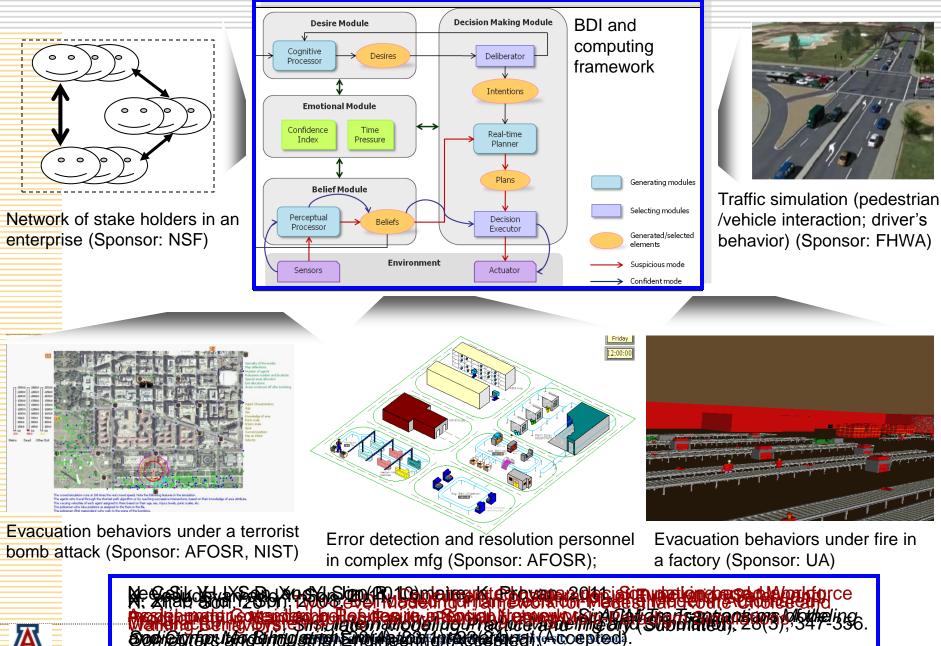
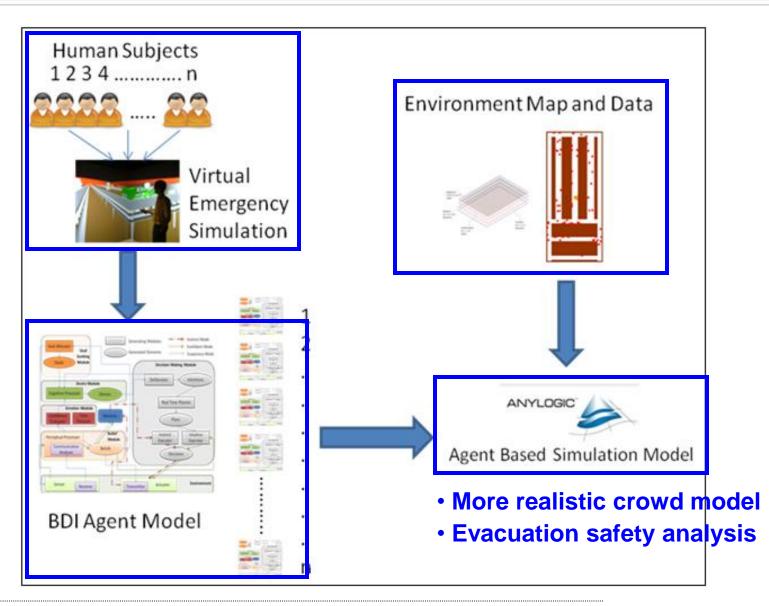

A Multi-Scale Crowd Behavior Modeling Framework: Emergency Evacuation and Normal Scenarios

Sponsors: AFOSR MURI F49620-03-1-0377 NSF SOD 0725336 NIST SB1341-05-W-0852 DTFH61-10-C-00009 (via IIT)

Young-Jun Son and Hui Xi Systems and Industrial Engineering The University of Arizona Collaborators: X. Zhao, K. Vasudevan, S. Lee

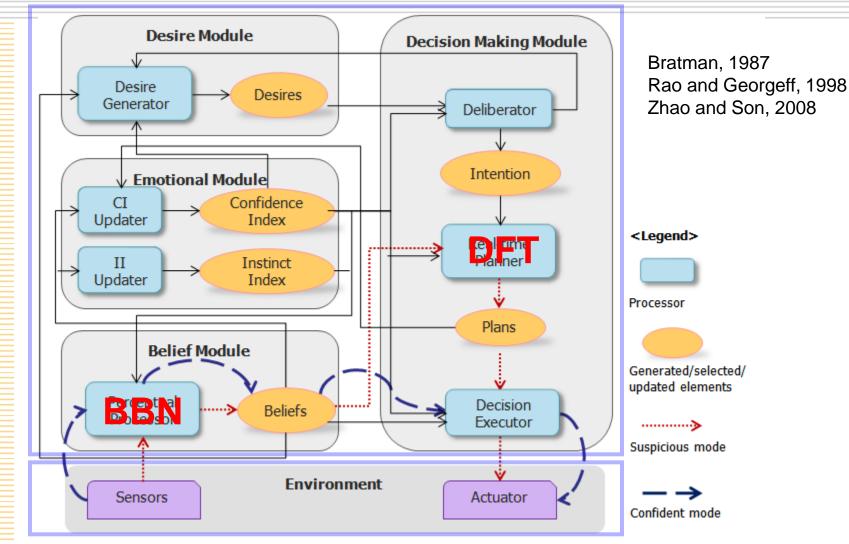

INFORMS Sim. Society Research Workshop, July 18th, 2011

Synthetic Human Decision Behavior Model



- Human subjective evaluation of environment via deductive inference
- Psychological (human like) rather than AI-only agent
- Generating a probabilistic plan in real-time with a varying horizon
- Reinforcement learning for model update
- Reverse-engineering and validation of model via HIL experiment
- Integration of software modules to improve model accuracy Systems and Industrial Engineering, The University of Arizona

Extended BDI for Various Applications



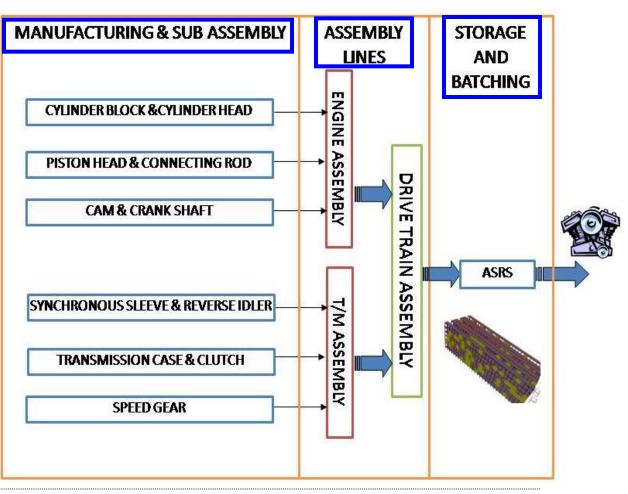
Crowd Simulation Model Development Process

Extended Belief-Desire-Intention Framework

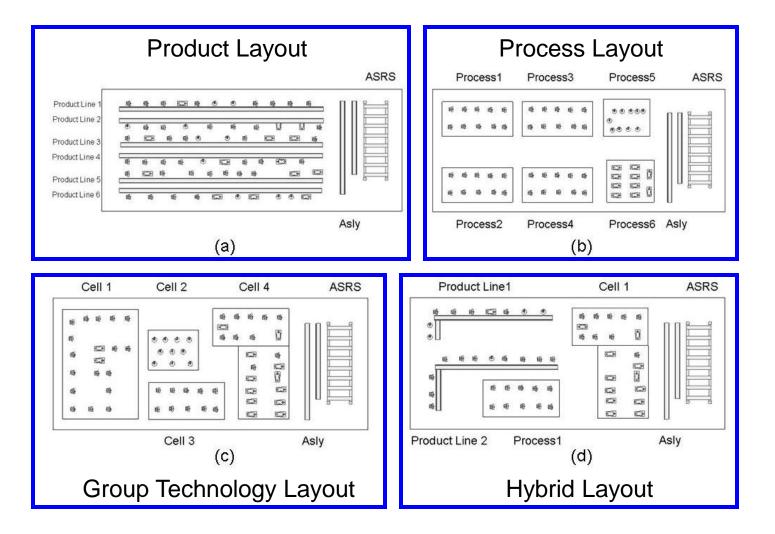
Lee, S., Y.-J. Son, and J. Jin (2010), Integrated human decision making and planning model under extended belief-desire-intention framework, *ACM Transactions on Modeling and Computer Simulation*, 20(4), 23(1)~23(24).

Motivation in Application (Evacuation from Fire)

- Motivation 1: In manufacturing layouts
 - Productivity has been a major concern
 - Opportunities for safety concern under emergency evacuation
- Motivation 2: In safety standards
 - E.g. NFPA (National Fire Protection Authority) Life Safety Code Handbook
 - Static (regardless of details of layout) and used as minimum requirements
 - (General) Travel distance to an exit <= 400ft
 - (In high hazard occupancies) Travel distance <= 75ft
 - Width of passageway serving as an exit >= 44in

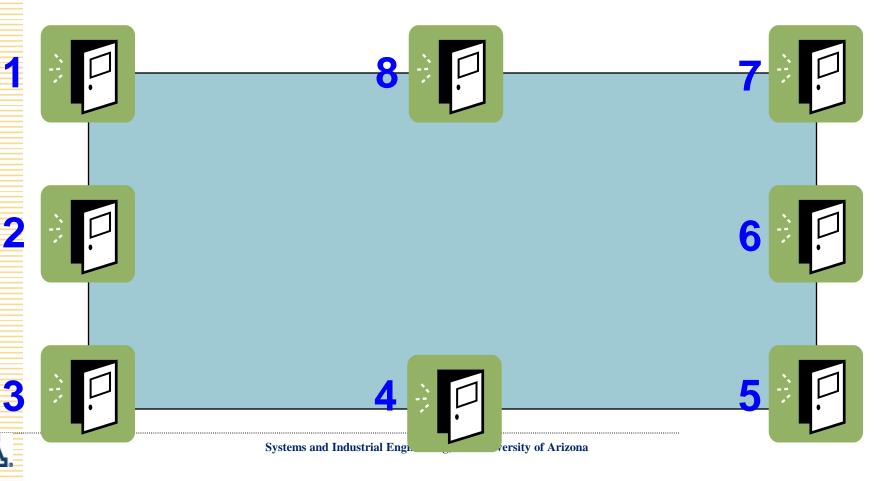

Research Approach

- Consider both productivity and evacuation safety via
 - (Traditional) Discrete event simulation: productivity analysis
 - (Novel) Synthetic human decision behavior model + agent based simulation: evaluate evacuation safety
 - Varying layout configurations
 - Number of exits
 - Exit capacities
 - Arrangements of exits
 - Width of corridors


Case: Auto. Drive Train (Engine + Transmission)

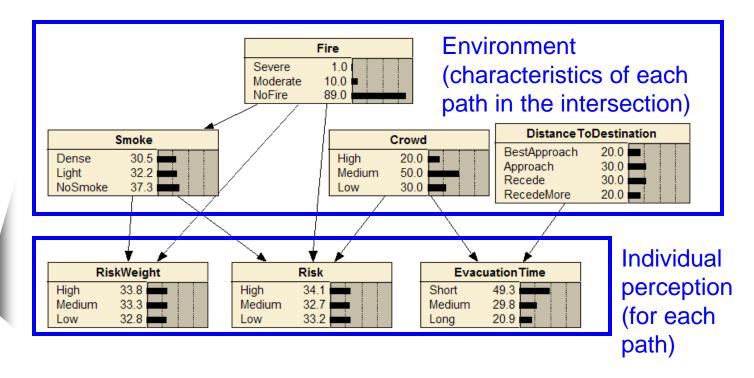
- 265 feet * 625 feet (=165,625 ft²)
- 70 ~ 220 people

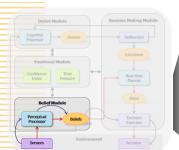
Considered Layout Configurations for Fabrication Area



Considered 70 Exit Configurations

- Each configuration has 4 exits (8 possible locations)
- Total of 70 configurations considered


$$_{8}$$
£ $_{4}$ = 70



Belief Module (Perceptual Processor)

Bayesian belief network

- Mimic subjective evaluation of an environment
- Training stage: HIL experiment (varying environment)
- Operation stage: inferencing individual perception



Human-in-the-loop Experiment in CAVE

- CAVE (VR) at UA
- Construction of 3D environment
 - Google SketchUp (OpenGL API)
 - AutoMod Simulator (3D Inventor

- Audio effects
 - Virtual Sound Server system
- VR wand
 - input to system
- Goggle

Validation of EDFT Decisions

Decisions made by each subject and EDFT model; 15/18 => 83%

Intersection	Actual Decision			Simulation		
Intersection	Path 1	Path2	Path3	Path 1	Path2	Path3
1	0.15	0.75	0.1	0	0.97	0.03
2	0.4	0.2	0.4	0.75	0	0.25
3	0.3	0	0.7	0	0	1
4	0.05	0.55	0.4	0	0	1
5	0.35	0	0.65	0.41	0	0.59
6	0.35	0.1	0.55	0	0	1
7	0.15	0.3	0.55	0	0.14	0.86
8	0.6	0	0.4	0.21	0	0.79
9	0.78	0.17	0.05	1	0	0
10	0.333	0.333	0.333	0.18	0	0.82
11	0.5	0.11	0.39	0.1	0	0.9
12	0.61	0	0.39	1	0	0
13	0.11	0.83	0.06	0	1	0
14	0	0.89	0.11	0	1	0
15	0.11	0.89	0	0	1	0
16	0.11	0.89	0	0	1	0
	0.83	0.06	0.11	0.51	0	0.49
18	0.22	0.72	0.06	0.07	0.93	0

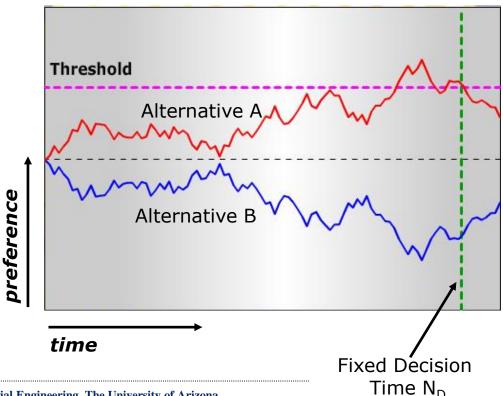
Real-time Planning Module (1) -- DFT

- Decision-Field-Theory
 - Busemeyer and Townsend (1993)
 - Evolution of preference of alternative options
 - Proven to explain several psychological phenomena
 - Extended DFT for dynamic environment (multistage decision-making)
 - Lee, Son, and Jin (2007) Information Sciences
 - Abad, Jin, and Son (2008) IEEE SMC

J. Busemeyer, J. Townsend, 1993, Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment, *Psychological Review*, 100, 432-459.

S. Lee, Y. Son, and J. Jin, 2008, Decision Field Theory Extensions for Behavior Modeling in Dynamic Environment using Bayesian Belief Network, *Information Sciences*, 178(10), 2297-2314.

A. Abad, J. Jin, and Y. Son, Nov. 2007, Dynamic Modeling of Human Decision Behavior Using Decision Field Theory, *IEEE Transactions on Systems, Man, and Cybernetics A* (submitted).


Real-time Planning Module (2) -- DFT

$$P(t+h) = SP(t) + CMW(t+h)$$

n options m attributes

$$x = (n \times n) \times (n \times 1) (n \times n) \times (n \times m) \times (m \times 1)$$

- $\begin{array}{l} P(t): \ Preference \ state \\ vector \ at \ time \ t \end{array} \begin{pmatrix} p_1(t+1) \\ p_2(t+1) \end{pmatrix} = \begin{pmatrix} 0.9 & -0.01 \\ -0.01 & 0.9 \end{pmatrix} \begin{pmatrix} p_1(t) \\ p_2(t) \end{pmatrix} + \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3.5 & 1.3 \\ 1.3 & 3.5 \end{pmatrix} \begin{pmatrix} w_1(t+1) \\ w_2(t+1) \end{pmatrix} \end{pmatrix}$
- S: Feedback matrix
- C: Comparison process matrix that contrast the weighted evaluations
 - M: Personal evaluation matrix of each option on each attribute
- W(t): Attention weight vector allocated to each attribute at time t

DFT Assumptions (1)

- S: stability
- W changes over time according to a stationary stochastic process, which allows us to derive four important theories regarding the expected preference values
 - Minimum amount of time steps needed for the preference values to be stabilized

Theorem 1. In the two options decision-making problem of the original DFT, the expected value of preference is

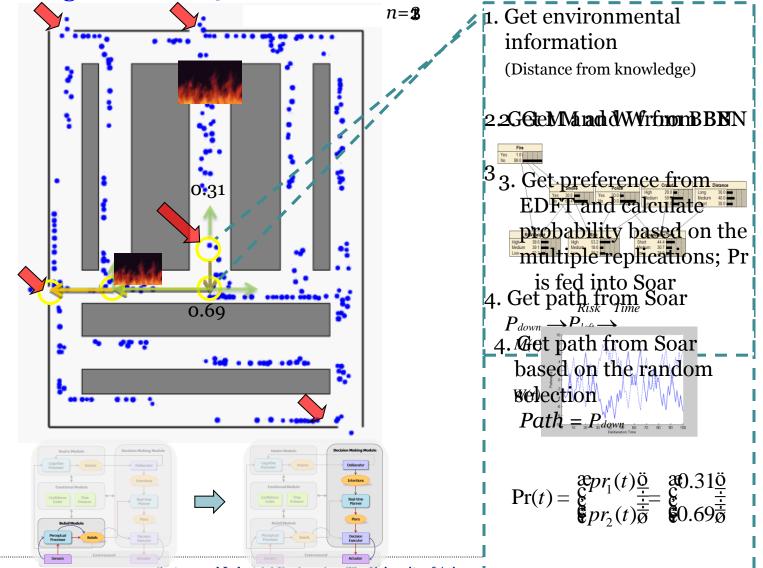
$$E(P(nh)) = \frac{1 - D^n}{1 - D} E(v_1(h)) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

where $D = s_{11} - s_{12}$ and $E(v_1(h)) = E(w_1(h))(m_{11} - m_{21}) + E(w_2(h))(m_{12} - m_{22})$. Furthermore

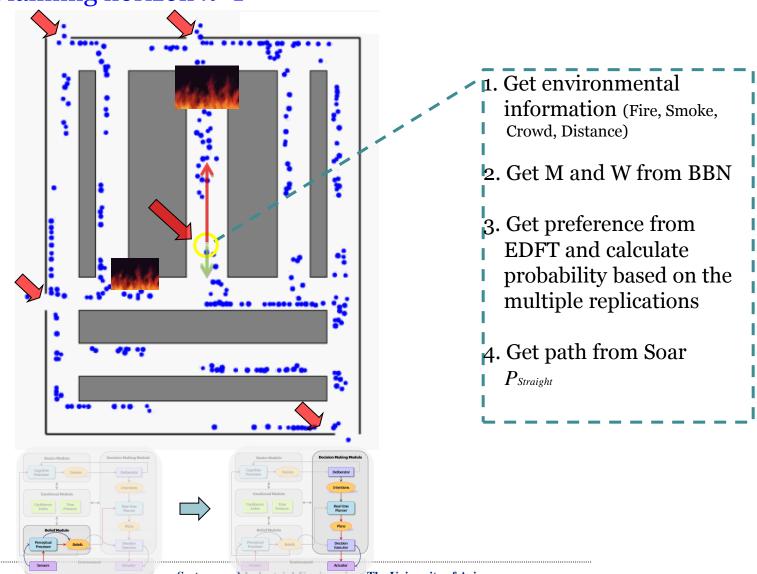
$$E(P(nh)) = \frac{1}{1-D}E(v_1(h))\begin{pmatrix}1\\-1\end{pmatrix} \quad as \ n \to \infty$$

Real-time Planning Module (3)

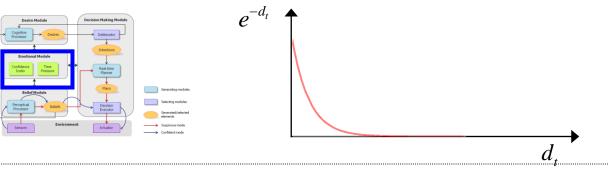
- Multi-horizon real-time planner involving
 - Extended DFT
 - Probabilistic depth first search technique
 - SOAR programming tool



- 1: CALL EDFT to get the preferences of **PATH**s from the current position
- 2: IF Soar has the knowledge of local paths THEN
- 3: REPEAT
- 4: SELECT a **PATH** which is directly connected to the current position based on the probability distributed according to preference
- 5: CALCULATE the preference for all **PATH**s that are connected t the current position based on the knowledge
- 6: SET the preference of the selected **PATH** to *worst*
- 7: UNTIL it reaches to End or has *n* intersections
- 8: ELSE
- 9: SELECT a **PATH** which is directly connected to the current position based on the probability distributed according to preference
- 10: ENDIF
- 11: RETURN **PATH**


Illustration of Planning with Permanent Worker (1)

Planning in Visitors or Temporary Workers (2)


✤ Planning horizon n=1

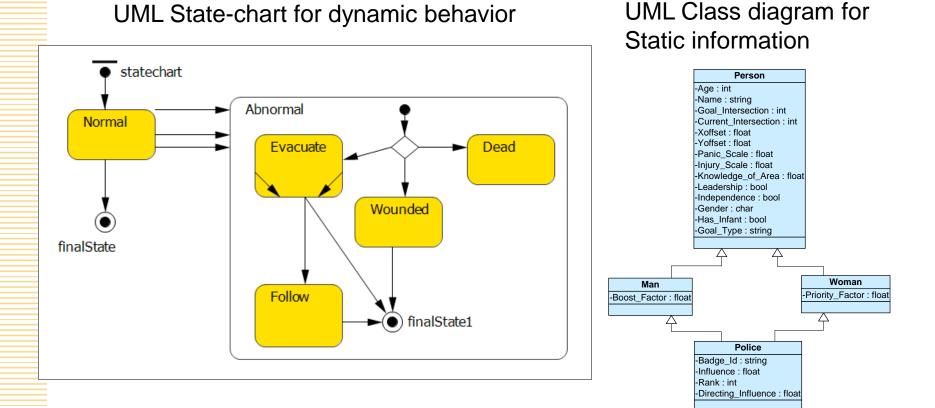
Emotion Module

- Impact of Confidence Index (CI)
 - Commitment strategy (Suspicious / confident mode)
 - Planning horizon
 - Movement speed
 - Leader / follower behavior
 - CI improvement is used as immediate reward in the Q-Learning

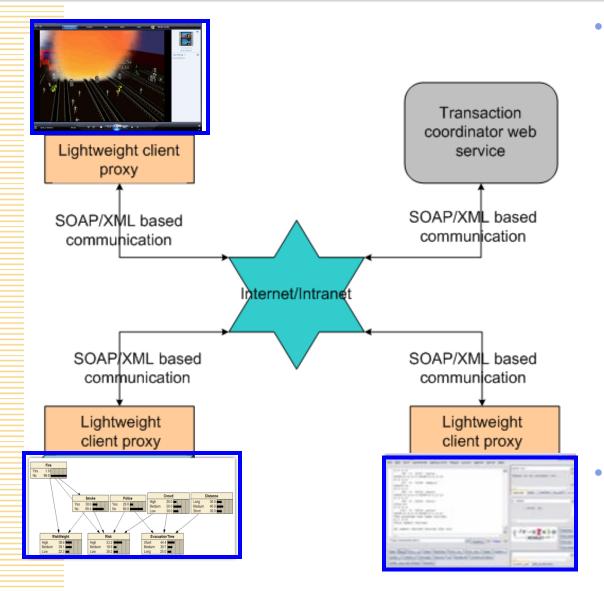
$$CI_{t} = \alpha \cdot e^{-d_{t}} + (1 - \alpha)CI_{t-1}$$

where $d_{t} = \sum_{attribute} |m_{attribute}(t-1) - m_{attribute}(t)|,$
 $0 \le \alpha \le 1, m_{attribute}(t) = \text{inferred value from BBN}$

Systems and Industrial Engineering, The University of Arizona


Force Model for Velocity Avoiding Collision

 Calculation of velocity for each agent given 1) desired destination and 2) force (Helbing et al., 2000)

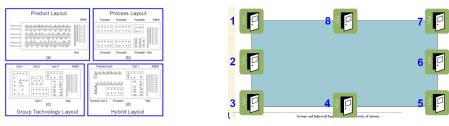

$$\mathbf{f} = m_i \frac{d\mathbf{v}_i}{dt} = \begin{bmatrix} m_i \frac{\mathbf{v}_i^0(t)\mathbf{e}_i^0(t) - \mathbf{v}_i(t)}{\tau_i} \\ \mathbf{v}_i \end{bmatrix} + \begin{bmatrix} \sum_{j(\neq i)} \mathbf{f}_{ij} \end{bmatrix} + \begin{bmatrix} \mathbf{f}_{iW} \\ \mathbf{f}_{iW} \end{bmatrix}$$
Desired vs. current Interaction Force with other against wall agent
$$\mathbf{f}_{ij} = \begin{bmatrix} A_i \exp\left[\left(r_{ij} - d_{ij}\right)/B_i\right] \\ \mathbf{Social force:} \\ psychological \end{bmatrix} + \begin{bmatrix} kg\left(r_{ij} - d_{ij}\right) \end{bmatrix} \mathbf{n}_{ij} \\ \mathbf{Social force:} \\ physical contact \end{bmatrix} = \begin{bmatrix} 0, & \text{if } x < 0 \\ x, & \text{otherwise} \end{bmatrix}$$

Modeling Constructs Agent-based Simulation

Implementation Infrastructure using WS

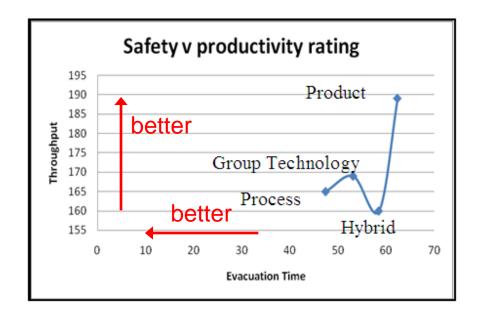
- Light-weight HLA/ RTI using Web Services technology
 - W3C standard protocols including XML, SOAP, WSDL
 - Platform independent
 - Less than 20 methods (*initialize*, *advanceTime*, *cons_advanceTime*, *sendMessage*, *getMessage*, *terminate*, and *cleanup*)

Available in public


 Used for integrating Anylogic, BBN (Netica BBN), Soar

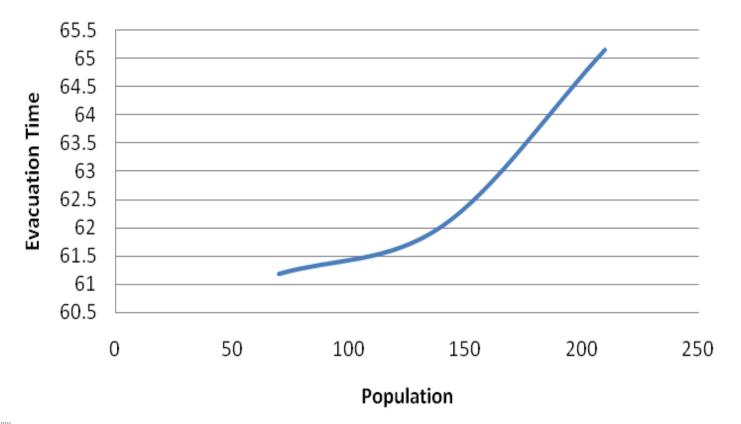
Simulation Results (1) – Best Exit

<u>Configurations</u>


Layout Type	Best Exit Configurations	Evacuation Times (s)	Average Evacuation Time (s)	Average Number of Decisions	Average Travel Distance (ft)
Process Layout	2-4-6-7 1-2-6-7 2-5-7-8	33.88 35.09 35.78	47.51	11.21	629.18
Product Layout	1-2-4-5 2-3-6-7 1-2-3-5	44.01 46.12 46.75	62.41	8.31	832.46
Group Tech Layout	2-4-6-7 2-5-6-7 1-2-3-5	35.27 38.23 38.47	53.20	8.95	698.25
Hybrid Layout	1-2-4-6 2-3-6-7 1-3-6-7	41.23 43.55 43.89	58.53	9.88	759.12

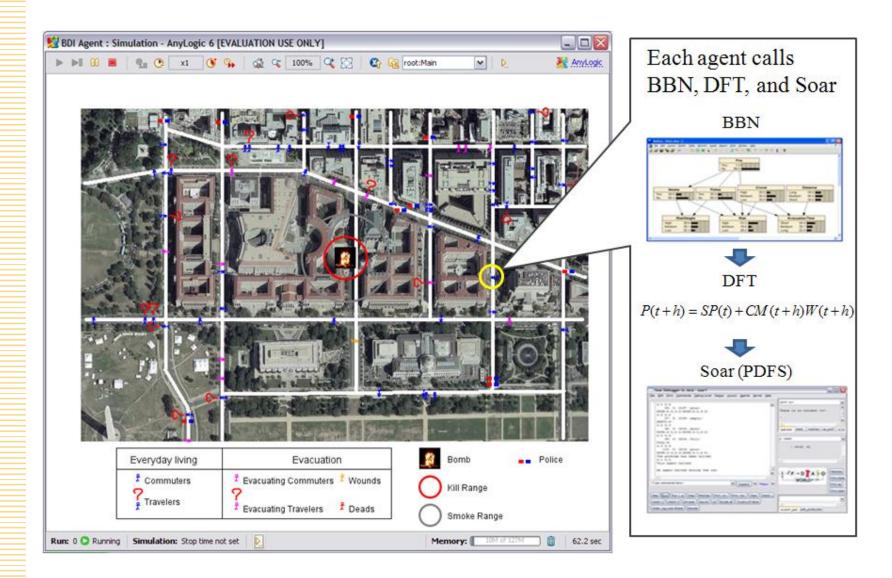
- A more spread out exit configuration pattern
- More decision points (passage alternatives), but faster

Simulation Results (2) -- Observations


 No inverse relationship between safety and productivity

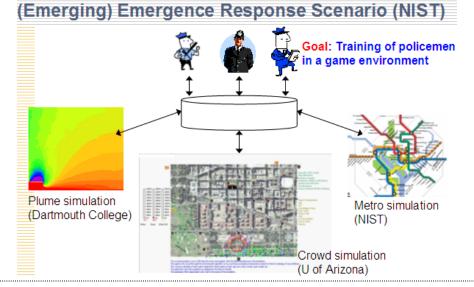
Simulation Results (2) – Congestion

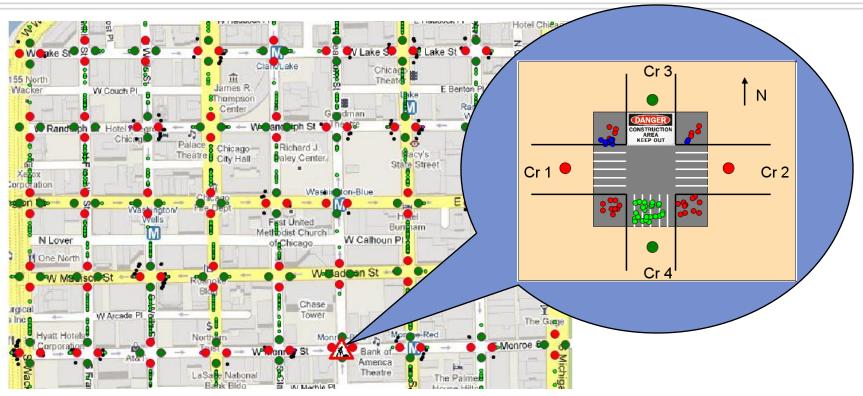
 For a given layout configuration, evacuation time vs. increasing number of people
 Congestion Analysis


Systems and Industrial Engineering, The University of Arizona

Summary

- In addition to productivity analysis in facility design
- Proposed to consider emergency (fire) evacuation safety via
 - Synthetic human decision behavior model
 - Agent based simulation
- Demonstrated the proposed approach for an automotive drive train facility
 - Differences of evacuation times for varying configurations with the same size
 - NFPA: Static minimum requirements


Demo: Evacuation from Bombing Attack


Other Modeling Concerns

- Behaviors of "followers" follow those of "leaders"
- Influence of speakers (state of other intersections)
 - Value of information (BBN)
- Influence of policemen (constraint; additional info.)
- Other modeling considerations
 - Geographic data (satellite image)
 - Demographic data
 - Constraints/interface to/from other simulations (plume, metro)

Vehicle/Pedestrian Interactions in Chicago

- FHWA projects (IIT; Argonne Lab)
- Chicago loop area (1.3 km²; 87 intersections)
- Each intersection having 4 cross-walks
- Loosely coupled integration (transportation simulator; pedestrian)
- NSF-DDDAS; Need for a detailed model: construction; accident; vehicle/pedestrian interactions

Multi-Scale Model: Three Levels

Table 1: Three Levels in the Multi-scale Framework for Estimating Pedestrian Delay

	Agent Type	Agent Number	Scenario Scale	Time Step	Sidewalks
Aggregated Level	Crosswalk	87*4	Chicago Loop Area	30 seconds	One lane w/ both directions
Medium Level	Pedestrian	2000~4000	Chicago Loop Area	1 second	One lane w/ both directions
Detailed Level	Pedestrian	(30~50)*87	Chicago Loop Area (87 intersections)	1 second	Two lane w/ both directions

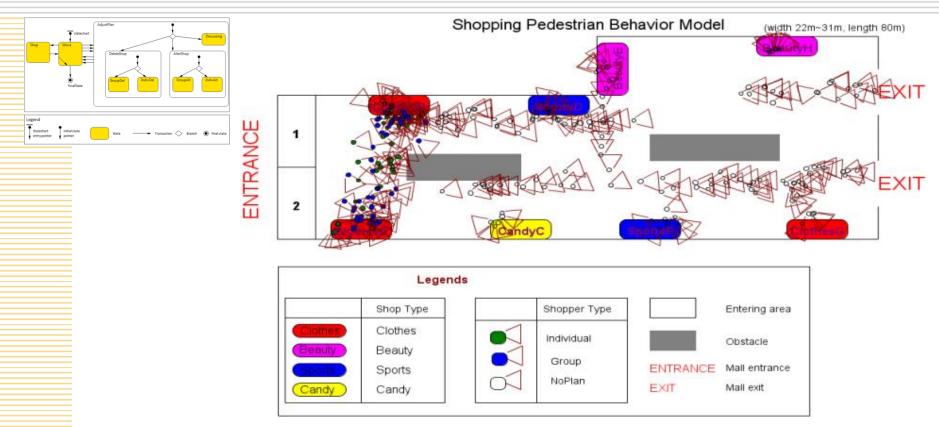
Table 2: Agent Characteristics and Delay Estimation Method at Each Level

	Agent Type	Pedestrian Movement	Congestion	Decision-making	Delay Estimation Method
Aggregated Level	Crosswalk	Ν	Ν	Ν	Extended Adams' model*
Medium Level	Pedestrian	Y	Ν	N	Extended Adams' model*
Detailed Level	Pedestrian	Y	Y	Y	Simulation

Pedestrian Behavior

Simulating a person's behaviors under a normal situation at a shopping mall => allows shopping mall management to evaluate arrangement of stores

Agents are shoppers characterized by gender, age, preference, schedule, and grouping, and various environmental conditions are considered (e.g. different kind of shops, obstacles, promotions on the shops)

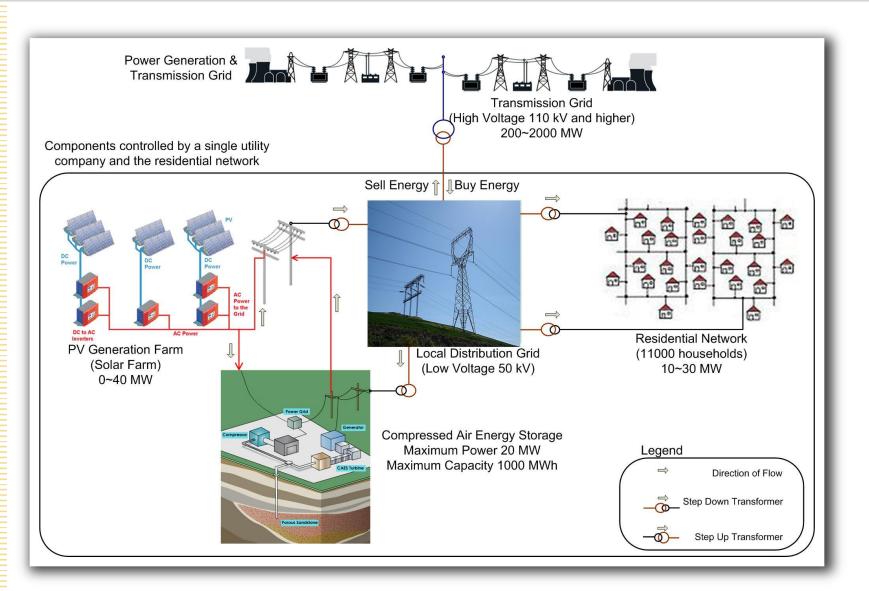

For each agent, tactical human decision-making (via the Extended Decision Field Theory (EFT)) and physical interactions and congestions (via the Social Force model) are considered in an integrated manner.

Models are continuous (social force model) for people movement

Shopping style		Agent type		
Unplanned		Female adult	Male adult	
Planned	Group	Female adult	Male adult	Child
Planned	Individual	Female adult	Male adult	

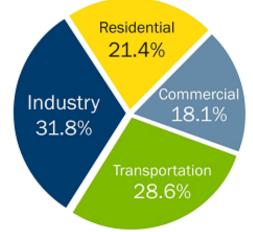
Systems and modeline ingineering, the University of Mildon

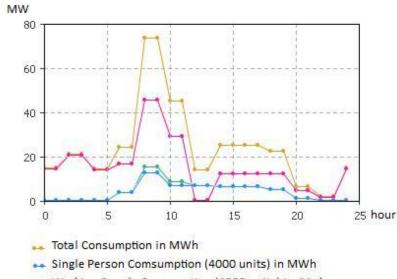
Pedestrian Behavior



Experimental factors: 1) consideration of human's vision; 2) group shopping behavior; 3) arrangement of stores, 4) complexity of the model Metrics: 1) average distance among neighboring shoppers, 2) the movement speed of pedestrians, 3) the profit of the shopping mall, and 4) scalability

Xi, H., and Y. Son (2010), An integrated pedestrian behavior model based on extended decision field theory and social force model, In Human-in-the-loop simulation: Methods and practice. eds. L. Rothrock, tand S. Nara ganari. Springer (accepted)

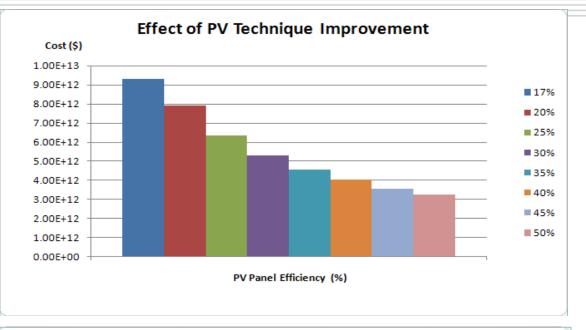

Energy

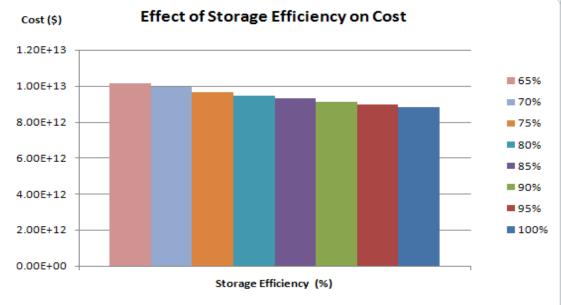


Household Specific Demand Profile

(Demographics)

	Energy Consumption Data for Family with 5 Children					
	Appliances	Quantity	Rated Power (Watt)	Time Period		
	AC	2	1500	12am - 6am, 10 am - 12am		
	Fan	5	70	8am-9am, 12pm-1pm, 5pm-9pm		
	Refrigerator	1	100	all day		
				9am-11am, 2pm-4pm, 5 pm - 7pm,		
_	τv	2	133	9pm-11pm		
	lights	10	40	6pm - 12am		
	Microwave			7am - 7:30am, 11:30am - 12:00 pm,		
	oven	1	1000	5:30 pm-6:30pm		
	Coffee maker	1	1000	7am - 7:15 am, 1:30pm - 1:45 pm		
	Dishwasher	1	1800	1pm - 2pm, 7pm-9pm		
	Personal					
	computer	1	120	6pm - 11pm, 3pm-4pm		
	Monitor	1	150	6pm - 11pm, 3pm-4pm		
	Laptop	1	50	8pm - 11pm		
	VCR/DVD	1	20	2pm-4pm, 9pm-11pm		
	Toaster oven	1	1225	6pm-7pm		
	Toaster	1	1400	6am-6:20 am, 7am - 7:15am		
	Water heater	1	5500	7pm - 8pm		

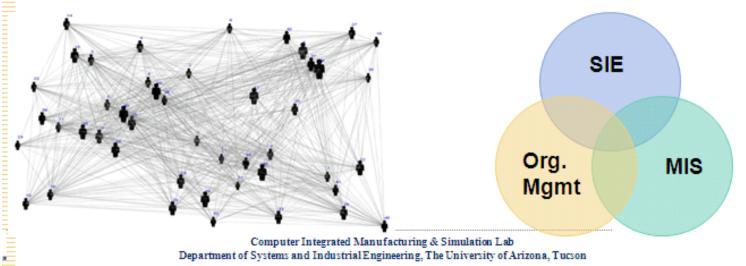


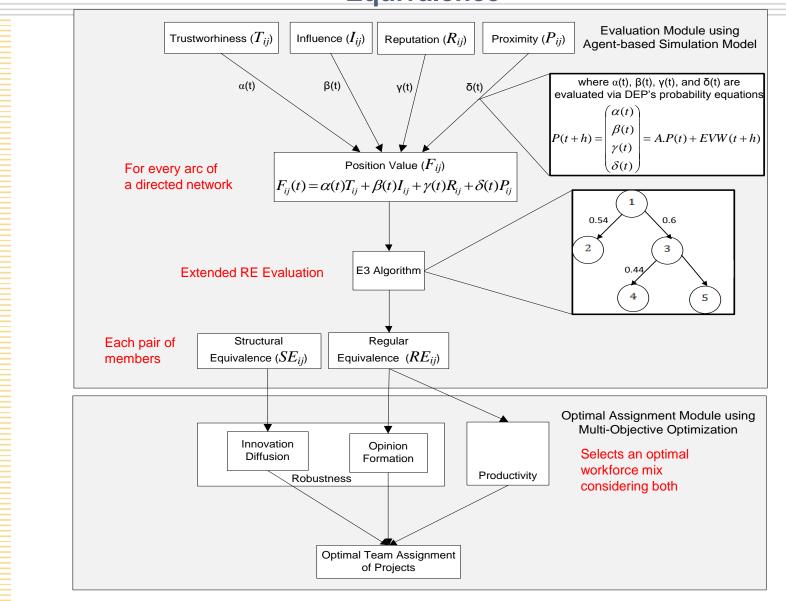


--- Working Couple Consumption (4000 units) in Mwh

🛻 Family with 5 Children Consumption (4000 units) in Mwh

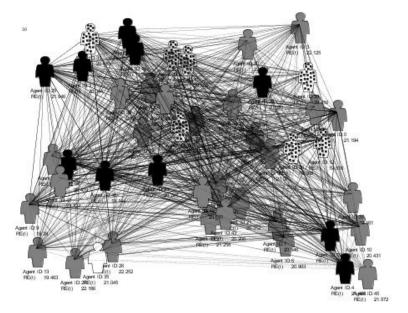
Effect of PV and Storage Efficiency on Costs



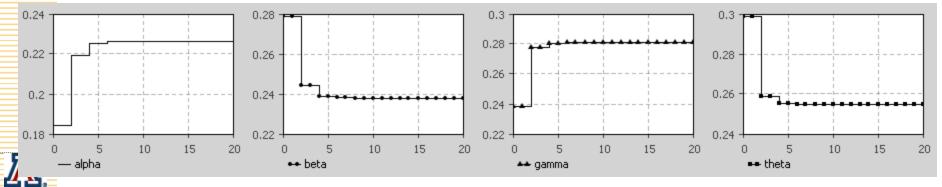

NSF-SOD: Simulation-based Workforce Assignment in a Social Network

- Goal: to develop an simulation framework to help managers devise optimal workforce assignment
 - short-term goal (productivity of projects)
 - long-term goal (robustness)
- under
 - Multi-organizational distributed software development environment (Kuali)
 - Considering the employees' position values in the social network

Workforce Assignment Framework Considering Position and Equivalence


N. Celik, H. Xi, D. Xu, Y. Son, R. Lemaire, K. Provan, 2010, Simulation-based Workforce Assignment Considering Position in a Social Network, Simulation, in press.

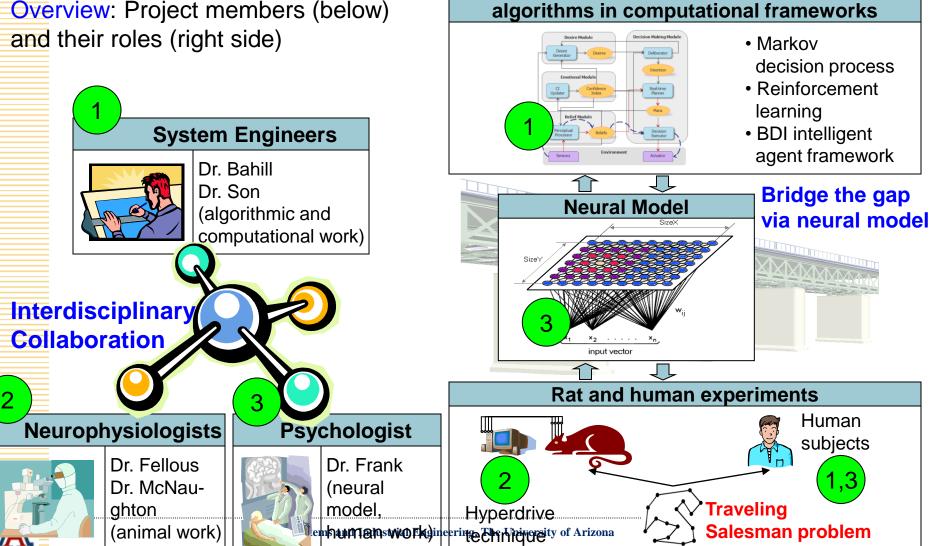
Simulation Results


Dynamic change of regular equivalence levels in the agent based model Dynamic change of the preference state matrix $P(t)^T = [\alpha(t), \beta(t), \gamma(t), \delta(t)]$

٠

Instance: 30 projects assigned

RE at Level 1 RE at Level 2 RE at Level 3 RE at Level 4



Son

EFRI-COPN: Optimal decision making: How do rats and humans solve the traveling salesman problem?

Learning and decision-making

Overview: Project members (below)

http://www.sie.arizona.edu/faculty/son

