Stochastic Modeling of Retail Stores
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Abstract Tratfic Forecasting: Model Hierarchy Item Volume Forecasting Direct Sales Model

We address the problem of retail store sales personnel scheduling e For small- and medium-sized retail stores, the number of items sold e Comparison of the proposed product model to a direct model: using
by casting it in terms of an expected operating income maximiza- EXplanatory | location1 2% Dynemic Location1 _ Locaton T niraday during an intraday interval is a small integer (e.g. below 30). the same topology as the daily/intraday traffic model combination,
g{)nf. In this fjf.amewcz[rk,b satleipeopletaf rtlo gonger o?ly responsi- 1 it m o) | TeffcFet e Need the full distribution of sales volume (not just the expectation). directly estimate the intraday sales (for each 30-minute interval).
€ for opetating costs, but also CONIbULE 1o operating revenue. . : Loc. 2Dynamic : : " : o e Input variables in direct model:
We model the marginal impact of an additional staff by making o DailyResiduals 2 1ROt ot oy ictnibution - Loction 2 nraday » Standard parametric forms, such as the conditional Poisson distribu- I; d Traff; I
use of historical sales and payroll data, conditioned on a store- ISR ) T tion, provide a bad fit to the realized distribution. > otore dummy -~ el Sjollins)
pay ’ ’ » Seasonals (month, DoW) » Nb of employees (w/ splines)

date- and time-dependent traffic forecast. The expected revenue o Use the statistical framework of ordinal regression.

and its uncertainty are can then fed into a mathematical program Location n paly afic Pt Locationn Location n Intraday e Define a latent real variable Z, discretized according to ordered cutoff e gt e Y e B
which builds an operational schedule maximizing the expected D oy " TaficFast points —co = ¢y < (; < -+ < (x = 0o. We observe V = k if and only Froposw Proguc Mol b
operating income. A case study with a medium-sized retailer sug- if .1 < Z < (pk = 1,..., K. The proportional odds model assumes  Statistic . Train Test Train Test
gests that revenue increases of 7% and operating income increases that the cumulative distribution of V' on the logistic scale is modeled RMSE ($) 291.94 308.76 434.48 398.50
of 3% are possible with the approach. by a linear combination of input variables x, i.e. MAE ($) 186.42 203.57 261.16 262.77
logit P(V < k|x) = logitP(Z < (4| x) = G — 0'%, MAPE (%) 67.80 68.16 105.36 98.87

where 0 are regression coefficients and logit(p) = log ﬁ'

Tratfic Forecasting: Daily

W M e Produce flexible and sensible estimates of the conditional distribution
store j; shared across all stores with a store-specific intercept (5o,;): (traffic, seasonalities, number of salespeople at work). 1
e Satisfy the demand curve: - R log Ty = fos + B + € peop Employee SChedlﬂlng
must have right nb of em- T VO o o & & | S , . 1 L 1 L Projected impact on revenue (% increase) by day-of-week and time of the
ployees at the right time. Sl W e Predictive distribution is lognormal, with E[T} ; | x; ;] = exp (p + %). o FEENNEREES NN day, across all stores participating in the study. (Theoretical maximum
e Retail context: quality of e Store-Specific Residuals: store-specific univariate ARMA(p, q): % . average revenue increase is 7%, resulting in an operating income increase
service driven by nb of P 4 & o1 I II of 3%.)
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e Sales staff contribute to revenues, not only to expenses. e ARMA model order deter- i s
e Goal: schedule employees to maximize expected profit. mined by AIC tests. 4 B oo kil " L
e Significant  residual  fat i - BE
tails; variance-stabilizing ] . - | R
transformations (used to | [ Average Item Price Model | | I
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not much helpful.
- - O ——— o | e Account for store-level differences and monthly seasonalities.
e Regressors:  seasonalities, o ' : , Staffing differences (in # of employees) for one store across 3 weeks, after
s e Account as well for number of items sold:

special events, weather

implementing full employee schedules. Average staffing increases by 1/4
employee per period.

» Larger number of items sold reduce average item price.

Stochastic Models in Retail e ———
e Goals: forecast traffic and sales; optimize salespeople sched- Trafﬁc Forec asting. Intrad ay i | - | Fo
ules to maximize operating profit Proﬁt Curve ™ s
Sales d . Idea: spread the total daily traf- wed |
¢ 2ales decOompOSItion. 3 fic into intraday periods (15- to — T T T Combine 3 models to yield a conditional sales forecast, for each store e
ELS; | By, Ti, X4 = E[Vi Py | By, Th, X4, 60-minute); conditional multi- - eeEEEEEEEEEE e eee and each period within the day: von i Ios
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= Z P(Vi=uv | L) v EP | V,, T, probability attributed to inter- (m—— T T 1 [ [ | [ [T 2. Given expected traffic, forecast the distribution of item volume.
vt val 7, P(7 | z;;), s given by [ [T 3. For each possible volume, forecast the expected item price.
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2. Volume distribution (number of items sold) " " We presented a new methodology to forecast the expected revenue func-
3. Average price per item ) v tion associated to the presence of a given number of employees in a retail
Employees 1 Employees 1 store. This function can be incorporated into a mathematical program-

e This decomposition empirically performs much better than di-

rect forecasting of intraday sales. Traffic MOdEIing Results

j L L ming framework to build schedules that maximize the expected store op-
e Studied chain of 15 upscale clothing and apparel stores in Canada

erating profit, and not only minimize payroll expenses. Significant real-
world savings are being demonstrated.
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