Optimising and Adapting the Metropolis Algorithm

Jeffrey S. Rosenthal
University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/

May 2, 2011
Journées de l'Optimisation, Montréal, Canada

Motivation

Given some complicated, high-dimensional density function $\pi: \mathcal{X} \rightarrow[0, \infty)$, for some $\mathcal{X} \subseteq \mathbf{R}^{d}$ with d large.
(e.g. Bayesian posterior distribution)

Want to compute probabilities like :

$$
\Pi(A):=\int_{A} \pi(x) d x
$$

and/or expected values of functionals like :

$$
\mathbf{E}_{\pi}(h):=\int_{\mathcal{X}} h(x) \pi(x) d x
$$

Calculus? Numerical integration?
Impossible! Typical π is something like ...

Typical π : Variance Components Model

$$
\begin{aligned}
& \pi\left(V, W, \mu, \theta_{1}, \ldots, \theta_{K}\right) \\
& =C e^{-b_{1} / V} V^{-a_{1}-1} e^{-b_{2} / W} W^{-a_{2}-1} \\
& \quad \times e^{-\left(\mu-a_{3}\right)^{2} / 2 b_{3}} V^{-K / 2} W^{-\frac{1}{2} \sum_{i=1}^{K} J_{i}} \\
& \quad \times \exp \left[-\sum_{i=1}^{K}\left(\theta_{i}-\mu\right)^{2} / 2 V\right. \\
& \left.\quad-\sum_{i=1}^{K} \sum_{j=1}^{J_{i}}\left(Y_{i j}-\theta_{i}\right)^{2} / 2 W\right]
\end{aligned}
$$

with, say, $K=19, d=22$.

High-dimensional! Complicated! What to do?

Estimation from sampling : Monte Carlo

Can try to sample from π, i.e. generate i.i.d.

$$
X_{1}, X_{2}, \ldots, X_{M} \sim \pi
$$

(meaning that $\left.\mathbf{P}\left(X_{i} \in A\right)=\int_{A} \pi(x) d x\right)$.
Then can estimate by e.g.

$$
\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=1}^{M} h\left(X_{i}\right)
$$

Good. But how to sample? Often infeasible! Instead . . .

Markov chain Monte Carlo (MCMC)

Define a Markov chain $X_{0}, X_{1}, X_{2}, \ldots$, such that for large n, $\mathbf{P}\left(X_{n} \in A\right) \approx \int_{A} \pi(x) d x$.
(Just approximate ... and not i.i.d.)
Still, hopefully for $M \gg B \gg 1$,

$$
\mathbf{E}_{\pi}(h) \approx \frac{1}{M-B} \sum_{i=B+1}^{M} h\left(X_{i}\right)
$$

But how to define a simple Markov chain such that

$$
\mathbf{P}\left(X_{n} \in A\right) \rightarrow \int_{A} \pi(x) d x
$$

The Metropolis Algorithm

$\pi=$ target density (important! complicated! high-dim!)
Goal : obtain samples from π.
The algorithm : for $n=1,2,3, \ldots$,

- $Y_{n}:=X_{n-1}+Z_{n}$, where $Z_{n} \sim Q$ (i.i.d., symmetric)
- $\alpha:=\min \left(1, \frac{\pi\left(Y_{n}\right)}{\pi\left(X_{n-1}\right)}\right)$
- with probability $\alpha, X_{n}:=Y_{n}$ ("accept")
- else, with probability $1-\alpha, X_{n}:=X_{n-1}$ ("reject")

Assuming "irreducibility", have $\mathbf{P}\left(X_{n} \in A\right) \rightarrow \pi(A)$.
Good!

Example \#1 : Java applet

$\pi(\cdot)$ simple distribution on $\mathcal{X}=\{1,2,3,4,5,6\}$.
[Take $\pi(x)=0$ for $x \notin \mathcal{X}$.]
$Q(\cdot)=\operatorname{Uniform}\{-1,1\} . \quad[$ APPLET]
Works.
But what if $Q(\cdot)=\operatorname{Uniform}\{-2,-1,1,2\}$.
Or, $Q(\cdot)=\operatorname{Uniform}\{-\gamma,-\gamma+1, \ldots,-1,1,2, \ldots, \gamma\}$.
Which γ is best?? ("optimise")
Good γ is between the two extremes, i.e. acceptance rate should be far from 0 and far from 1.
("Goldilocks Principle")

Example \#2 : N(0,1)

Target $\pi(\cdot)=N(0,1)$. Proposal $Q(\cdot)=N\left(0, \sigma^{2}\right)$. Which σ ? ?

$\sigma=0.1 ?$
too small!

$$
\text { A.R. }=0.962
$$

$\sigma=25$?
too big!
A.R. $=0.052$

$\sigma=2.38 ?$
(better!)
A.R. $=0.441$

What about higher dimensions? (need smaller $\sigma \ldots$...)

How to make theoretical progress?

Consider diffusion limits!

Analogy : if $\left\{X_{n}\right\}$ is simple random walk, and $Z_{t}=d^{-1 / 2} X_{d t}$ (i.e., we speed up time, and shrink space), then as $d \rightarrow \infty$, the process $\left\{Z_{t}\right\}$ converges to Brownian motion.

Theorem [Roberts, Gelman, Gilks, AAP 1994]:
If $\left\{X_{n}\right\}$ is a Metropolis algorithm in high dimension d, with $Q(\cdot)=N\left(0, \frac{\ell^{2}}{d} I_{d}\right)$, and $Z_{t}=d^{-1 / 2} X_{d t}^{(1)}$, then under "certain conditions" on $\pi(\cdot)$, the process $\left\{Z_{t}\right\}$ converges to a diffusion.

More precisely, as $d \rightarrow \infty, Z_{t}=d^{-1 / 2} X_{d t}^{(1)}$ converges to a Langevin diffusion which satisfies :

$$
d Z_{t}=h(\ell)^{1 / 2} d B_{t}+\frac{1}{2} h(\ell) \nabla \log \pi\left(Z_{t}\right) d t
$$

where

$$
\text { speed }=h(\ell)=2 \ell^{2} \Phi\left(-C_{\pi} \ell / 2\right)
$$

and

$$
\text { acceptance rate } \equiv A(\ell)=2 \Phi\left(-C_{\pi} \ell / 2\right)
$$

(Here C_{π} depends on $\pi(\cdot)$, and $\Phi(x)=\int_{-\infty}^{x} \frac{e^{-u^{2} / 2}}{\sqrt{2 \pi}} d u$.)
Key point : algorithm's speed $h(\ell)$ is explicitly related to its asymptotic acceptance rate $A(\ell)$.

Lots of information here!

- The speed $h(\ell)$ is related to the acceptance rate $A(\ell)$.
- To optimise the algorithm, we should maximize $h(\ell)$.
- The maximization is easy : $\ell_{o p t} \doteq 2.38 / C_{\pi}$.
- Then we can compute that $: A\left(\ell_{o p t}\right) \doteq 0.234$.

So, for $Q(\cdot)=N\left(0, \sigma^{2} I_{d}\right)$, it is optimal to choose

$$
\sigma^{2}=\frac{\ell_{o p t}^{2}}{d}=\frac{(2.38)^{2}}{\left(C_{\pi}\right)^{2} d}
$$

which leads to an acceptance rate of 0.234 .
Clear, simple rule - good!
(Also shows algorithm's running time is $O(d)$.)

What are these "conditions" on π ?

Original result : $\pi(\mathbf{x})=\prod_{i=1}^{d} f\left(x_{i}\right)$ for fixed f (i.i.d.). Very restrictive, artificial condition.

Some generalizations (Bédard, AAP 2007) :
$\pi(\mathbf{x})=\prod_{i=1}^{d} \theta_{i}(d) f\left(\theta_{i}(d) x_{i}\right)$, where certain $\left\{\theta_{i}(d)\right\}$ repeat more and more as $d \rightarrow \infty$. More flexible! (Also, for certain other cases, 0.234 is no longer optimal : Bédard, SPA 2008.)

Anyway, 0.234 is often nearly optimal, even if the theorem conditions are not satisfied. ("robust")

But does acceptance rate tell us everything?

Example \#3 : $\pi=N(0, \Sigma)$ in dimension 20
First try : $Q(\cdot)=N\left(0, I_{20}\right)($ acc rate $=0.006)$

Horrible : $\Sigma_{11}=24.54, E\left(X_{1}^{2}\right) \stackrel{x_{[1]}}{=} 1.50$.

Second try : $Q(\cdot)=N\left(0,(0.0001)^{2} I_{20}\right) \quad(\operatorname{acc}=0.892)$

Also horrible : $\Sigma_{11}=24.54, E\left(X_{1}^{2}\right)=0.0053$.

Third try : $Q(\cdot)=N\left(0,(0.02)^{2} I_{20}\right) \quad(\operatorname{acc}=0.234)$

Still poor : $\Sigma_{11}=24.54, E\left(X_{1}^{2}\right)=3.63$.

Fourth try : $Q(\cdot)=N\left(0,\left[(2.38)^{2} / 20\right] \Sigma\right)(\operatorname{acc}=0.263)$

Much better : $\Sigma_{11}=24.54, E\left(X_{1}^{2}\right)=25.82$.

Optimal Proposal Covariance

Theorem [Roberts and R., Stat Sci 2001] :
Under certain conditions on $\pi(\cdot)$, the optimal Metropolis algorithm Gaussian proposal distribution as $d \rightarrow \infty$ is

$$
Q(\cdot)=N\left(0,\left((2.38)^{2} / d\right) \Sigma\right) .
$$

(Not $\left.N\left(0, \sigma^{2} I_{d}\right) \ldots\right)$ Furthermore, with this choice, the asymptotic acceptance rate is again 0.234.

And, optimal / nearly optimal for many other high-dimensional densities, too.

But this only helps if Σ is known!
What if it isn't??

How to use this result if Σ is unknown?

Use adaptive MCMC! (Haario et al., Bernoulli 2001)

- Replace Σ by the empirical estimator Σ_{n}.
- Hope that for large n, we have $\Sigma_{n} \approx \Sigma$.
- Then $N\left(0,\left((2.38)^{2} / d\right) \Sigma_{n}\right) \approx N\left(0,\left((2.38)^{2} / d\right) \Sigma\right)$.
- So, use this proposal instead!

Are we allowed to do this?? (Subtle, because the process is no longer Markovian.)

- In examples, it usually works well ... (next page)
- But not always ... [APPLET]

Good adaptation in dimension 200 ...

Is Adaptive MCMC Valid??

Theorem [Roberts and R., J Appl Prob 2007] : Yes, any adaptive MCMC converges asymptotically to $\pi(\cdot)$, assuming :

1. "Diminishing Adaptation" : Adaption chosen so that

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathcal{X}} \sup _{A \subseteq \mathcal{X}}\left|P_{\Gamma_{n+1}}(x, A)-P_{\Gamma_{n}}(x, A)\right|=0 \quad \text { (in prob.) }
$$

2. "Containment" : Times to stationary from X_{n}, if we fix $\gamma=\Gamma_{n}$, remain bounded in probability as $n \rightarrow \infty$. [Technical condition. Satisfied e.g. under compactness and continuity.]

Meanwhile, in applications, adaption often leads to significant speed-ups, even in hundreds of dimensions (Roberts and R., JCGS 2009 ; Richardson, Bottolo, R., Valencia 2010).

Another application : Simulated Tempering

Simulated Tempering : replace π by a family $\left\{\pi^{\beta_{i}}\right\}_{i=1}^{m}$, with $0 \leq \beta_{m}<\beta_{m-1}<\ldots<\beta_{0}=1$.
Here $\pi^{\beta_{m}}$ is the "hot" distribution (easily sampled).
And $\pi^{\beta_{0}}=\pi$ is the "cold" distribution (the distribution of interest, but hard to sample).
Hope the algorithm can move efficiently between the different $\pi^{\beta_{i}}$, so it can "benefit" from $\pi^{\beta_{m}}$ to efficiently explore $\pi^{\beta_{0}}$.
Question : how to choose the values β_{i} ?
Often chosen to be "geometric" : $\beta_{i}=a^{i}$ for $0<a<1$.
Theorem [Atchadé, Roberts, R., Stat \& Comput 2010] : optimal to choose $\left\{\beta_{i}\right\}$ so that the asymptotic acceptance rate for moves $\beta_{i} \mapsto \beta_{i \pm 1}$ is 0.234 . (Not necessarily geometric!)

Langevin Algorithms

If possible, it's more efficient to use a non-symmetric proposal distribution, inspired by Langevin diffusions :

$$
Y_{n}=X_{n-1}+\sigma Z_{n}+\frac{\sigma^{2}}{2} \nabla \log \pi\left(X_{n-1}\right)
$$

Theorem [Roberts and R., JRSSB 1997]:
Optimal choice is now $\sigma=\ell d^{-1 / 6}$ (not $\sigma=\ell d^{-1 / 2}$), and $A\left(\ell_{o p t}\right) \doteq 0.574\left(\right.$ not $\left.A\left(\ell_{o p t}\right) \doteq 0.234\right)$.

In this case, the algorithm's running time is $O\left(d^{1 / 3}\right)$, not $O(d)$, with optimal acceptance rate 0.574 , not 0.234 .

Summary

- The Metropolis algorithm is very important.
- The optimisation of the algorithm can be crucial.
- Want acceptance rate far from 0 , far from 1.
- Various theorems tell us how to optimise under certain conditions : $0.234, N\left(0,(2.38)^{2} \Sigma / d\right)$, etc.
- Even if some information is unknown (e.g., Σ), can still adapt towards the optimal choice ; valid if the adaption satisfies "Diminishing Adaptation" and "Containment".
- Can lead to tremendous speed-up in high dimensions.
- Optimisation/adaption may be worth the trouble!
http ://probability.ca/jeff/

