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Introduction

Step 1 (Next iterate selection): Select the most
isolated point xc

(k) from the non-dominated points
at the end of iterate (k-1).
Step 2 (Regression model): Sample points in a
trust region and construct a fully linear model for
f j , j=1,2,3 using sample average values, where

Step 3 (Minimize approximate functions) : Find
the minimizer for each single objective function.
Step 4 (Trust region radius update): Compute
the reduction ratio at each minimizer with the
associated approximate objective function. If the
approximate function is poor, reduce the trust
region radius.
Step 5 (Approximate Pareto front): Update the
set of non-dominated points using all evaluated
points.

Multi-Objective Stochastic Optimization 
We consider black-box problems where we do not have analytic forms for the objective functions. The
objective values can only be estimated through expensive simulations. The output of these simulations is
subject to stochastic variation. Let ξ be a random vector. We focus on multi-objective stochastic problems
with the form:

We use the sample average approximation (SAA) approach [1,2] to approximate the above problem. 
Essentially, we replace the expected value function by a sample average, and use deterministic optimization 
to solve the ensuing problem. The SAA approximation to is given by

We consider black-box problems where the analytic forms
of the objective functions are not available, and the values
can only be estimated by output responses from
computationally expensive simulations. We apply the
sample average approximation method to multi-objective
stochastic optimization problems and prove the
convergence properties of the method under a set of fairly
general regularity conditions. We develop a new algorithm,
based on the trust-region method, for approximating the
Pareto front of a bi-objective stochastic optimization
problem. At each iteration of the proposed algorithm, a
trust region is identified and quadratic approximate
functions for the expected objective functions are built
using sample average values. To determine non-
dominated solutions in the trust region, a single-objective
optimization problem is constructed based on the
approximate objective functions. After updating the set of
non-dominated solutions, a new trust region around the
most isolated point is determined to explore areas that
have not been visited. The numerical results show that the
our proposed method is feasible, and the performance can
be significantly improved with an appropriate sample size.

Multi-objective optimization arises in a wide variety of
applications, whenever it is necessary to make a tradeoff
between different important, but conflicting goals. The usual
concept of optimality from single-objective optimization is
not directly applicable in these settings, because it is
impossible to optimize multiple conflicting objectives at the
same time. Rather, we seek a good tradeoff among the
multiple objectives, which can be formalized using the
notion of Pareto optimality or Pareto efficiency. The general
form of multi-objective optimization problem is as follows:

Decision vector:
Objective function vector:
Optimization problem:

Pareto optimality for the problem with the above form is
defined by the following dominance relationship:

Conclusion
We developed the framework of the SAA method for MOP. The convergence of the SAA method can be obtained under a
set of fairly general regularity conditions [4]. We applied an iterative algorithm for bi-objective stochastic optimization
problems, based on the trust region method, to the SAA problems. The algorithm does not require any strong modeling
assumptions, and has great potential to work well in various real-world settings. The numerical results show that the our
proposed method is feasible, and can perform robustly with a large enough size N. To improve the finite time performance
of the algorithm, the sample size should be carefully determined with consideration for the trade-off between sampling and
optimization errors. The difference between the solutions obtained from SAA and the solutions to the true problems can be
reduced by taking a larger sample size. On the other hand, as the number of iterations grows, the distance between
solutions from each iteration and the Pareto front decreases. We consider an algorithm to solve a sequence of SAA
problems with increasing sample size as a future work.

Pareto Approximation

Numerical Results
We tested an unconstrained bi-objective problem with
a convex Pareto front.

We find a set of solutions H of around 2,500 non-
dominated solutions that are uniformly-spaced. To
evaluate our method, we use the generational
distance (GD) criterion. Let H = {x1, …, xe} be the set
of solutions. The GD is computed by

This measures the average distance between the
objective value at the obtained solution and the true
Pareto front. We can observe that with 5,000 function
evaluations, N = 10 performs the best, and with
20,000 function valuations, N = 50 performs
significantly better than others. This implies that the
sample size should be carefully determined taking into
account the computational budget.
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Algorithm for Bi-Objective Problem

We iteratively apply a trust-region method [3] to the SAA
problem and find a set of non-dominated points. While we
would like to identify solutions close to the Pareto front,
we also want to generate well-spread solutions in order to
approximate as much of the Pareto front as possible. To
this end, we select the most isolated point among the
points that have thus far been determined to be non-
dominated. A trust region centered at the point is
determined to maintain the uniformity of the optimal
solution set by exploring non-visited areas.
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∑ Performance comparisons with 20,000 function evaluations

N
5,000 evaluations 20,000 evaluations

GD < 0.1 GD < 0.5 GD < 1 GD < 0.1 GD < 0.5 GD < 1

5 23 81 90 47 83 90
10 47 86 91 50 86 97
50 6 67 88 63 94 98
100 0 0 0 56 92 98

N= sample size

N= 10N= 5

N= 50 N= 100

The number of runs with GD less than 0.1, 0.5, and 1, with 100 independent runs
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