Sequential Bayes-Optimal Policies for Multiple Comparisons with a Control Jing Xie, Peter I. Frazier

Introduction

Multiple Comparisons with a Control (MCC)

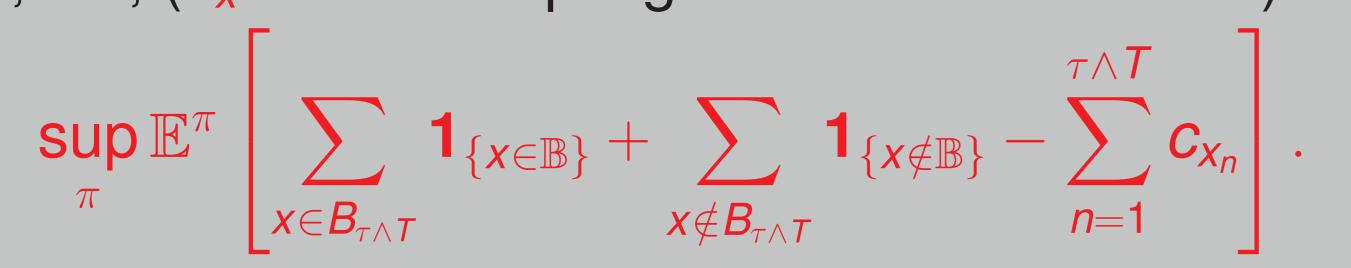
- In the determines which alternative systems under consideration have mean performance exceeding a known threshold;
- \triangleright explores the unknown objective set $\mathbb{B} = \{ \mathbf{x} : \theta_{\mathbf{x}} \geq \mathbf{d}_{\mathbf{x}} \}$.

Bayes-Optimal Fully Sequential Policies for Allocating Simulation Effort

- can be characterized and computed efficiently, using techniques from multi-armed bandits and optimal stopping.
- are flexible in the sense that they
- allow limitations on the ability to sample to be modeled with either a random stopping time or sampling costs or both;
- allow sampling distributions from any exponential family.

Problem Formulation

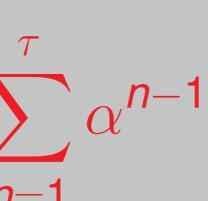
- Prior distributions from the conjugate exponential family are placed on the parameters of the sampling distributions. Parameters of these priors / posteriors form a stochastic process $(S_n)_{n>0}$.
- Suppose there is some random time horizon T beyond which we will be unable to sample. T is geometrically distributed with parameter 1 – α ; allow $T = +\infty$ a.s., in which case $\alpha = 1$.
- \blacktriangleright Our estimate of \mathbb{B} given the available information after *n* samples, i.e., \mathcal{F}_n , is $B_n = \{x : \mathbb{P}\{\theta_x \ge d_x \mid \mathcal{F}_n\} \ge 1/2\}$. When sampling stops, we receive a *reward* equal to the total number of alternatives correctly classified by this estimate.
- \blacktriangleright A policy π is composed of a sampling rule for choosing an adapted sequence of sampling decisions $(x_n)_{n>1}$, and a stopping rule for choosing an adapted stopping time τ .
- Our goal is to find a policy that maximizes the expected total **reward**, i.e., (C_x is the sampling cost for alternative x)



The Optimal Solution

We solve this sequential Bayesian MCC problem using dynamic programming (DP). The value function is

 $V(s) = \sup_{\pi} \mathbb{E}^{\pi} \left[\sum_{n=1}^{\infty} \alpha^{n-1} \mathcal{R}_{X_n}(s) \right]$

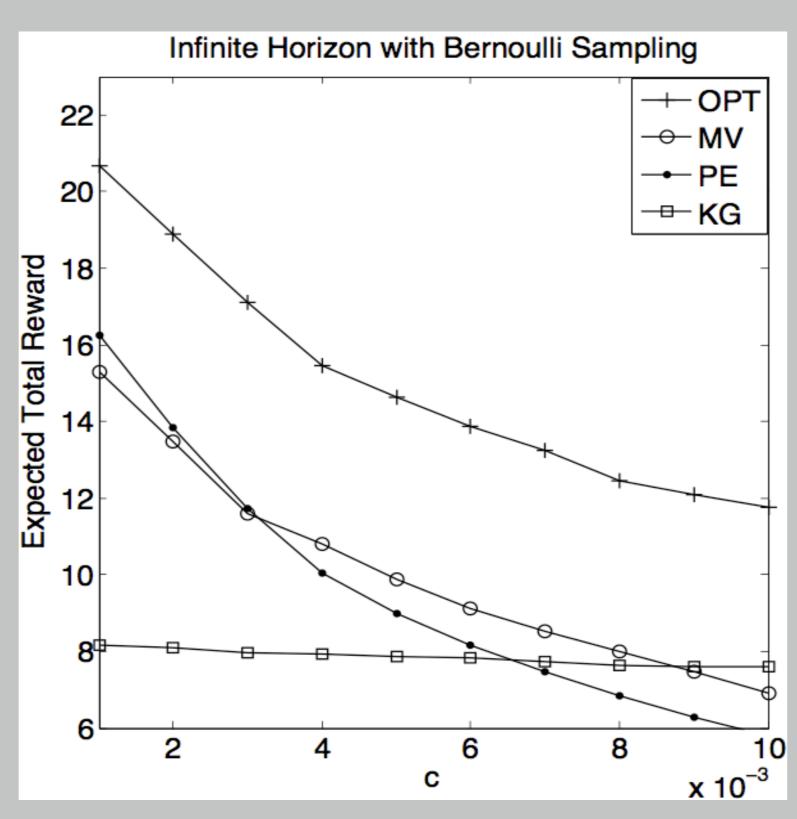


where $\mathcal{R}_{\cdot}(\cdot)$ are single-period reward functions.

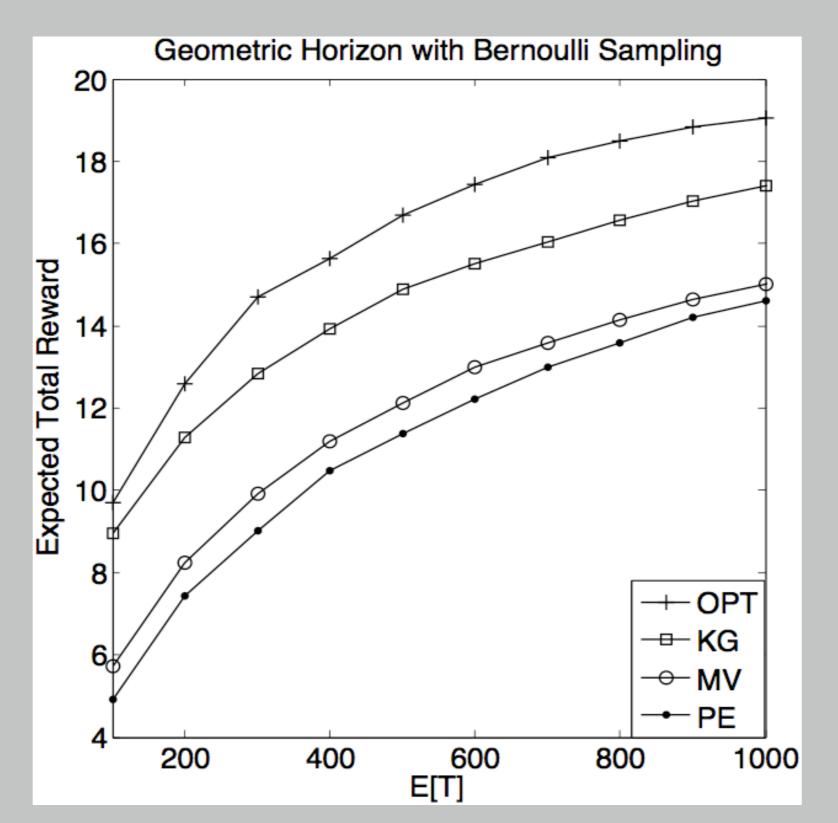
> Optimal policies $(x_n^*)_{n>1}$ and τ^* are theoretically specified.

Approximations are applied to the numerical implementations.

Bayes-Optimal (OPT) vs Other Policies



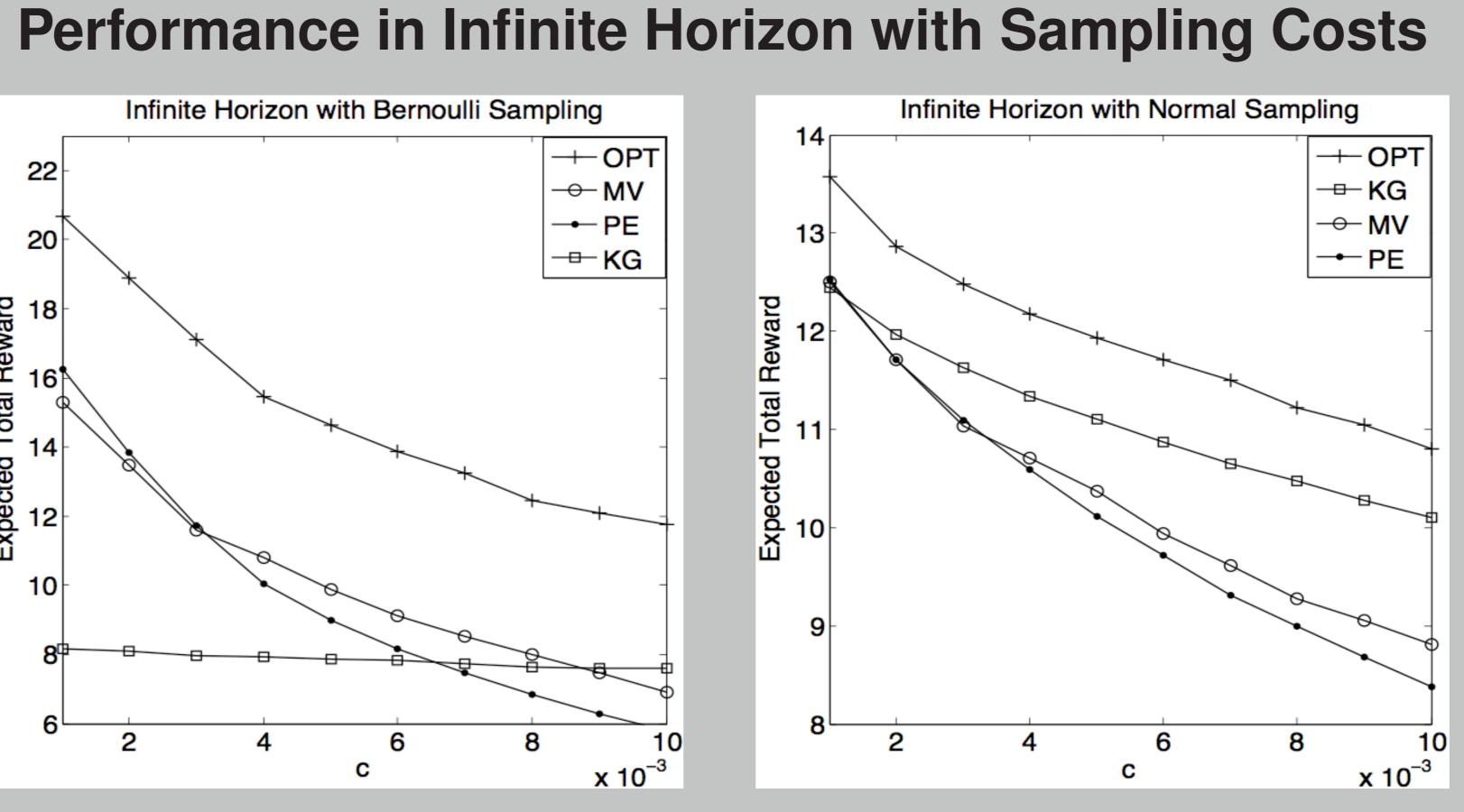
Performance in Geometric Horizon without Costs

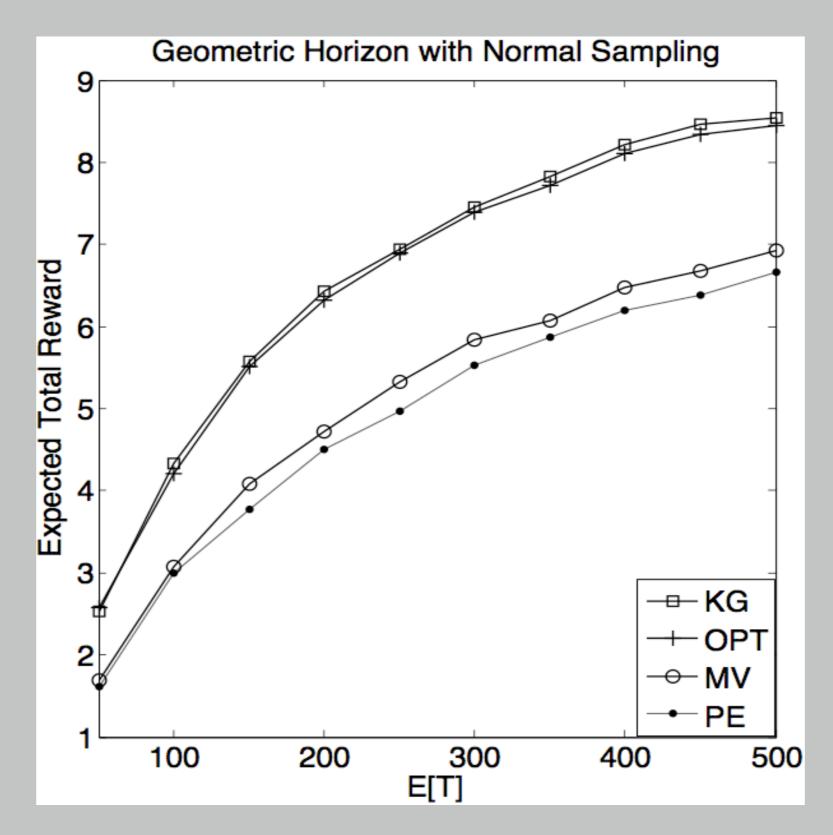


▶ Pure Exploration (PE): $x_n \sim \text{Uniform}(1, \ldots, k)$. ► Max Variance (MV): $x_{n+1} \in \operatorname{argmax}_{x} \{ \sigma_{nx} \}$. ► Knowledge Gradient (KG): $x_{n+1} \in \operatorname{argmax}_x \{\mathcal{R}_x(S_{nx})\}$.

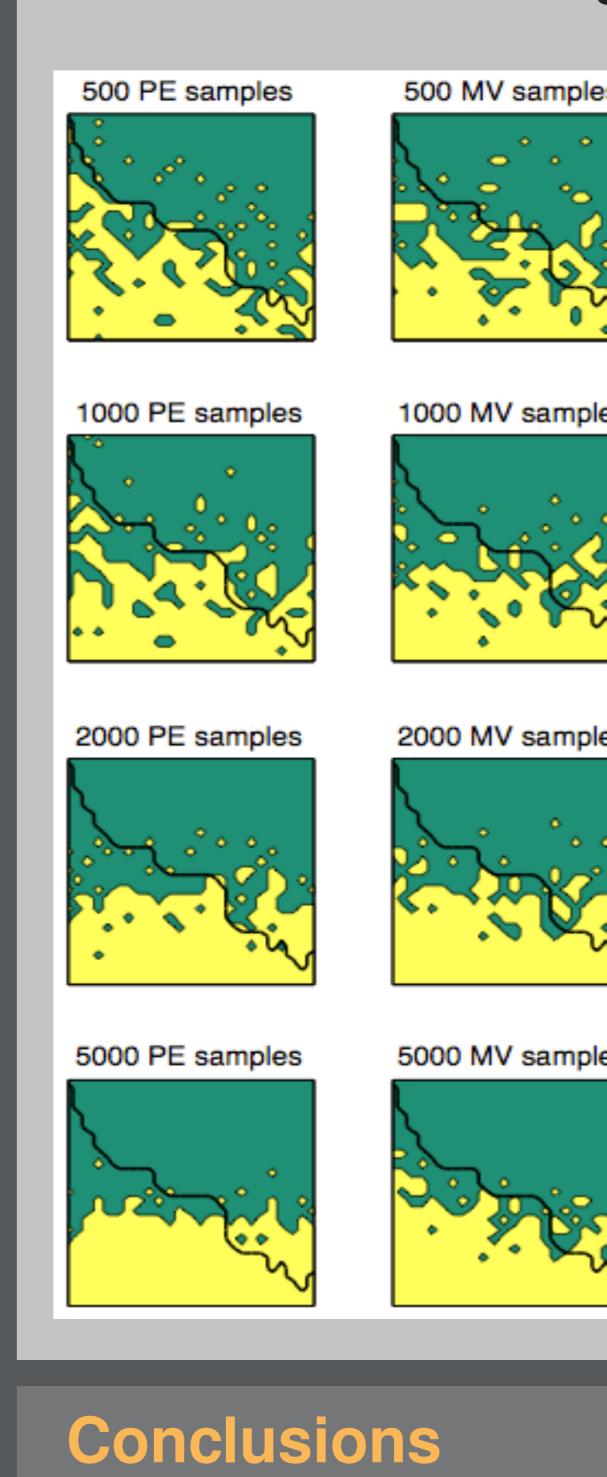
School of Operations Research and Information Engineering, Cornell University, USA

$$S_{n-1,x_n}$$
 $S_0 = s$





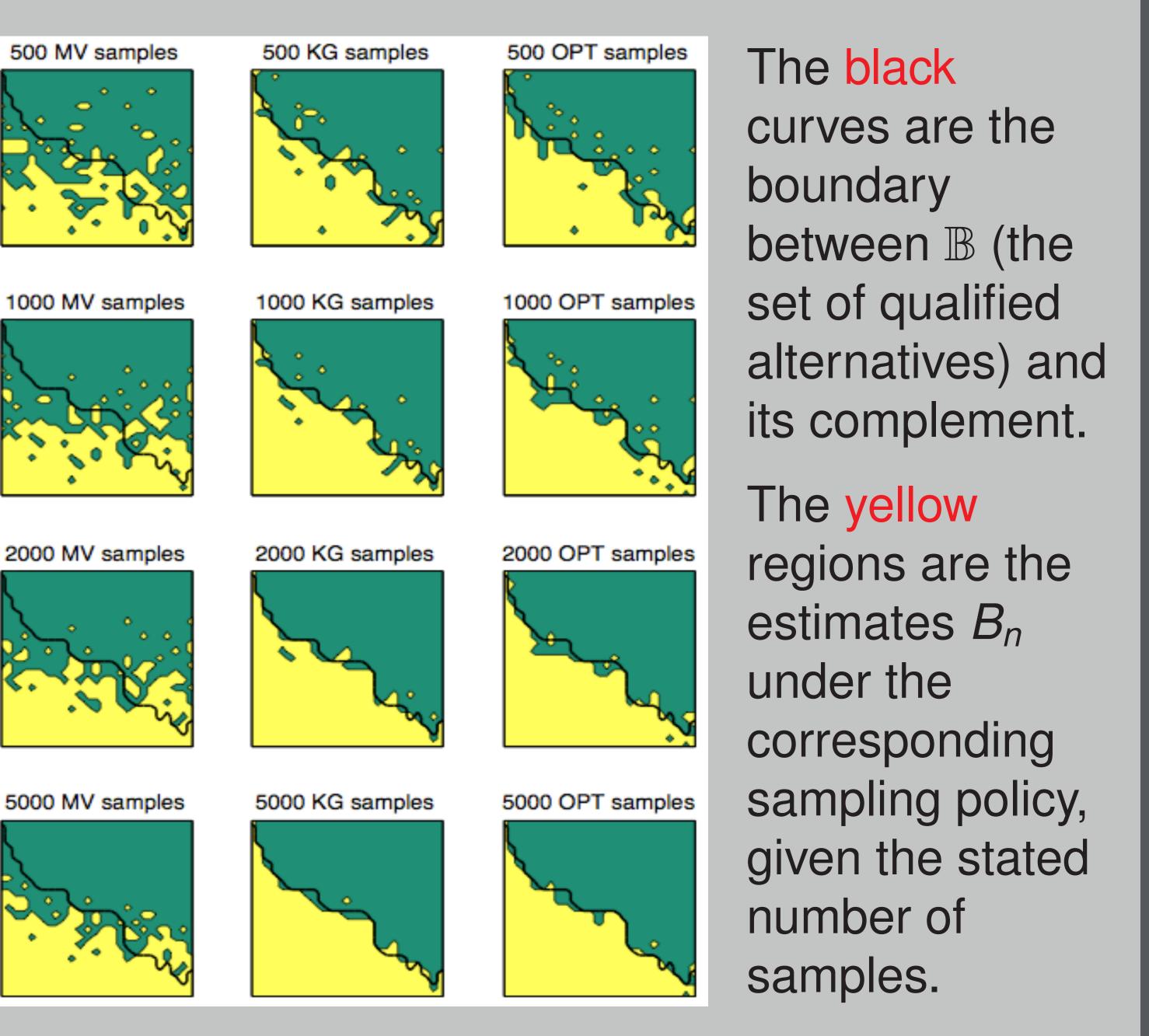
Ambulance Quality of Service Application



- problems. These new tools
- intractable MCC problems.

Administrators of a city's emergency medical services would like to know which of several methods under consideration for positioning ambulances satisfy the minimum requirement of 70% of calls answered on time.

The ambulance allocation plans are distributed along the x-axis and the call arrival rates are distributed along the y-axis. A pair like this is considered an *alternative* and there are 625 alternatives. We assume a normal sampling distribution and a geometric horizon with no sampling costs.



We provide new tools for simulation analysts facing MCC

dramatically improve efficiency over naive sampling methods;

make it possible to efficiently and accurately solve previously

Other applications include determining through simulation under which conditions the current policies of a logistics company are sufficient to maintain quality of service, and finding which projects have a positive net expected value.