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Many important financial applications require knowing the
underlying (multivariate) parametric distribution or related
semiparametric distribution functions:

Insurance

Option pricing using optimal hedging (Remillard et al.,
2010)

Replication of hedge funds alla Kat-Palaro
(Papageorgiou et al., 2008)

Pricing of multiname credit derivatives (CDOs, n-th to
default swaps, etc.) (Berrada et al., 2006)
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Figure 1:S&P 500 over the period 12/31/1989 to 12/31/2009.
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Table: Descriptive statistics for the S&P 500 daily returns.

Mean Volatility Skewness Kurtosis

0.0002 0.0116 -0.1985 12.2536
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Traditional goodness-of-fit problem

To price options on the S&P500 index, one needs to know
what is the underlying distribution of the returns.

One has to take into account the (possible) serial
dependence, assuming stationarity and ergodicity.

The traditional goodness-of-fit problem is testing
H0 : F ∈ {Fθ; θ ∈ O}.
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Functional estimations and related processes

To estimate F , one can use the nonparametric estimator
F̂ (x) = Fn(x) = 1

n

∑n
i=1 1(Xi ≤ x), x ∈ Rd . The estimator

is convergent, whatever H0 is true or false.

Under H0, if θn is an estimator of θ so that
Θn = n1/2(θn − θ) Θ, Fθn is a consistent estimator of F .
Therefore it makes sense to consider test statistics based on
the empirical process Fn =

√
n {Fn − Fθn}.

When the data are serially independent, under H0,
Fn  F = BF −Θ>Ḟ , where Ḟ = ∇θ0F and where BF is a
F -Brownian bridge, i.e., a continuous centered Gaussian
process with covariance

Cov(BF (x),BF (y)) = F (x ∧ y)− F (x)F (y), x , y ∈ Rd .

In general, the limiting distribution of F 6= BF depends on
the the unknown parameters.
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Goodness-of-fit test for normality

To illustrate the fact that estimating parameters affect the
(asymptotic) distribution of the test statistic, consider doing
a goodness-of-fit test of normality for the following simple
model:

Xi = 1 + εi , εi ∼ N(0, 1),

of independent observations.

For testing H0 : εi ∼ N(0, 1), one applies the
Kolmogorov-Smirnov test, based on the statistic

KSn = sup
x∈R
|Fn(x)|.

The test statistic is evaluated with two sets of residuals:

e0i = Xi − 1, e1i = Xi − X̄ , i = 1, . . . , n.
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When taking residuals e0i , Fn  F = BΦ = B ◦ Φ, where B
is the standard Brownian bridge, and Φ is the DF of a
N(0, 1). Hence KSn  KS = sup0≤u≤1 |B(u)|.

However, for residuals e1i , Fn  F = B ◦ Φ− Eφ, where
n1/2ε̄n  E , φ = Φ′. Hence,
KSn  sup0≤u≤1 |B(u)− Eφ ◦ Φ−1(u)| 6= KS.

The results of the following simulation support that
conclusion!

Table 1: Percentages of rejection of the standard Gaussian

hypothesis for N = 10000 replications of the Kolmogorov-Smirnov

test, using samples of size n = 100.

Residuals
e0i e1i

4.89% .03%
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Another example

Figure 2: Scatter plot of the natural logarithms of the indemnity

payment (LOSS) and the allocated loss adjustmentexpense (ALAE) for

1500 general liability claims.
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Question

For the data set presented in Figure 2, one is interested in
finding a model of dependence, i.e., a copula, between the
two variables.

A copula is just a multivariate distribution function with
uniform marginals.

Recall that when the margins F1, . . . ,Fd are continuous,
there is a unique copula C such that the joint distribution
function F of X can be written as

F (x) = C {F1(x1), . . . ,Fd (xd )} ,

x = (x1, . . . , xd ) ∈ Rd .

So the question is: What is the underlying copula family? It
is a (semiparametric) goodness-of-fit problem.
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Goodness-of-fit problem for copulas

Suppose that independent observations X1, . . . ,Xn are drawn
from law F = C (F1, . . . ,Fd ) with (continuous) unknown
marginals F1, . . . ,Fd .

One is interested in testing H0 : C ∈ C = {Cθ; θ ∈ O}.
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C can be estimated by the so-called empirical copula

Cn(u) =
1

n

n∑
i=1

1(ei ,n ≤ u), u ∈ [0, 1]d ,

and eij ,n =
Rank(Xij )

n , j = 1, . . . , d , 1 ≤ i ≤ n;

Also, under H0, if θn is an estimator of θ so that
Θn = n1/2(θn − θ) Θ, Cθn is a consistent estimator of C .

Therefore it makes sense to consider test statistics based on
the empirical process Cn =

√
n {Cn − Cθn}.

However, Cn  C = D−Θ>Ċ . where Ċ = ∇θ0C , and D is
the process that would be obtained if θ were known, which
isn’t the case! Furthermore, the law of D depends on C .
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How can one determine P-values for statistics based on Cn

in such a case?

Test of goodness-of-fit can also be based on Kendall’s
process (Genest et al., 2006) and Rosenblatt’s transform
(Genest et al., 2009).

Except a few exceptional cases, the law of the limiting
processes depend on the unknown parameter θ.
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A first solution: Traditional bootstrap

In many cases, bootstrap can be used for testing
H0 : F ∈ {Fθ; θ ∈ O}.

Given an estimation θn = Tn(X1, . . . ,Xn) of θ:

1 Generate, for k = 1, . . . ,N, n independent observations
X̂1,k , . . . , X̂n,k from X1, . . . ,Xn.

2 Estimate θ by θ̂∗k,n = Tn

(
X̂1,k , . . . , X̂n,k

)
.

3 Compute F̂n,k =
√

n
(

F̂n,k − Fθ̂n,k

)
− Fn, where

F̂n,k(x) =
1

n

n∑
i=1

1
(

X̂n,k ≤ x
)
, x ∈ Rd .
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The approximate P-value of a statistic Sn = φn (Fn) is
computed as

1

N

N∑
k=1

1(S∗k,n > Sn),

provided large value of Sn indicates lack-of-fit.

Works in general for Fn and Cn (Fermanian et al., 2004).
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Another solution: Parametric bootstrap (PB)

PB for testing H0 : F ∈ {Fθ; θ ∈ O} was studied in Stute
et al. (1993).
For one-dimensional discrete distributions, PB for testing
goodness-of-fit was proposed by Henze (1996).

A natural question to ask is: Does parametric bootstrap
work in a semiparametric setting?

The answer is yes, provided estimators are “regular” enough
(Genest and Rémillard, 2008).

Basically, all known estimators are regular! Moreover, tests
can be based on the empirical copula, Kendall’s process, or
Rosenblatt transform.
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Example: Goodness-of-fit test for copulas

H0: C = Cθ0 , for some θ0 ∈ O.

Parametric bootstrap works if (θn) is rank-based and regular.

Examples of regular estimators:

If the pseudo Maximum Likelihood Estimator exists
(Genest et al., 1995), it is regular.

Other examples: Kendall’s tau, Spearman’s rho, and
van der Waerden coefficient.
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Parametric bootstrap implementation
Given (independent) random vectors X1, . . . ,Xn, estimate θ
by θn , compute the test statistic Sn = φ(Cn), and repeat
the following steps for k = 1, . . . ,N:

Generate U∗k,1, . . . ,U
∗
k,n

i .i .d .∼ Cθn .

Estimate θ by θ∗k,n, using the sample U∗k,1, . . . ,U
∗
k,n.

Compute S∗k,nφ(C∗k,n), where C∗k,n =
√

n
(

C ∗k,n − Cθ∗k,n

)
,

and C ∗k,n is the empirical copula of the sample
U∗k,1, . . . ,U

∗
k,n.

The approximate P-value of Sn is computed as

1

N

N∑
k=1

1(S∗k,n > Sn),

provided large value of Sn indicates lack-of-fit.
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Simulation experiment: GOF for the Gaussian
copula

Table 2: Percentage of rejection of the null hypothesis of Gaussian copula for

the Cramér-von Mises statistic Sn at the 5% level for Student copula

alternatives, based on N = 1000 and N = 10000 replicates. The value of the

unknown parameter ρ was 0.25.

Copula model n = 250 n = 500
N = 1000 N = 10000 N = 1000 N = 10000

Gaussian 4.5 5.09 4.7 5.08
Student (ν = 20) 7.4 6.45 6.7 6.13
Student (ν = 10) 9.2 8.28 9.3 9.38
Student (ν = 5) 14.8 14.88 19.8 21.20
Student (ν = 2.5) 42.8 43.51 75.8 75.46
Student (ν = 2) 63.3 63.17 94.1 94.22
Student (ν = 1.5) 88.2 87.56 99.6 99.93
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Insurance data example
Kendall’s process Kn = n1/2(Kn −Kθn ) is used instead of the
copula process, where K (t) = P{F (Xi ) ≤ t}, while

K̂ (t) = Kn(t) =
1

n

n∑
i=1

1{Fn(Xi ) ≤ t}.

Here, the test statistics are S
(K)
n =

∫ 1
0 K2

n(t)dt and

T
(K)
n = supt∈[0,1] |Kn(t)|.

Table 3: Results of the goodness-of-fit tests based on the statistics

S
(K)
n , and T

(K)
n for the data of LOSS and ALAE insurance data

Model θn S
(K)
n Critical value P-value

T
(K)
n c2n(0.95) (in %)

Clayton 0.939 2.284 0.129 0.0
2.497 0.901 0.2

Frank 3.143 0.239 0.114 0.2
0.893 0.856 3.1

Gumbel–Hougaard 0.319 0.028 0.117 86.5
0.494 0.863 82.0
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Figure 3: Estimator Kn of K for the LOSS and ALAE insurance data,

with global 95% confidence bands based on T
(K)
n for the

Gumbel–Hougaard model.
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Importance of the Rosenblatt transform

The Rosenblatt transform R of a copula C is the mapping
from (0, 1)d 7→ (0, 1)d , defined for u = (u1, . . . , ud ), by

(R(u))1 = u1,

(R(u))j =

∂j−1

∂u1···∂uj−1
C (u1, . . . , uj , 1, . . . , 1)

∂j−1

∂u1···∂uj−1
C (u1, . . . , uj−1, 1, . . . , 1)

,

j ∈ {2, . . . , d}.

It is well-known that if U ∼ C , then R(U) ∼ C⊥, where C⊥
is the independence copula.

It is often used for simulations. In fact, if W ∼ C⊥, i.e., W
is uniformly distributed on (0, 1)d , then U = R−1(W ) has
distribution C .
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“Best” omnibus test for GOF of copulas
Instead of using Cn for testing H0 : C ∈ {Cθ; θ ∈ O}, define
pseudo-observations E1,n = Rθn (e1,n), . . ., En,n = Rθn (en,n),
where Rθ is the Rosenblatt transform of Cθ.

Under the null hypothesis H0, the empirical distribution
function

Dn(u) =
1

n

n∑
i=1

1 (Ei ,n ≤ u) , u ∈ [0, 1]d ,

associated with the pseudo-observations E1, . . . ,En should
be “close” to the independence copula C⊥.
According to Genest et al. (2009), the best omnibus test for
goodness-of-fit is based on

S
(B)
n = n

∫
[0,1]d

{Dn(u)− C⊥(u)}2 du.

P-values are computed using parametric bootstrap.
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Parametric bootstrap and residuals of time series

According to Remillard (2010), tests of goodness-of-fit can
be performed on the copula of innovations of time series
models of the form Xt = (X1t , . . . ,Xdt), where

Xjt = µjt(θ0) + σjt(θ0)εjt , j = 1, . . . , d ,

where the innovation process εt = (ε1t , . . . , εdt) is a strong
white noise and εt has copula C .

The technique used for serially independent data works
without change!

Change-point tests are also valid for marginal distributions
and copula of such models.
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Example

Chen and Fan (2006) studied the dependence of the
innovations for the Deutsche Mark/US and Japanese Yen/US
exchanges rates, from April 28, 1988 to Dec 31, 1998.

AR(3)-GARCH(1,1) and AR(1)-GARCH(1,1) models were
fitted on the 2684 log-returns.

Because the series are so long, univariate change-point tests
were performed on the standardized residuals and the null
hypothesis was accepted.

A copula change-point test was also performed, yielding a
P-value of 33%.
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Figure 2: Scatter plot of residuals.
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Figure 3: Residuals vs time.

0 500 1000 1500 2000 2500 3000
−6

−4

−2

0

2

4

6



Outline

Motivation

Traditional
bootstrap

Parametric
bootstrap

Multipliers

References

Copula models considered by Chen and Fan (2006)
(Gaussian, Student, Clayton, Frank, Gumbel) were all

rejected using S
(B)
n , while they selected the Student copula

as the best model, based on the likelihood rankings.

What is the model then?

The next best model would be a mixture of two Gaussian
copulas (Dias and Embrechts, 2004).

H0 was accepted with a 84% p-value, computed from
N = 100 replications. The parameters of the two Gaussian
copulas are ρ̂ = [0.8205, 0.3749] and π̂ = [0.4017, 0.5983].
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Parametric bootstrap for dynamic models

Given a time series Yt , one may want to test

H0: The conditional distribution of Yt given Ft−1

belongs to the parametric family {Ft,θ; θ ∈ O}.

One can show that PB can be used in p-Markov, ARMA,
GARCH and regime-switching models.
One may also want to test semiparametric hypotheses like

H0: The copula C of (Yt−p, . . . ,Yt) belongs to the
parametric family C = {Cφ;φ ∈ P},

It can be shown, for example that PB works for dynamic
copulas, i.e., copulas associated with Markov processes.
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Rosemblatt’s transform is back!

Following an idea of Diebold et al. (1998),

H0: For some θ ∈ O, the conditional distribution of
Yt given Ft−1 is Ft,θ, for all t ≥ 1.

is equivalent to

H0: For some θ ∈ O, the Rosenblatt’s transforms
of Yt given Ft−1 is Rt,θ, for all t ≥ 1.

Under H0, Vt = Rt,θ(Yt) are independent and uniformly
distributed over (0, 1)d .
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In practice, θ is unknown and estimated by θn, so Vt is
replaced by vn,t = Rt,θn (Yt), t ≥ 1.

Tests of goodness-of-fit could be based on
Dn =

√
n(Dn − C⊥), with C⊥(u) =

∏
k=1 uk ,

u = (u1, . . . , ud ) ∈ [0, 1]d , and

Dn(u) =
1

n

n∑
t=1

1(vn,t ≤ u) =
1

n

n∑
t=1

d∏
k=1

1(vn,t,k ≤ uk).

PB works if the estimator θn is “regular”.

For example, MLE, moment and EM estimators are regular
in general.
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Gaussian regime-switching model for the S&P500
returns data

Here the null hypothesis is that conditionally on the
(Markovian) regimes, the returns are independent and
Gaussian.

Table 4: P-value for the goodness-of-fit test using 1000

replications.

Number of regimes 1 2 3 4

P-value 0 0 9% 3%

According to Table 4, one should choose a regime-switching
model with 3 regimes, since it is the smallest number of
regimes for which the P-value of the goodness-of-fit test is
larger than 5%.
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Dynamic copulas

Observation from a reader of the Globe and Mail:

The Canadian dollar always seems to go up [with
respect to the US dollar] when oil prices rise. Is
there a direct correlation between the two?

With the exchange rate returns (Xt) and oil futures returns
(Yt), one would like to fit a 4-dimensional copula on
(Xt ,Xt−1,Yt ,Yt−1).

By stationarity, the copulas associated with the pairs
(Xt ,Yt) and (Xt−1,Yt−1) are the same.

In practice, only the copula of the conditional distribution of
(Xt ,Yt) given (Xt−1,Yt−1) matters.
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GOF tests for Oil vs Exchange rate

Clayton and Frank dynamic copula models were rejected,
their p-values as approximated by PB being lower than 1%.

Table 5: Results of the estimation and goodness-of-fit for the dynamic
Gaussian and Student copulas, using N = 100 iterations.

Period Gaussian Student

2008-2009 ρ̂ = .435, PV = 12% ρ̂ = .444, ν̂ = 3.51, PV = 71%
2005-2009 ρ̂ = .350, PV = 53% ρ̂ = .345, ν̂ = 5.60, PV = 78%
2000-2009 ρ̂ = .236, PV = 1% ρ̂ = .220, ν̂ = 16.7, PV = 58%

Table 6: Estimation and goodness-of-fit for the Student copulas, for the
non-overlapping periods, using N = 100 iterations.

Period Student

2008-2009 ρ̂ = .444, ν̂ = 3.51, PV = 71%
2005-2007 ρ̂ = .228, ν̂ = 39.60, PV = 31%
2000-2004 ρ̂ = .086, ν̂ = ∞, PV = 37%
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Conclusion I

Parametric bootstrap is a powerful method that works
fine but can be quite slow.

The method is limited by available algorithms for
calculating the DF under H0.

One could use Monte Carlo implementation! Replace
the DF by an empirical one, obtained from independent
Monte Carlo sampling. It is called two-level parametric
bootstrap and it works but it is very very slow!

No such computational problems for tests based on the
Rosenblatt transform which is in addition almost always
the best!

Parametric bootstrap coupled with the Rosenblatt
transform also works for dynamic models.
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Multiplier CLT

An alternative Monte Carlo method, based on a version of
the multiplier central limit theorem (van der Vaart and
Wellner, 1996) has been proposed in some particular cases:
Lin et al. (1993, 2002), Hansen (1996), Guay and Scaillet
(2003), Scaillet (2005) and Rémillard and Scaillet (2009).

It seems difficult to find out when the multiplier
methodology was first used in statistical inference.

As shown in the next example, it is sometime impossible to
use the parametric bootstrap technique.
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Consider a stochastic volatility model of the form
Xt = (X1t , . . . ,Xdt) such that

Xjt = µjt(θ0) + σjt(θ0)εjt , j = 1, . . . , d ,

where the innovation process εt = (ε1t , . . . , εdt) is a strong
white noise and εt has copula C .

In practice, the innovations are replaced by the residuals et,n.

Also, if one is interested in the dependence between the
innovations, i.e., the copula Ct of εt , the pseudo-observations
Ut,n = (Rank(e1t,n)/(n + 1), . . . ,Rank(edt,n)/(n + 1)) are
used to get rid of the unknown (continuous) marginal
distribution od εjt .
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According to Remillard (2010), a test of change-point in the
copula

”
i.e., H0 : C1 = · · · = Cn vs

H1 : C1 = · · ·Cτ−1 6= Cτ = · · · = Cn, for some τ , can be
performed using the process

Gn(s, u) =
1√
n

bnsc∑
t=1

{1(Ut,n ≤ u)− Cn(u)} ,

which converges in law to

G(s, u) = C(s, u)− sC(1, u) = α(s, u)− sα(1, u),

where α is a C -Kiefer process, whose law depends on C ,
which is unknown.

Recall that a C -Kiefer process is a continuous centered
Gaussian process with covariance

Cov {α(s, u), α(t, v)} = s ∧ t {C (u ∧ v)− C (u)C (v)} ,

s, t ∈ [0, 1], u, v ∈ [0, 1]d .

The problem is then to generate independent copies of α.
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What is the multiplier CLT?

To illustrate the idea, take a random sample Y1, . . . ,Yn of
i.i.d. random variables with mean µ and variance σ2. Then
Zn =

√
n(Ȳ − µ) Z ∼ N(0, σ2).

Further let ξ1, . . . , ξn
i .i .d .∼ N(0, 1), also independent of

Y1, . . . ,Yn. Set

Z̃n =
1√
n

n∑
i=1

ξi (Yi − Ȳ ).

Then (Zn, Z̃n) (Z , Z̃ ), where Z̃ ∼ N(0, σ2) and Z̃ is
independent of Z , i.e., Z̃ is an independent copy of Z . This
is grosso modo the idea behind the multiplier central limit
theorem.
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Relation with traditional bootstrap

Traditional bootstrap is almost a special case of the
multiplier technique.

Denoting by Ŷ1, . . . , Ŷn the bootstrap sample, then

Ŷ = 1
n

∑n
i=1 Ni Yi , where Ni denotes the number of times Yi

appears in the bootstrap sample.

Therefore

Ẑn =
√

n
(

Ŷ − Ȳ
)

=
1√
n

n∑
i=1

(Ni − 1)(Yi − Ȳ )

and Ẑn converges in law to an independent copy of Z .
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Multiplier CLT for random vectors

The first result gives conditions for the “reproduction” of
random vectors arising from non-observable functions.

Theorem 1: Suppose that L : X 7→ Rd is a measurable
function such that E‖L(X )‖2 <∞ and EL(X ) = 0, and
assume that

Θn =
1√
n

n∑
i=1

L(Xi ) Θ.
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Let Ln be an estimation of L and set

Θ̃n =
1√
n

n∑
i=1

ξi Ln(Xi ),

where ξ1, . . . , ξn are i.i.d. with mean zero and variance one.

If ‖Ln − L‖r
Pr−→ 0, then (Θn, Θ̃n) (Θ, Θ̃), where

Θ̃ ∼ N{0, cov L(X )}, and Θ̃ is independent of Θ.

In particular, if Θ ∼ N{0, cov L(X )}, then Θ̃ is an
independent copy of Θ.
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Implementation

In many statistical applications, one starts with an estimator

θn =
1

n

∑
i=1

`n(Xi )

of θ, and one wants to generate random values of Θ, where
Θn =

√
n(θn − θ) Θ.

In general, one cannot apply directly Theorem 1 to
Θn =

√
n(θn − θ) by choosing Ln = `n.
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Implementation steps

Before using Theorem 1, usually one has to work a little bit
harder, by going through the following steps:

Find L so that

Θn =
1√
n

∑
i=1

L(Xi ) + oP(1)

and Θn  Θ ∼ N{0, cov L(X )}.

Find Ln and r ∈ R⊗d
2 such that ‖Ln − L‖r

Pr−→ 0.
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Example

Suppose that X1 = (X11,X12), . . . ,Xn = (Xn1,Xn2) are
independent observations on a random vector X with
distribution function H and margins F , G .

The empirical Kendall’s coefficient can be expressed as

τn = −1 +
4

n

n∑
i=1

Hn(Xi1,Xi2) = 4µn − 1,

where

Hn(x1, x2) =
1

n

n∑
j=1

1(Xj1 ≤ x1,Xj2 ≤ x2)

is the empirical distribution function.
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Step 1: From Ghoudi and Rémillard (2004),

Θn =
√

n(τn − τ) =
1√
n

n∑
i=1

L(Xi ) + oP(1),

with

L(x1, x2) = 8 {H(x1, x2)− µ} − 4F (x1)− 4G (x2) + 4,

µ = EH(X ), τ = 4µ− 1, F (x1) = H(x1,∞) and
G (x2) = H(∞, x2).
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Step 2: Take

Ln(x1, x2) = 8 {Hn(x1, x2)− µn} − 4Fn(x1)− 4Gn(x2) + 4,

with Fn(x1) = Hn(x1,∞) and Gn(x2) = Hn(∞, x2).

It then follows that

sup
x∈R2

|Ln(x)− L(x)| ≤ 16 sup
x∈R2

|Hn(x)− H(x)|+ 2|τn − τ |

converges to zero a.s., since {1(−∞, x ] ; x ∈ R2} is a
Glivenko-Cantelli class. Therefore one can take the supnorm.

Theorem 1 yields (Θn, Θ̃n) (Θ, Θ̃), where Θ̃ is an
independent copy of Θ.
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Multiplier CLT for empirical processes

e1,n, . . . , en,n: random vectors defined from X1, . . . ,Xn. For
t ∈ [−∞,∞]d , set

Kn(t) =
1

n

n∑
i=1

1(ei ,n ≤ t),

α̃n(t) =
1√
n

n∑
i=1

ξi{1(ei ,n ≤ t)− Kn(t)}.

Recall that a process B is a K -Brownian bridge if it is a
continuous centered Gaussian process with covariance
function cov {B(s),B(t)} = min{K (s),K (t)} − K (s)K (t).
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Theorem 2: Suppose that K is a continuous DF on Rd and

Kn(t)
Pr−→ K (t) for any fixed t ∈ [−∞,∞]d .

Then α̃n  α̃, where α̃ is a K -Brownian bridge.

If in addition Kn =
√

n(Kn − K ) K, where K is a
continuous centered Gaussian process, then
(Kn, α̃n) (K, α̃) and α̃ is independent of K.
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Implementation

In most applications, Kn  K, and K is not a K -Brownian
bridge. Instead, one can sometimes show (Ghoudi and
Rémillard, 2004) that K = α− γ where α is a K -Brownian
bridge.

Therefore, using Theorem 2, one gets independent copies of
α, not K!

It remains to approximate the law of γ using Theorems 1
and 2.
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Multipliers and GOF

As seen before, in many goodness-of-fit tests, the limiting
empirical process is of the form F = BF −Θ>Ḟ , where BF is
a F -Brownian bridge.

Then one can use multipliers to generate asymptotically
independent copies of (α,Θ,K).
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Multipliers and copulas

Let (Xi )i≥1 be i.i.d random vectors with continuous margins.
Under regularity assumptions, Cn =

√
n(Cn − C ) C where

C(t) = α(t)−
∑d

j=1 ∂tj C (t)βj (tj ), with

αn(t) =
1√
n

n∑
i=1

[1{εi ≤ t} − C (t)] α(t),

and βj (tj ) = α(1, . . . , 1, tj , 1, . . . , 1), for every
j ∈ {1, . . . , d}.

Here α is a C -Brownian bridge, and each βj is a standard
Brownian bridge.
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For any j ∈ {1, . . . , d}, set

f̂jn(t) = ∂̂tj C (t) =
Cn(t + uj/

√
n)− Cn(t − uj/

√
n)

2/
√

n
,

where (uj )k = 1 if k = j and (uj )k = 0 otherwise.

It can be shown, e.g., Rémillard and Scaillet (2009), that for
each j ∈ {1, . . . , d}, f̂jn(t) provides a (uniform) consistent
estimate of ∂tj C (t).
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Therefore, if

α̃n(t) =
1√
n

n∑
i=1

ξi [1{ei ,n ≤ t} − Cn(t)] ,

β̃jn(tj ) =
1√
n

n∑
i=1

(ξi − ξ̄)1(eji ,n ≤ tj ),

and

C̃n(t) = α̃n(t)−
d∑

j=1

f̂jn(t)β̃jn(tj ),

it follows from Theorem 2 that (Cn, C̃n) (C, C̃), where C̃
is an independent copy of C.
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That result was used in Scaillet (2005) for tests of positive
quadrant dependence.

An easy extension to (independent or paired) samples was
suggested in Rémillard and Scaillet (2009) for testing
equality between copulas.
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Solution for the change-point test

To obtain asymptotically independent copies of the limiting
test statistic Tn = max1≤j≤n max1≤i≤n |Gn(j/n,Ui ,n)|,
repeat the following steps for every k ∈ {1, . . . ,N}:

1 Generate a random sample ξi ,k ∼ N(0, 1), i = 1, . . . , n.

2 For (s, u) ∈ [0, 1]d+1, set

α
(k)
n (s, u) =

1√
n

bnsc∑
i=1

ξi ,k{1(Ui ,n ≤ u)− Cn(u)}

and compute G(k)
n (s, u) = α

(k)
n (s, u)− bnsc

n α
(k)
n (1, u).

3 Evaluate T
(k)
n = max1≤j≤n max1≤i≤n

∣∣∣G(k)
n (j/n,Ui ,n)

∣∣∣.
An approximate P-value for the test is then given by∑N

k=1 1
(

S
(k)
n > Sn

)
/N.
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Back to exchange rates data of Chen & Fan
(2006)

A copula change-point test was performed using N = 100
replications. The estimated P-value was 33%.

It required 30 hours of calculations, using the multipliers
methodology described before.
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Multipliers and dynamic models
One has to be careful! Here is a an example, using a simple
AR(1) model: Yt − µ = φ(Yt−1 − µ) + εt .

Suppose one wants to tests randomness in the AR(1) model,
i.e, if the p consecutive innovations are independent, using
residuals.

Let K be the DF of ε = (ε1, . . . , εp), where p > 1. Under
the H0, one can estimate K (t) = F (t1) · · ·F (tp) by the
empirical distribution function Kn of the residuals, i.e.

Kn(t) =
1

n

n−p+1∑
i=1

1(ei ,n ≤ t1, . . . , ei+p−1,n ≤ tp).

Hence, tests of randomness could be based on the empirical
process

√
n

{
Kn(t1, . . . , tp)−

p∏
k=1

Fn(tk)

}
.

See, e.g., Ghoudi et al. (2001).
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Under extra conditions, Kn =
√

n{Kn − K} K, where

K(t) = α(t) + (1− φ)M
p∑

j=1

F ′(tj )
∏
l 6=j

F (tl )

+Φ

p∑
j=1

F ′(tj )

p∑
q=j+1

φq−j−1G (tq)
∏

i 6=j ,q

F (ti ),

with G (s) = E{ε11(ε1 ≤ s)}, and αn  α, where

αn(t) =
1√
n

n−p+1∑
i=1

{1(εi ≤ t1, . . . , εi+p−1 ≤ tp)− K (t)} .

Note that α is not a K -Brownian bridge.
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Taking care of the parameters

To use Theorem 1, set Xi = (Yi−1,Yi ),

H(x1, x2) = x2 − µ− φ(x1 − µ),

Hn(x1, x2) = x2 − µn − φn(x1 − µn),

Mn = n1/2(µn − µ) =
1√
n

n∑
k=1

H(Xi )

1− φ
+ oP(1),

Φn = n1/2(φn − φ) =
1√
n

n∑
k=1

L(Xi ) + oP(1),

where L(x1, x2) = H(x1, x2)(x1 − µ), and
Ln(x1, x2) = Hn(x1, x2)(x1 − µn).
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Taking care of α

Set p = 2 for simplicity. Then

αn(t1, t2) = γn(t1, t2) + F (t1)βn(t2)

+F (t2)βn(t1) + oP(1),

where

βn(t1) =
1√
n

n∑
i=1

{1(εi ≤ t1)− F (t1)},

and

γn(t1, t2) =
1√
n

n∑
i=1

{1(εi ≤ t1)−F (t1)}{1(εi+1 ≤ t2)−F (t2)}.
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It follow from Theorem 2 that if one sets

γ̃n(t1, t2) =
1√
n

n∑
i=1

ξi

2∏
j=1

{1(ei+j−1,n ≤ tj )− Fn(tj )}

β̃n(t1, t2) =
1√
n

n∑
i=1

ξi{1(ei ,n ≤ t1)− Fn(t1)},

then

α̃n(t1, t2) = γ̃n(t1, t2) + Fn(t1)β̃n(t2) + Fn(t2)β̃n(t1)

will converge in law to an independent copy α̃ of α.
See Rémillard (2011) for more details.
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Conclusion II

The multiplier method works in more general settings
than the parametric bootstrap.

It is faster than traditional and parametric bootstrap
methods but requires more work.

Can be also used with residuals of dynamic models for
testing change-point, randomness and goodness-of-fit.

Comparisons in terms of power are yet to be made.
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