
Conclusion

We presented a new methodology to forecast the expected revenue func-
tion associated to the presence of a given number of employees in a retail
store. This function can be incorporated into a mathematical program-
ming framework to build schedules that maximize the expected store op-
erating profit, and not only minimize payroll expenses. Significant real-
world savings are being demonstrated.
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Employee Scheduling

Projected impact on revenue (% increase) by day-of-week and time of the
day, across all stores participating in the study. (Theoretical maximum
average revenue increase is 7%, resulting in an operating income increase
of 3%.)
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Staffing differences (in # of employees) for one store across 3 weeks, after
implementing full employee schedules. Average staffing increases by 1/4
employee per period.
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Direct Sales Model

• Comparison of the proposed product model to a direct model: using
the same topology as the daily/intraday traffic model combination,
directly estimate the intraday sales (for each 30-minute interval).

• Input variables in direct model:
� Store dummy � Traffic (w/ splines)
� Seasonals (month, DoW) � Nb of employees (w/ splines)

Profit Curve

Combine 3 models to yield a conditional sales forecast, for each store
and each period within the day:

1. For store j, day t, intraday interval τ , forecast expected traffic E[T̃t,τ,j |
xt,j, zt,j].

2. Given expected traffic, forecast the distribution of item volume.
3. For each possible volume, forecast the expected item price.
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Average Item Price Model

• Average item price is handled by a simple log-linear model.
• Account for store-level differences and monthly seasonalities.
• Account as well for number of items sold:

� Larger number of items sold reduce average item price.

Item Volume Forecasting

• For small- and medium-sized retail stores, the number of items sold
during an intraday interval is a small integer (e.g. below 30).

• Need the full distribution of sales volume (not just the expectation).
• Standard parametric forms, such as the conditional Poisson distribu-

tion, provide a bad fit to the realized distribution.
• Use the statistical framework of ordinal regression.
• Define a latent real variable Z, discretized according to ordered cutoff

points −∞ = ζ0 < ζ1 < · · · < ζK = ∞. We observe V = k if and only
if ζk−1 < Z ≤ ζk, k = 1, . . . , K. The proportional odds model assumes
that the cumulative distribution of V on the logistic scale is modeled
by a linear combination of input variables x, i.e.

logitP (V ≤ k |x) = logitP (Z ≤ ζk |x) = ζk − θ�x,

where θ are regression coefficients and logit(p) ≡ log p
1−p.

• Produce flexible and sensible estimates of the conditional distribution
of the volume of items sold, as a function of important determinants
(traffic, seasonalities, number of salespeople at work).
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Number of Items Sold

Traffic = 15 persons / 30 min.
Nb of Employees = 1

Traffic = 50 persons / 30 min.
Nb of Employees = 7

Number of Items Sold

Traffic Modeling Results

• Studied chain of 15 upscale clothing and apparel stores in Canada
• Train: 2009-01-01 – 2010-02-28 Test: 2010-03-01 – 2010-08-31

Traffic Forecasting: Intraday

Idea: spread the total daily traf-
fic into intraday periods (15- to
60-minute); conditional multi-
nomial model.

Let yt,τ,j = β�τzt,j; the intraday
probability attributed to inter-
val τ , P (τ | zt,j), is given by

P (τ | zt,j) =
exp yt,τ,j�
τ � exp yt,τ �,j

.

R
el

at
ive

 T
ra

ffi
c

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.00
0.02
0.04
0.06
0.08
0.10
0.12

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30

Sun
M

on
Tue

W
ed

Thu
Fri

Sat

Traffic Forecasting: Daily

• Global Daily Traffic: log-linear model of total daily traffic Tt,j at
store j; shared across all stores with a store-specific intercept (β0,j):

log T̃t,j = β0,j + β�xt,j + �t,j

• Predictive distribution is lognormal, with E[T̃t,j | xt,j] = exp
�
µ + σ2

2

�
.

• Store-Specific Residuals: store-specific univariate ARMA(p, q):

�t,j +
p�

k=1

γj,k�t−k,j =
q�

i=1

αj,iνt−i,j,

• ARMA model order deter-
mined by AIC tests.

• Significant residual fat
tails; variance-stabilizing
transformations (used to
normalize call center traffic)
not much helpful.

• Regressors: seasonalities,
special events, weather

Traffic Forecasting: Model Hierarchy

Global Daily Traffic
(multivariate log-linear, 
shared across locations)

Explanatory
Variables Location 1 

Daily Residuals
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Location n
Daily Residuals
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Location 1 Static

Daily Traffic
 Fcast

Location n Static
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Intraday Distribution

(Multinomial)

Loc. 1 Dynamic
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Intraday Distribution
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Intraday Distribution
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Loc. n Dynamic
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Location 1 Intraday
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Location 2 Intraday
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Location n Intraday
Traffic Fcast

Loc. 2 Dynamic
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Typical Data Sources

• Transactions: # of items,
price per item

• People Counters: traffic
• Past Schedules: how many

salespeople on the floor at
each period

• Other sources: special
events, weather, macro

Stochastic Models in Retail

• Goals: forecast traffic and sales; optimize salespeople sched-
ules to maximize operating profit

• Sales decomposition:
E[St | Et, T̃t,Xt] = E[VtPt | Et, T̃t,Xt],

• Implementation by forecasting models
E[St | It] = E[VtE[Pt | Vt, It] | It]

=
�

vt

P (Vt = vt | It) vt E[Pt | Vt, It],

• Need three basic modeling building blocks:
1. Traffic forecasting
2. Volume distribution (number of items sold)
3. Average price per item

• This decomposition empirically performs much better than di-
rect forecasting of intraday sales.

Workforce Management

• Satisfy the demand curve:
must have right nb of em-
ployees at the right time.

• Retail context: quality of
service driven by nb of
salespeople.

• Sales staff contribute to revenues, not only to expenses.
• Goal: schedule employees to maximize expected profit.

Abstract

We address the problem of retail store sales personnel scheduling
by casting it in terms of an expected operating income maximiza-
tion. In this framework, salespeople are no longer only responsi-
ble for operating costs, but also contribute to operating revenue.
We model the marginal impact of an additional staff by making
use of historical sales and payroll data, conditioned on a store-,
date- and time-dependent traffic forecast. The expected revenue
and its uncertainty are can then fed into a mathematical program
which builds an operational schedule maximizing the expected
operating income. A case study with a medium-sized retailer sug-
gests that revenue increases of 7% and operating income increases
of 3% are possible with the approach.
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