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Iteration 1 Iteration 5

I. LP 
Obj

II. Simulation time
(in each period)

III. AF (for 
each period)

I. LP 
Obj

II. Simulation time
(in each period)

III. AF (for 
each period)

1888140 (2773, 2834, 2761) (.87, .85, .87) 233700 (2399, 2400, 2395) (1, 1, 1)

Iteration 1 Iteration 3

I. LP 
Obj

II. Simulation time
(Avg per period)

III. AF (for 
each period)

I. LP 
Obj

II. Simulation time
(Avg per period)

III. AF (for 
each period)

1888140 (2809, 2889, 2801) (.85, .82, .86) 241775 (2356, 2379, 2336) (1, 1, 1)

Table 2: Results with stochastic process time & machine breakdowns

SUMMARY
In this research, hybrid optimization–simulation framework has been 
implemented and tested for deterministic as well as stochastic flowshops.  
A capacity adjustment scheme has been proposed based on the bottleneck 
machines completion time.  Under stochastic shop-floor settings, the 
effects of the completion time estimation (viz., using the mean completion 
time, and using the prediction interval) have been analyzed.  It has been 
found that capacity adjustments using the prediction interval of the 
completion time gives improved results. Also, in general, the optimum-
cum-realizable plan converged to the local optima, since sequence 
constraints are not captured within the optimization model. The effects of 
product sequencing/dispatch on system performance have been analyzed 
and results discussed.

INTRODUCTION

Production planning is fundamental to the effective operation of a 
manufacturing system. Traditionally linear programming (LP) based models 
are used for production planning. But these models often lack realism.  
Simulation models allow any amount of realism, but are descriptive models.  
Combination of both these types of models can be exploited to achieve an 
optimum cum realizable plan. 

Plan from above LP may not be realizable in the actual shopfloor, since 
process time variations, machine breakdown, set-up changes, operational 
sequences, etc not modeled.

Demand: dit

Costs: cit, hit, πit

Process times: aik

Capacity: MCkt
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LP formulation for multi-period multi-product production planning

Hybrid approaches for multi-period multi-product production planning

Figure 1 illustrates a general hybrid framework that employs optimization and 
simulation models iteratively to converge to a optimum-cum realizable plan. 
Achieving ‘best’ plan depends on how the capacity and/or other parameters 
are adjusted based on simulation output.
 Bryne and Bakir (1999) adjusted resource capacity based on the ratio of 
gross capacity to the consumed simulation time.
 Kim and Kim (2001) extended this model by capturing an effective loading 
ratio in the capacity constraints that depends on effective machine workload.
 Lee and Kim (2002) used hybrid framework to provide realistically optimal 
operation time required for production-distribution plans of supply chain, in 
stochastic scenario.
 Feldman and Shtub (2006) decreased the machine capacity, thus the 
production, until a realizable plan was found.
Elkin et al. (2009) adjusted the machine idle time and product waiting time 
based on simulation output.

Limitations in literature 
• Mainly considered deterministic cases.  Impact of stochasticity not explicit.
• Demands are assumed to know with certainty at the start of planning horizon
• Resulting optimum-cum-releasable plan may not be global optimum.

Manufacturing Scenario

M1

M4

M2

M3

Planning for 3 period horizon
Known deterministic demand
Stochastic process times
Machine breakdowns
Machine capacity: 2400 min
No backlogs allowed

Table 1: Results with deterministic process time
Deterministic vs. Stochastic scenarios

CONCLUSIONS

The hybrid optimization-simulation environment provides a viable method to 
obtain a realizable production quickly. Further investigation are on for the 
convergence of the solution to a globally optimum and realizable plan; and 
‘adjustment schemes’ that explicitly account for stochastic simulation outputs. 
Also, the effectiveness of the hybrid framework for more complex and realistc 
scenarios are to be analyzed.
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Under stochastic process times, the upper bound of 95% prediction interval 
obtained based on 5 simulation runs are used to compute the adjustment factor 
for machine capacity. This causes a larger decrease in the capacity, leading to 
faster convergence to a realizable solution.  Also, the use of prediction 
interval gives better solutions than the simplistic use of means.

Effect of dispatching rules

Results obtained in Table 1 are with the dispatching rule that all of product A 
are processed first, then B and then C. For comparison, another dispatching 
rule is used: one product of each type are queued in batches.  This resulted in 
the hybrid framework to converge after 7 iterations but with a lesser cost of 
221125.  This is because of higher utilization of machines that was achieved.

The plan obtained above is optimum and realizable but is not global optimum. 
By including precedence constraints in the LP we can obtain an global 
optimum plan of (A, B, C) = (57, 99, 37) at a cost of Rs.106830 which is also 
realizable (max completion time = 1400. 

‘Simple’ capacity adjustment scheme will never achieve the global optimum 
plan.  However, including precedence constraints in the LP makes it 
combinatorial complex.

Figure 1: Hybrid Optimization – Simulation Architecture

CAPACITY ADJUSTMENT FOR STOCHASTIC SYSTEMS

Stochasticities considered are variable processing times and random machine 
breakdowns.  In this case, it is proposed that prediction interval estimates of 
the simulation completion times be used for adjusting (step III) the machine 
capacity parameter in optimization:

I. Optimization Model
Aggregate planning

II. Simulation Model
Realizability Check

Is plan 
realizable?

Display optimum-cum-
realizable plan. Stop.

III. Adjust model 
parameters

Optimum plan

Process times, 
Routings, Others

NY

Completion time

Demand
Routings, Costs, 
Process times, 

Capacity

PROBLEM STATEMENT

 Identify gap between global optimum and optimum-cum-realizable plan.
 Propose and test hybrid scheme to handle stochasticity in system. 

DETERMINISTIC (TRIVIAL) EXAMPLE

Consider a single period planning for a two machine flowshop with three 
products. Available machine capacity 1400 mins, each.

7 mins/part

Machine 1

6 mins/part 
8 mins/part

5 mins/part

Machine 2

4 mins/part
3 mins/part

Rs.100/part
Rs.150/part
Rs.125/part

Demand
150
100
200

Production 
Costs

Holding 
Costs

Shortage 
Costs

Rs.25/part
Rs.30/part
Rs.35/part

Rs.400/part
Rs.450/part
Rs.500/part

A
B
C

Plan from LP (I)
Cost: 100000

A: 0
B: 100
C: 100

M1
M2

600 1400

17001000

Completion times, using 
Johnson’s algorithm (II)

A: 0
B: 100
C: 100

M1
M2

600 1152

13591000

Completion times, using 
Johnson’s algorithm (II)

Plan from LP (I)
Cost: 111630

Capacity adjusted (decreased) by a factor of 0.82 (=1400/1700)
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MCr,k,t is capacity of machine k in period t 
in iteration r in LP model.

AFr,t is capacity adjustment factor

Updated 
parameters
(capacity)
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