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Synthetic Human Decision Behavior Model 

Research Goal:  

Synthetic human decision 

behavior model for complex and dynamic scenarios 

Conceptual architecture: Extended belief-desire-intention (BDI) framework 

 

• Requirements of model 

• Coherent and comprehensive framework for various applications 

• Human subjective evaluation of environment via deductive inference 

• Psychological (human like) rather than AI-only agent 

• Generating a probabilistic plan in real-time with a varying horizon 

• Reinforcement learning for model update 

• Reverse-engineering and validation of model via HIL experiment 

• Integration of software modules to improve model accuracy 

 

Enabling methodologies and technologies 

Distributed 

Computing 

(Web services) 

-- integration of 

Software 

modules 
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Extended BDI for Various Applications 

Error detection and resolution personnel 

in complex mfg (Sponsor: AFOSR); 

Evacuation behaviors under a terrorist 

bomb attack (Sponsor: AFOSR, NIST) 

Network of stake holders in an 

enterprise (Sponsor: NSF) 

Evacuation behaviors under fire in 

a factory (Sponsor: UA) 

BDI and 

computing 

framework 

X. Zhao and Y. Son, 2008, BDI-based Human Decision-Making Model in Automated 

Manufacturing Systems, International Journal of Modeling and Simulation, 28(3), 347-356. 

Lee, S., Y.-J. Son, and J. Jin (2010), Integrated human decision making and planning 

model under extended belief-desire-intention framework, ACM Transactions on Modeling 

and Computer Simulation, 20(4), 23(1)~23(24). 

H. Xi, Y. Son, 2011, Two-Level Modeling Framework for Pedestrian Route Choice and 

Walking Behaviors, Simulation Modeling Practice and Theory (Submitted).  

N. Celik, H. Xi, D. Xu, Y. Son, R. Lemaire, K. Provan, 2011, Simulation-based Workforce 

Assignment Considering Position in a Social Network, Simulation: Transactions of the 

Society for Modeling and Simulation International (Accepted). 

K. Vasudevan and Y. Son, 2011, Concurrent Consideration of Evacuation Safety and 

Productivity in Manufacturing Facility Planning using Multi-Paradigm Simulations, 

Computers and Industrial Engineering (Accepted). 

Traffic simulation (pedestrian 

/vehicle interaction; driver’s 

behavior) (Sponsor: FHWA) 
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Crowd Simulation Model Development Process 

• More realistic crowd model 

• Evacuation safety analysis 
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Extended Belief-Desire-Intention Framework 

Bratman, 1987 

Rao and Georgeff, 1998 

Zhao and Son, 2008 

Lee, S., Y.-J. Son, and J. Jin (2010), Integrated human decision making and planning 

model under extended belief-desire-intention framework, ACM Transactions on Modeling 

and Computer Simulation, 20(4), 23(1)~23(24). 

 BBN 

 DFT 
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Motivation in Application (Evacuation from Fire) 

• Motivation 1: In manufacturing layouts 

– Productivity has been a major concern 

– Opportunities for safety concern under emergency 

evacuation 

• Motivation 2: In safety standards 

– E.g. NFPA (National Fire Protection Authority) Life 

Safety Code Handbook 

– Static (regardless of details of layout) and used as 

minimum requirements 

• (General) Travel distance to an exit <= 400ft 

• (In high hazard occupancies) Travel distance <= 75ft 

• Width of passageway serving as an exit >= 44in 
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Research Approach 

• Consider both productivity and evacuation 

safety via 

– (Traditional) Discrete event simulation: productivity 

analysis 

– (Novel) Synthetic human decision behavior model + 

agent based simulation: evaluate evacuation safety 

• Varying layout configurations 

• Number of exits 

• Exit capacities 

• Arrangements of exits 

• Width of corridors 
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Case: Auto. Drive Train (Engine + Transmission) 

• 265 feet * 625 feet (=165,625 ft2) 

• 70 ~ 220 people 
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Considered Layout Configurations for 

Fabrication Area 

Product Layout 

Hybrid Layout 

Process Layout 

Group Technology Layout 
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Considered 70 Exit Configurations 

• Each configuration has 4 exits (8 possible locations) 

• Total of 70 configurations considered 

1 

2 

3 4 

8 

5 

6 

7 

8 4 70=£
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Belief Module (Perceptual Processor) 

• Bayesian belief network 

– Mimic subjective evaluation of an environment 

– Training stage: HIL experiment (varying environment) 

– Operation stage: inferencing individual perception 

Environment 

(characteristics of each 

path in the intersection) 

Individual 

perception 

(for each 

path) 
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• CAVE (VR) at UA 

• Construction of 3D 

environment 

– Google SketchUp 

(OpenGL API) 

– AutoMod Simulator (3D 

Inventor 

• Audio effects 

– Virtual Sound Server 

system 

• VR wand 

– input to system 

• Goggle 

Human-in-the-loop Experiment in CAVE 

../../../../Son_Bios_Photos_Interviews_Articles_Speeches/CBS/Screen_Movies_Sent/cave.avi
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Decisions made by each subject and EDFT model; 15/18 => 83% 

Validation of EDFT Decisions 
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Real-time Planning Module (1) -- DFT 

• Decision-Field-Theory 

– Busemeyer and Townsend (1993) 

– Evolution of preference of alternative options 

• Proven to explain several psychological phenomena 

– Extended DFT for dynamic environment (multi-

stage decision-making) 

• Lee, Son, and Jin (2007) – Information Sciences 

• Abad, Jin, and Son (2008) – IEEE SMC 

S. Lee, Y. Son, and J. Jin, 2008, Decision Field Theory Extensions for Behavior Modeling in 

Dynamic Environment using Bayesian Belief Network, Information Sciences, 178(10), 2297-2314. 

J. Busemeyer, J. Townsend, 1993, Decision Field Theory: A Dynamic-Cognitive Approach to 

Decision Making in an Uncertain Environment, Psychological Review, 100, 432-459. 

A. Abad, J. Jin, and Y. Son, Nov. 2007, Dynamic Modeling of Human Decision Behavior Using 

Decision Field Theory, IEEE Transactions on Systems, Man, and Cybernetics A (submitted). 
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Real-time Planning Module (2) -- DFT 

• P(t): Preference state 

vector at time t 

• S: Feedback matrix 

• C: Comparison process 

matrix that contrast the 

weighted evaluations 

• M: Personal evaluation 

matrix of each option on 

each attribute 

• W(t):  Attention weight 

vector allocated to each 

attribute at time t 

p
r
e
fe

r
e
n

c
e
 

Fixed Decision  
Time ND 

time 

Alternative A 

Alternative B 

n×1 (n×n)×(n×1)  (n×n)×(n×m)×(m×1)  

n options 

m attributes 
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DFT Assumptions (1) 

• S: stability 

• W changes over time according to a 

stationary stochastic process, which allows us 

to derive four important theories regarding the 

expected preference values 

– Minimum amount of time steps needed for the 

preference values to be stabilized 
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Real-time Planning Module (3) 

• Multi-horizon real-time planner involving 

– Extended DFT 

– Probabilistic depth first search technique 

– SOAR programming tool 

1:   CALL EDFT to get the preferences of PATHs from the current position  

2:   IF Soar has the knowledge of local paths THEN 

3:      REPEAT  

4:          SELECT a PATH which is directly connected to the current position      

                            based on the probability distributed according to preference  

5:          CALCULATE the preference for all PATHs that are connected t the  

                                   current position based on the knowledge 

6:          SET the preference of the selected PATH to worst 

7:      UNTIL it reaches to End or has n intersections 

8:   ELSE 

9:      SELECT a PATH which is directly connected to the current position based  

                        on the probability distributed according to preference 

10: ENDIF 

11: RETURN PATH 
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1. Get environmental 
    information (Fire, Smoke,  

     Crowd, Distance to  destination) 

 

1. Get environmental 
    information  
    (Distance from knowledge) 

 
2. Get M and W from BBN 
 
3. Get preference from  
    EDFT and calculate  
    probability based on the 
    multiple replications  
 
4. Get path from Soar 
    Pdown Pleft … 
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2. Get M and W from BBN 

3. Get preference from  
    EDFT and calculate  
    probability based on the 
    multiple replications; Pr 

is fed into Soar  
 

4. Get path from Soar  
    based on the random 
    selection 
     Path = Pdown 

 

0.31 

0.69 

n= 1 2 

Illustration of Planning with Permanent Worker (1) 

 Planning horizon n=3 
3 
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1. Get environmental 
    information (Fire, Smoke,  

      Crowd, Distance) 
 

2. Get M and W from BBN 
 
3. Get preference from  
    EDFT and calculate  
    probability based on the 
    multiple replications  
 
4. Get path from Soar 
    PStraight 

 
 
 

 

Planning in Visitors or Temporary Workers (2) 

 Planning horizon n=1 
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Emotion Module 

• Impact of Confidence Index (CI) 

– Commitment strategy (Suspicious / confident mode) 

– Planning horizon 

– Movement speed 

– Leader / follower behavior 

– CI improvement is used as immediate reward in the Q-Learning 

1(1 )

( 1) ( ) ,

0 1, ( ) inferred value from BBN

td

t t
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Force Model for Velocity Avoiding Collision 

• Calculation of velocity for each agent given 1) desired 

destination and 2) force (Helbing et al., 2000) 

0 0
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Modeling Constructs Agent-based Simulation 

UML State-chart for dynamic behavior UML Class diagram for  

Static information 

-Age : int

-Name : string

-Goal_Intersection : int

-Current_Intersection : int

-Xoffset : float

-Yoffset : float

-Panic_Scale : float

-Injury_Scale : float

-Knowledge_of_Area : float

-Leadership : bool

-Independence : bool

-Gender : char

-Has_Infant : bool

-Goal_Type : string

Person

-Boost_Factor : float

Man
-Priority_Factor : float

Woman

-Badge_Id : string

-Influence : float

-Rank : int

-Directing_Influence : float

Police
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Implementation Infrastructure using WS 
• Light-weight HLA/ RTI 

using Web Services 

technology 

– W3C standard protocols 

including XML, SOAP, 

WSDL 

– Platform independent 

– Less than 20 methods 

(initialize, advanceTime, 

cons_advanceTime, 

sendMessage, 

getMessage, terminate, 

and cleanup)  

 

• Available in public 

– Used for integrating 

Anylogic, BBN (Netica 

BBN), Soar 
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Simulation Results (1) – Best Exit 

Configurations 

• A more spread out exit configuration pattern 

• More decision points (passage alternatives), but faster 
evacuation 
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Simulation Results (2) -- Observations 

• No inverse relationship between safety and 

productivity 

better 

better 
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Simulation Results (2) – Congestion 

• For a given layout configuration, evacuation 

time vs. increasing number of people 
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Summary 

• In addition to productivity analysis in facility 

design 

• Proposed to consider emergency (fire) 

evacuation safety via 

– Synthetic human decision behavior model 

– Agent based simulation 

• Demonstrated the proposed approach for an 

automotive drive train facility 

– Differences of evacuation times for varying 

configurations with the same size 

– NFPA: Static minimum requirements 
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Demo: Evacuation from Bombing Attack 

../../../../Son_Bios_Photos_Interviews_Articles_Speeches/CBS/Screen_Movies_Sent/anylogic.avi
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Other Modeling Concerns 

• Behaviors of “followers” follow those of “leaders” 

• Influence of speakers (state of other intersections) 

– Value of information (BBN) 

• Influence of policemen (constraint; additional info. ) 

• Other modeling considerations 

– Geographic data (satellite image) 

– Demographic data 

– Constraints/interface to/from other simulations (plume, metro) 
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Vehicle/Pedestrian Interactions in Chicago 

• FHWA projects (IIT; Argonne Lab) 

• Chicago loop area (1.3 km2; 87 intersections) 

• Each intersection having 4 cross-walks 

• Loosely coupled integration (transportation simulator; pedestrian) 

• NSF-DDDAS; Need for a detailed model: construction; accident; 

vehicle/pedestrian interactions 
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  Agent Type 
Pedestrian 

Movement 
Congestion Decision-making Delay Estimation Method 

Aggregated Level Crosswalk N N N Extended Adams’ model* 

Medium Level Pedestrian Y N N Extended Adams’ model* 

Detailed Level Pedestrian Y Y Y Simulation 

Table 2: Agent Characteristics and Delay Estimation Method at Each Level 

  Agent Type Agent Number Scenario Scale Time Step Sidewalks 

Aggregated Level Crosswalk 87*4 Chicago Loop Area 30 seconds 
One lane w/ both 

directions 

Medium Level Pedestrian 2000~4000 Chicago Loop Area 1 second 
One lane w/ both 

directions 

Detailed Level Pedestrian (30~50)*87 
Chicago Loop Area  

(87 intersections) 
1 second 

Two lane w/ both 

directions 

Table 1: Three Levels in the Multi-scale Framework for Estimating Pedestrian Delay 

*Adams, 1936; Guo et al, 2004 

Multi-Scale Model: Three Levels 
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Simulating a person’s behaviors  under a normal situation at a shopping mall => allows 

shopping mall management to evaluate arrangement of stores 

 

Agents are shoppers characterized by gender, age, preference, schedule, and grouping, and 

various environmental conditions are considered (e.g. different kind of shops, obstacles, 

promotions on the shops) 

 

For each agent, tactical human decision-making (via the Extended Decision Field Theory 

(EFT)) and physical interactions and congestions (via the Social Force model) are 

considered in an integrated manner. 

 

Models are continuous (social force model) for people movement 

 

Pedestrian Behavior 
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Xi, H., and Y. Son (2010), An integrated pedestrian behavior model based on extended 

decision field theory and social force model, In Human-in-the-loop simulation: Methods and 

practice. eds. L. Rothrock, and S. Narayanan: Springer (accepted) 

  

Experimental factors: 1) consideration of human’s vision; 2) group shopping 

behavior; 3) arrangement of stores, 4) complexity of the model 

Metrics: 1) average distance among neighboring shoppers, 2) the movement speed 

of pedestrians, 3) the profit of the shopping mall, and 4) scalability 

Pedestrian Behavior 

../../../2008/FAIM2008/Presentation/AnyLogic_FacEvac.avi
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Energy 
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Household Specific Demand Profile 

(Demographics) 



Systems and Industrial Engineering, The University of Arizona 

Effect of PV and Storage Efficiency on Costs 
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NSF-SOD: Simulation-based Workforce Assignment in a 

Social Network 
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Workforce Assignment Framework Considering Position and 

Equivalence 

Reputation (Rij)

Opinion 

Formation

Innovation 

Diffusion

Optimal Assignment Module using 

Multi-Objective Optimization

Robustness Productivity

Optimal Team Assignment 

of Projects

Proximity (Pij)Trustworhiness (Tij) Influence (Iij) 

 

0.44 

0.6 

 

0.54 

 

  

  

α(t) β(t) γ(t) δ(t)
where α(t), β(t), γ(t), and δ(t) are 

evaluated via DEP’s probability equations 
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Evaluation Module using 

Agent-based Simulation Model

Structural 

Equivalence (SEij)

N. Celik, H. Xi, D. Xu, Y. Son, R. Lemaire, K. Provan, 2010, Simulation-based Workforce 

Assignment Considering Position in a Social Network, Simulation, in press. 

For every arc of  

a directed network 

Extended RE Evaluation 

Each pair of  

members 

Selects an optimal  

workforce mix  

considering both 
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Simulation Results 

Instance: 3 projects assigned  Instance: 30 projects assigned 

• Dynamic change of regular equivalence levels in the agent based model 

• Dynamic change of the preference state matrix P(t)T=[(t), (t), (t), δ(t)]   

../../../../Projects/2009/NSF_SOD/PhaseII_v1.avi
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Son 

 EFRI-COPN: Optimal decision making: How do rats and 

humans solve the traveling salesman problem? 

        System Engineers 

 Dr. Bahill 

 Dr. Son 

 (algorithmic and 

 computational work) 

      Neurophysiologists 

 Dr. Fellous 

 Dr. McNau- 

 ghton 

 (animal work) 

 Dr. Frank 

 (neural  

 model,  

 human work) 

1 

2 

   Psychologist 

Rat and human experiments 

Learning and decision-making 

algorithms in computational frameworks 

2 1,3 

Human 

subjects  

Hyperdrive  

technique  

• Markov     

  decision process 

• Reinforcement   

  learning 

• BDI intelligent 

  agent framework 

Traveling  

Salesman problem 

3 

Interdisciplinary 

Collaboration 

Overview: Project members (below) 

and their roles (right side) 

1 

Bridge the gap  

via neural model 
Neural Model 

3 
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QUESTIONS 

Young-Jun Son 

1-520-626-9530; son@sie.arizona.edu 

http://www.sie.arizona.edu/faculty/son 

mailto:son@sie.arizona.edu
http://www.sie.arizona.edu/faculty/son

