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Introduction

Multiple Comparisons with a Control (MCC)

» determines which alternative systems under consideration
have mean performance exceeding a known threshold;

» explores the unknown objective set B = {x : 0, > d,}.

Bayes-Optimal Fully Sequential Policies for Allocating
Simulation Effort

» can be characterized and computed efficiently, using
techniques from multi-armed bandits and optimal stopping.

» are flexible in the sense that they

> allow limitations on the ability to sample to be modeled with
either a random stopping time or sampling costs or both;

> allow sampling distributions from any exponential family.

Problem Formulation

» Prior distributions from the conjugate exponential family are
placed on the parameters of the sampling distributions.
Parameters of these priors / posteriors form a stochastic
process (Sp)n-o-

» Suppose there is some random time horizon 7 beyond which
we will be unable to sample. T is geometrically distributed with
parameter 1 — «o; allow T = +o0 a.s., In which case a = 1.

» Our estimate of B given the available information after n
samples, i.e., Fp, is B, = {x : P{0, > dy | Fn} > 1/2}. When
sampling stops, we receive a reward equal to the total number
of alternatives correctly classified by this estimate.

» A policy 7 iIs composed of a sampling rule for choosing an
adapted sequence of sampling decisions (x,),~1, and a
stopping rule for choosing an adapted stopping time 7.

» Our goal is to find a policy that maximizes the expected total
reward, i.e., (c, Is the sampling cost for alternative x)
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The Optimal Solution

We solve this sequential Bayesian MCC problem using
dynamic programming (DP). The value function is
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where R.(-) are single-period reward functions.
» Optimal policies (x;),~1 and 7* are theoretically specified.

» Approximations are applied to the numerical implementations.

Bayes-Optimal (OPT) vs Other Policies

Performance in Infinite Horizon with Sampling Costs

Infinite Horizon with Bernoulli Sampling Infinite Horizon with Normal Sampling
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Performance in Geometric Horizon without Costs

Geometric Horizon with Bernoulli Sampling Geometric Horizon with Normal Sampling
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» Pure Exploration (PE): x, ~ Uniform(1,..., k).
» Max Variance (MV): x,.1 € argmax, {onx .
» Knowledge Gradient (KG): x,.1 € argmax,{Rx(Snx)}-

Ambulance Quality of Service Application

» Administrators of a city's emergency medical services would
like to know which of several methods under consideration for
positioning ambulances satisty the minimum requirement of
70% of calls answered on time.

» The ambulance allocation plans are distributed along the
x-axis and the call arrival rates are distributed along the
y-axis. A pair like this is considered an alternative and there
are 625 alternatives. We assume a normal sampling
distribution and a geometric horizon with no sampling costs.
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Conclusions

» We provide new tools for simulation analysts facing MCC
problems. These new tools

> dramatically improve efficiency over naive sampling methods;

> make It possible to efficiently and accurately solve previously
intractable MCC problems.

» Other applications include determining through simulation
under which conditions the current policies of a logistics
company are sufficient to maintain quality of service, and
finding which projects have a positive net expected value.
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