t-1}^{x,n}) + \alpha_{n-1}\hat{v}_{t}^{n}$ stati

Step 4: Obtain Monte Carlo sample of $W_t(\omega^n)$ and compute the next pre-decision state: $S_{t+1}^n = S^M(S_t^n, x_t^n, W_{t+1}(\omega^n))$

Step 5: Return to step 1.

Recursive statistics

Simulation

Approximate policy iteration

Step 1: Start with a pre-decision state S_{\star}^{n} Step 2: Inner loop: Do for m=1,...,M: Step 2a: Solve the deterministic optimization using an approximate value function: $\hat{v}^m = \min_x \left(C(S^m, x) + \overline{V}^{n-1}(S^{M, x}(S^m, x)) \right)$ to obtain x^m . Step 2b: Update the value function approximation $\overline{V}^{n-1,m}(S^{x,m}) = (1 - \alpha_{m-1})\overline{V}^{n-1,m-1}(S^{x,m}) + \alpha_{m-1}\hat{v}^m$ Step 2c: Obtain Monte Carlo sample of $W(\omega^m)$ and compute the next pre-decision state: $S^{m+1} = S^{M}(S^{m}, x^{m}, W(\omega^{m}))$

Step 3: Update $\overline{V}^n(S)$ using $\overline{V}^{n-1,M}(S)$ and return to step 1.

Approximate policy iteration

Step 1: Start with a pre-decision state S_t^n Step 2: Inner loop: Do for m=1,...,M: Step 2a: Solve the deterministic optimization using an approximate value function: $\hat{v}^m = \min_x \left(C(S^m, x) + \sum_f \theta_f^{n-1} \phi_f(S^M(S^m, x)) \right)$ to obtain x^m Step 2b: Update the value function approximation $\overline{V}^{n-1,m}(S^{x,m}) = (1 - \alpha_{m-1})\overline{V}^{n-1,m-1}(S^{x,m}) + \alpha_{m-1}\hat{v}^{m}$ Step 2c: Obtain Monte Carlo sample of $W(\omega^m)$ and compute the next pre-decision state: $S^{m+1} = S^{M}(S^{m}, x^{m}, W(\omega^{m}))$

Step 3: Update $\overline{V}^n(S)$ using $\overline{V}^{n-1,M}(S)$ and return to step 1.

Algorithms

- Classical approximate dynamic programming
 - » We can estimate the value of being in a state using

$$\hat{v}^n = \min_x \left(C(S_t^n, x) + \gamma \sum_f \theta_f^{n-1} \phi(S_t^x(S_t^n, x)) \right)$$

- » Use recursive least squares to update θ^{n-1} .
- » Our policy is then given by

$$X^{\pi}(S_t \mid \theta^n) = \arg\min_x \left(C(S_t, x) + \gamma \sum_f \theta_f^n \phi(S_t^x(S_t, x)) \right)$$

- » This is known as *Bellman error minimization*.
- » Can scale to problems with thousands or millions of parameters, but can be highly unstable.

Algorithms

But what if we simply view θ as a static design parameter?

$$\min_{\theta} \mathbb{E}F(\theta, W) = \mathbb{E}\sum_{t=0}^{T} \gamma^{t} C(S_{t}, X^{\pi}(S_{t} | \theta))$$

- » This is known as *policy search*. It builds on classical fields such as
 - Stochastic search
 - Simulation optimization
- » Very stable, but it is generally limited to problems with a much smaller number of parameters.

Managing uncertainty

■ Wind, prices and loads....

Algorithms

Approximate policy iteration vs. policy search

Full set of basis functions

Algorithms

Approximate policy iteration vs. policy search

Partial set of basis functions

Outline

A blood management example

Blood management

Managing blood inventories

Blood management

Managing blood inventories over time

Estimate the gradient at R_t^n

• Update the value function at $R_{t-1}^{x,n}$

Update the value function at $R_{t-1}^{x,n}$

Update the value function at $R_{t-1}^{x,n}$

An energy policy model

Wind

Wind

The energy resource planning problem

The investment problem:

Hourly electricity dispatch

Hourly electricity dispatch

Hour t

Value of holding water in the reservoir for future time periods.

- Use statistical methods to learn the value of resources in the future.
- Resources may be:
 - » Stored energy
 - Hydro
 - Flywheel energy
 - ..
 - » Storage capacity
 - Batteries
 - Flywheels
 - Compressed air
 - » Energy transmission capacity
 - Transmission lines
 - Gas lines
 - Shipping capacity
 - » Energy production sources
 - Wind mills
 - Solar panels
 - Nuclear power plants

Unlike our transportation applications, these functions are *continuous*.

Amount of resource

Value

 $\overline{V_t}(R_t)$

Optimal from linear program

Approximate dynamic programming

Princeton team: Warren Powell Belgacem Bouzaiene-Ayari

9533

9533

NS team: Clark Cheng Ricardo Fiorillo Junxia Chang Sourav Das

Solving the subproblem

SIOCITY_IA	SIOCITY_IA	WILLMAR_MN 🔕	GRAFORKS_ND
1.0 8EN_6H30T 1.0 8EN_6H30T 1.0 8EN_FORET 1.0 8EN_6H30T 1.0 8EN_FORET 1.0 8EN_6H30T 1.0 8EN_6H30T 1.0 8EN_6H30T 1.0 8EN_6H30T 1.0 8EN_6H30T 1.0 MDILLIN108A-2-7 1.0 8EN_6H30T 1.0 MOBAEE107A-2-7 1.0 8EN_6H30T 1.0 MCOALC 1.0 8EN_COALC 1.0 8EN_XINITT 1.0 8EN_XINITT 1.0 8EN_DSH9T	1.0 8EN_6H30T 1.0 8EN_6H30T <td< th=""><th>1.0 8EN_DSH9T 1.0 8EN_EH40T 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_SH9T 1.0 8EN_XINTT 1.0 8EN_SH9T 1.0 8EN_SH9T 1.0 8EN_XINTT</th><th>1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_FORET 1.0 8EN_XINTT 1.0 8EN_COALC</th></td<>	1.0 8EN_DSH9T 1.0 8EN_EH40T 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_GH30T 1.0 8EN_SH9T 1.0 8EN_XINTT 1.0 8EN_SH9T 1.0 8EN_SH9T 1.0 8EN_XINTT	1.0 8EN_COALC 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_FORET 1.0 8EN_XINTT 1.0 8EN_COALC
WILLMAR_MN Image: Constraint of the second data and the second dat	1.0 8BN_XINTT 1.0 8BN_XINTT 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_GH30T 1.0 8BN_OBH9T	1.0 8BN_4H401 1.0 8BN_4H40T 1.0 8BN_4H30T 1.0 8BN_XINTT 1.0 8BN_DSH9T G ⁷ AFORKS_ND	1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_XINTT
1.0 8BN_6H30T	1.0 8BN_XINTT 1.8 XTACSPL805A-1-8		
10 86H_DSH9T 10_M/VLM1VV110A-1.7 10 86H_6H30T 10_XDULERE108A-2.7 10 86N_XINTT 10_XTACSPL905A-1.7 10 86N_XINTT 10_XTACSPL905A-1.7 10 86N_4H40T 10_86N_4H40T 10 86N_4H40T 10_86N_XINTT 10 86N_4H40T 10_86N_XINTT 10 86N_50H9T 86N_50H9T (Altown of the second of the	1.0 8EN_4H40T 0 8EN_4H40T 1 8EN_4H30T 1 8EN_4H30T 1 8EN_XINIT 8EN_DSH9T 1.0 1.0 8EN_DSH9T 1.0 8EN_GH30T	1.0 8EN_COLC 1.0 8EN_DALC 1.0 8EN_DALC 1.0 8EN_DALC 1.0 8EN_DALC 1.0 8EN_XINTT 1.0 8EN_XINTT	I.O. SEN_GH30T 1.0. SEN_COALC 1.0. SEN_COALC 1.0. SEN_COALC 1.0. SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_COALC 1.0. SEN_SEN_SENT 1.0. SEN_SEN_SENT 1.0. SEN_SEN_SENT 1.0. SEN_SEN_XINIT 1.0. SEN_XINIT 1.0. SEN_XINIT 1.0. SEN_XINIT 1.0. SEN_XINIT 1.0. SEN_XINIT 1.0. SEN_YINIT 1.0. SEN_XINIT 1.0. SEN_YINIT 1.0.
	1.0 8BN_6H30T 1.0 8BN_6H30T		BENSON_MN

SIOCITY_IA	SIOCITY_IA 🛞	WILLMAR_MN 🛞	GRAFORKS_ND
I.0 SEN_6H30T 1.0 SEN_6H30T 1.0 SEN_6H30T 1.0 SEN_FORET 1.0 SEN_6H40T 1.0 SEN_6H50T 1.0 SEN_2H50T 1.0 SEN_COALC 1.0 SEN_COALC 1.0 SEN_NTIT 1.0 SEN_DSH9T	1.0 8EN_6H30T 1.0 8EN_7XINTT	1.0 8BN_DSH9T 1.0 8BN_EH40T 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_XINTT 1.0 8BN_XINTT 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_COALC 1.0 8BN_GOALC 1.0 8BN_GH30T 1.0 8BN_GH30T 1.0 8BN_GH30T 1.0 8BN_GH30T 1.0 8BN_GH30T 1.0 8BN_XINTT 1.0 8BN_XINTT 1.0 8BN_XINTT	1.0 SBN_COALC 1.0 SBN_COALC 1.0 SBN_XINTT 1.0 SBN_XINTT 1.0 SBN_XINTT 1.0 SBN_XINTT 1.0 SBN_FORET 1.0 SBN_XINTT
WILLMAR_MN Image: Color of the state of the	1.0 8EN_XINTT 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_GH30T 1.0 8EN_DSH3T 1.0 8EN_SH30T 1.0 XOULERE108A-2-8	1.0 8BN_4H40T 1.0 8BN_4H40T 1.0 8BN_VINTT 1.0 8BN_DSH9T C' AFORKS_ND	10 2BN_XINTT 10 8BN_XINTT
1.0 8BN_6H30T	1.0 8BN_XINTT +1.8 XTACSPL905A-1-8	1.0 8BN_4H407	WILLMAR_MN 🛞
10 26N 6H30T 10_X0ULBRE108A_2.7 10 8EN_XINTT 10 XTACSPL905A_1.7 10 8EN_XINTT 10 XTACSPL905A_1.7 10 8EN_XINTT 10 XTACSPL905A_1.7 10 8EN_4H40T 10 8EN_4H40T 10 8EN_4H40T 10 8EN_XINTT 10 8EN_XINTT 10 8EN_XINTT 10 8EN_FORET 10 8EN_FORET 10 8EN_FORET 10 MLAVVGFD109A-3-7 10 8EN_XINTT 10 8EN_XINTT	NORTHTOWN_MN 1.0 8BN_4H40T 1.1 8BN_XINTT 1.1 8BN_DSH9T 1.0 8BN_BH30T 1.0 8BN_6H30T	1.0 8EN_0ALC 1.0 8EN_XINTT 1.0 8EN_COALC 1.0 8EN_XINTT 1.0 8EN_XINTT	1.0 &BN_GH30T 1.0 &BN_GCALC 1.0 &BN_COALC 1.0 &BN_COALC 1.0 &BN_COALC 1.0 &BN_COALC 1.0 &BN_COALC 1.0 &BN_COALC 1.0 &BN_SINITT 1.0 &BN_SH30T 1.0 &BN_SH30T 1.0 &BN_SH30T 1.0 &BN_SH30T 1.0 &BN_SH30T 1.0 &BN_SH30T 1.0 &BN_SINITT 1.0 &BN_XINTT 1.0 &BN_XINTT 1.0 &BN_XINTT 1.0 &BN_AH40T 1.0 &BN_4H40T
	1.0 &BN_6H30T 1.0 &BN_6H30T		BENSON_MN

Stochastic optimization

Deterministic training
Stochastic training

Stochastic optimization

Train delay with uncertain transit times and yard delays

Laboratory testing

How do we do it?

» The stochastic model keeps more power in inventory. The challenge is knowing when and where.

Other ADP projects

Schneider National

» Optimizes assignments of 6,000 drivers over 30 days, 50,000 variables per time period. Drivers modeled using 15 dimensional attribute vector. Model closely matches historical performance.

Embraer

» Optimize inventories of 700 high value spare parts over multiple locations, balancing cost and service.

Netjets

- » Optimize the fleet mix of 15 types of aircraft over 20 years, capturing daily variations in demand and equipment substitutions.
- Car distribution at Norfolk Southern
 - » Optimize thousands of freight cars over multiweek horizon capturing uncertainty in demands and transit times, while modeling detailed information process.

APPROXIMATE DYNAMIC PROGRAMMING Solving the Curses of Dimensionality

Warren B. Powell

Second edition!

- » Due September, 2011.
- » Major revision. Complete restructuring and rewriting of middle third of the book.
- » 300 new/rewritten pages
- » Covers policy search in depth, along with high structured approach to value function approximations.