Multi-skill Call Center Routing Using Weights, Call Waiting Times and Agent Idle Times

Wyean Chan[†], Ger Koole[‡], Pierre L'Ecuyer[†]

[†] Université de Montréal, Canada [‡] VU University Amsterdam, The Netherlands

2011 INFORMS Simulation Society Research Workshop Simulation in Complex Service Systems HEC, Montréal, July 19, 2011

What is a Call Center ?

- A call center is a set of resources for communication between an organization and its customers over the phone.
- Common call centers: toll free 1-800 numbers, emergency centers, government offices, banks,
- A client is categorized by its required service, named **call type**.
- Clients are served by agents or customer service representatives.
- The type of calls that an agent can serve is given by his skill set, and an agent group contains agents with the same skill set.

Routing problem:

When an agent becomes idle, which call should he serve next? When a new call arrives, which idle agent should serve it?

 Goal: Optimize the routing policy subject to some performance measures constraints.

We consider general black-box type objective functions and we use simulation-based optimization methods.

Example of a Call Center Model

Figure: A N-model call center. Group 2 can serve both call types. A call exits the center either after service completion or by abandon.

Performance Measures

Examples of performance measures:

► The service level (SL):

$$S(\pi,\tau) = \frac{\mathbb{E}[X(\pi,\tau)]}{\mathbb{E}[N - B(\pi,\tau)]},$$

where τ : acceptable waiting time (AWT), $X(\pi, \tau)$: # of calls served that waited at most τ , *N*: # of arrivals, $B(\pi, \tau)$: # of calls that abandoned after waiting at most τ and π : the routing policy. \mathbb{E} is the expectation operator.

The ratio of abandonments:

$$A(\pi) = \mathbb{E}[Z(\pi)]/\mathbb{E}[N],$$

where $Z(\pi)$: number of abandonments.

► The agent occupancy ratio of group *g*:

$$O_g(\pi) = rac{1}{y_g T} \mathbb{E}\left[\int_0^T G_g(\pi, t) dt
ight],$$

where y_g : number of agents in group g, $G_g(\pi, t)$: number of busy agents at time t and T is the time horizon.

Objective Functions

Performance measure constraints are defined as penalty cost functions. Suppose K call types and G agent groups.

Here are examples of penalty functions to minimize:

Service levels:

$$F_{\mathsf{S}}(\pi) = \sum_{k=1}^{K} a_k \max(t_k - S_k(\pi, \tau_k), \mathbf{0})^2,$$

where t_k is the SL target of call type k and a_k is a parameter.

Service levels and ratio of abandonments :

$$F_{SA}(\pi) = F_{S}(\pi) + \sum_{k=1}^{K} b_k \max(A_k(\pi) - u_k, 0)^2,$$

where u_k is the acceptable ratio of abandonments of call type k and b_k is a parameter.

Service levels and agent occupancy fairness :

$$F_{\mathrm{SO}}(\pi) = F_{\mathrm{S}}(\pi) + \sum_{j=1}^{G} c_{g} \left| O_{g}(\pi) - \bar{O} \right|^{2},$$

where \bar{O} is the average group occupancy and c_g is a parameter.

Routing policies

Basic fairness rules that apply for all routing policies:

- ► First-come-first-served (FCFS) for calls of the same type.
- ► Longest-idle-server-first (LISF) for agents of the same group.

We will compare with some common routing strategies:

- Priority routing (P): Also called overflow routing. When an agent completes a call, he selects the next call by following the order of his group-to-type preference list. When a new call arrives, it searches for the first available agent following the type-to-group preference list.
- Delays (D): A call of type k must have waited d_{k,g} seconds before it can be answered by an agent of group g.
- ▶ Minimum number of idle agents (M): Agents of group g can serve a call of type k only if there are more than $m_{k,g}$ idle agents. Reduce temporarily the skill set of an agent group if the number of idle agents is low.

We propose a new routing policy based on **weights**, **call waiting times** and **agent idle times**, called weight-based routing (W).

Weight-Based Routing Policy (W)

Assume *K* call types, *G* agent groups and $S_g \subseteq \{1, ..., K\}$ as the skill set of group *g*.

▶ There is a weight $c_{k,g}$ for each skill (group *g* and call type $k \in S_g$):

$$c_{k,g} = q_{k,g} + a_{k,g} w_k + b_{k,g} v_g,$$

- ▶ where $q_{k,g}, a_{k,g}, b_{k,g} \in \mathbb{R}$ are parameters (total of $3 \sum_{g=1}^{G} |S_g|$ parameters),
- $w_k \ge 0$ is the waiting time of the oldest call of type k in the queue,
- ▶ $v_g \ge 0$ is the idle time of the current longest idle agent in group *g*.
- If no idle agent in group g, then c_{k,g} = −∞, ∀k. If there are no calls of type g waiting, then c_{k,g} = −∞, ∀g.

Note: The weight $c_{k,g}$ is not restricted to a linear function, it can also be dependent on the state of the call center.

The call and agent are matched as follows:

- 1. The router monitors and updates the $c_{k,g}$ regularly.
- 2. If all $c_{k,g} < 0$, then do nothing.
- 3. If there is a $c_{k,g} \ge 0$, then select call type k^* and group g^* such that:

$$c_{k^*,g^*} = \max_{k,g} \left\{ c_{k,g} \right\}.$$

4. Assign the longest waiting call of type *k*^{*} to the longest idle agent of group *g*^{*}.

Policy W Can Approximate Other Routing Policies

The weight-based routing policy can approximate the simpler policies.

Set parameters to approximate the policies:

- global FCFS: Set q_{k,g} = 0 and a_{k,g} = 1, b_{k,g} = ϵ, for all k, g, where ϵ is a small positive number.
- P: Set *q_{k,g}* ≥ 0 accordingly to the type-to-group lists (for new calls). Set *a_{k,g}* ≥ 0 accordingly to the group-to-type lists (for idle agents). *b_{k,g}* = *ϵ*. The parameters *a_{k,g}* have no effect when a new call arrives since it has 0 waiting time. The parameter *a_{k,g}* must dominate *q_{k,g}* when there are calls waiting.
- ▶ P and D: Set the priority in the same way as for the policy P. In addition, use q_{k,g} < 0 to set the delay and adjust the a_{k,g}.

We can except the weight-based routing policy to perform no worse than those policies.

- Compare the routing policies with their **optimal parameters**.
- Use simulation to get more accurate estimations.
- Consider the objective function as a black-box function.
- We implemented and adapted two heuristic algorithms: a stochastic gradient descent (SGD) and a modified genetic algorithm (MGA).

Heuristic algorithms used:

- > Priority rules: Exhaustive enumeration (for very small problem) or MGA.
- Delays: SGD or MGA.
- Minimun number of idle agents: MGA.
- Weight-based: SGD or MGA.

Because of the difficulty of the optimization problems, we execute the implemented algorithms and take the best solution found.

Use the well-known stochastic gradient descent.

- Estimate the gradient by central (or forward) finite difference using a simulator.
- Combine with a line search algorithm (golden section search).
- Execute a number of restarts to increase the chance of avoiding local optima.
- Stop when no improvement for consecutive restarts.

Alternatively, use a quasi-Newton method.

Simplified version of the *estimation of distribution algorithms* (EDA) or the *cross-entropy* (CE) for optimization.

- ▶ No cross-over and mutation operators.
- For each of the *N* variables, select a probability distribution function Φ_n with parameter vector θ_n .
- Generate randomly the population of solutions from $\Phi_n(\theta_n)$.
- Consider the variables to be independent of each other.
- Start with distribution functions that cover a large set of solutions (and hopefully the optimum).
- Goal: maximize the probability density of the optimal solution.

Modified Genetic Algorithm (MGA)

Suppose *N* parameters to optimize.

Input: $\Phi_1, \ldots, \Phi_N, \theta_1^{(0)}, \ldots, \theta_N^{(0)}$, maxIt, *P* (pop. size), *Q* (# elites), *f* (obj. function) **Output**: best solution \mathbf{x}^* found **begin**

```
\theta_n = \theta_n^{(0)}, n = 1, \ldots, N
     for i = 1 to maximize do
           for p = 1 to P do
               for n = 1 to N do
                    x_n^{(p)} = Generate a random value from probability distribution \Phi_n(\theta_n).
                end
               f^{(p)} = f(\mathbf{x}^{(p)}) / / \text{simulate solution}
           end
           Sort \mathbf{x}^{(p)} by order of f^{(p)} and keep the Q best (elite) solutions.
           Update x<sup>*</sup> if found a better solution.
           Update \theta_n, \forall n (e.g., by maximum likelihood) from the set of Q best solutions.
           if (variance of \Phi_n(\theta_n) < \epsilon, \forall n) then stop
     end
end
```

We test the following routing policies:

- ► G: Global FCFS and LISF rules.
- **P**: Priority routing.
- **PD**: Priority routing with delays.
- ▶ PM: Priority routing with minimum number of idle agents.
- PDM: Priority routing with delays and minimum number of idle agents.
- ► W: Weight-based routing. (our new policy)

For each example, we simulate by using *common random number* (CRN) to solve the same sample average problem.

For all call types, service rate: 10/hour, patience rate: 10/hour, acceptable waiting time $\tau_k = 20$ seconds.

		case	
Param	1	2	3
λ_1	50	50	100
λ_2	50	50	10
У	12	12	13
t ₁	80%	70%	70%
<i>t</i> 2	80%	90%	90%

 λ_k : arrival rate per hour of call type k, y: number of agents,

 t_k : service level target of call type k.

Objective function : $F_{S}(\pi) = \max(t_1 - S_1(\pi, 20), 0)^2 + \max(t_2 - S_2(\pi, 20), 0)^2$.

Routing	Case 1			Case 2			Case 3			
policy	ΔS_1	ΔS_2	f*	ΔS_1	ΔS_2	f*	ΔS_1	ΔS_2	f*	
G	-3.4	-3.5	24	6.6	-13.5	182	6.0	-14.0	195	
Р	-4.0	0.9	16	6.0	-9.1	82	5.9	-5.3	28	
PD	-3.2	-1.2	12	2.7	-7.1	51	4.4	-2.4	6	
PM	1.0	-4.0	16	-4.5	-0.3	20	-4.0	8.4	16	
PDM	-1.1	-3.2	11	-2.8	-2.3	13	4.4	-2.5	6	
W	-0.9	-0.9	2	-0.9	-1.6	3	3.6	0.1	0	

 $\Delta S_k = (S_k - t_k)$ of call type *k*. *f*^{*}: Best cost found. All performance are measured in %.

The lowest penalty costs are obtained with the weight-based policy.

N-model example

For all call types, service rate: 10/hour, patience rate: 10/hour, acceptable waiting time $\tau_k = 20$ seconds.

	case					
Param	1	2				
λ_1	100	100				
λ_2	100	100				
y 1	11	5				
<i>y</i> 2	12	18				
<i>t</i> ₁	80%	85%				
t ₂	80%	85%				

 λ_k : arrival rate per hour of call type k, y_g : number of agents in group g, t_k : service level target of call type k.

N-model example results

Objective function:
$$F_{SA}(\pi) = \sum_{k=1}^{2} \max(t_k - S_k(\pi, 20), 0)^2 + \sum_{k=1}^{2} A_k(\pi)^2.$$

Routing	Case 1						Ca	ase 2		
policy	ΔS_1	ΔS_2	O_1	O_2	f*	ΔS_1	ΔS_2	O_1	O_2	f*
G	9.4	-21.6	74	89	1494	-1.9	-8.4	80	85	194
Р	7.7	-16.1	79	86	505	-3.5	-3.7	80	85	134
PD	-7.6	-8.8	82	82	137	-3.5	-3.7	80	85	134
PM	-6.2	-5.7	82	82	71	-3.5	-3.7	80	85	134
PDM	-3.9	-6.8	81	82	63	-6.5	-2.5	80	83	95
W	-4.8	-6.5	81	82	66	-3.8	-1.7	84	84	18

 $\Delta S_k = S_k - t_k$. A_k : abandonment ratio(%) of call type *k*. f^* : Best score found.

Policy PDM performs a little better than the policy W for the N-model when the staffing is more *balanced* with the volume of calls.

- 8 call types, 10 agent groups,
- Arrival rates (/ hour): $\lambda = (250, 200, 100, 80, 50, 20, 15, 10)$,
- Service rates (/ hour): $\mu = (10, 6, 6, 10, 6, 6, 8, 10)$,
- ▶ Patience rates (/ hour): v = (10, 8, 10, 12, 6, 10, 12, 10),
- ► Staffing vector: **y** = (21, 12, 14, 8, 16, 5, 3, 7, 8, 9),
- Group skill sets: $S_1 = \{1, 4\}, S_2 = \{2, 5\}, S_3 = \{3, 4, 7\}, S_4 = \{4, 6, 8\}, S_5 = \{2, 5\}, S_6 = \{6, 7, 8\}, S_7 = \{1, 3, 7\}, S_8 = \{2, 4, 8\}, S_9 = \{1, 3, 4, 8\}, S_{10} = \{2, 7, 8\}.$
- SL target: $t_k = 80\%$ and $\tau_k = 20$ seconds for all call types *k*.

Larger example results

Objective function: F_{S} with $a_{k} = 1, \forall k$.

Routing		ΔS		S		Α		A	f *
policy	max	med	min	agg	max	med	min	agg	
G	16.8	-0.2	-17.1	73	5.3	3.0	0.5	4.4	638
P, PM (*)	16.0	3.1	-11.7	75	5.9	2.0	0.6	4.3	267
PD, PDM (*)	15.4	-0.4	-10.9	75	5.5	3.3	0.8	4.3	219
W	-0.5	-1.8	-5.0	77	11.9	6.5	4.1	5.1	58

Objective function: F_{SA} with $a_k = b_k = 1$, $u_k = 0$, $\forall k$.

Routing		ΔS		S		Α		A	f*
policy	max	med	min	agg	max	med	min	agg	
В	16.8	2.0	-17.1	73	5.4	3.0	0.5	4.4	745
P, PM (*)	16.0	3.3	-11.5	75	5.6	2.0	0.7	4.4	350
PD, PDM (*)	14.1	2.3	-10.8	75	5.5	2.5	1.1	4.4	303
W	12.4	-1.0	-8.9	76	5.0	4.0	1.4	4.4	233

 $\Delta S_k = S_k - t_k$. A_k : ratio of abandonments. f^* : best cost found. agg: aggregate measure.

(*): We found the best solution with the simpler policy.

Summary:

- We propose a routing policy using weights, call waiting times and agent idle times.
- We presented a multiplicative and addictive weight rule, but it can take different expressions.
- ► The weight-based policy had the best cost for most examples.

Future work:

- Improve the optimization methods.
- Try alternative weight rules.