

Using Simulation to improve physicians, patients and machines scheduling in a cancer treatment facility

Mehdi Taobane, Pierre Baptiste, Marie-Andrée Fortin, Louis-Martin Rousseau

ABSTRACT

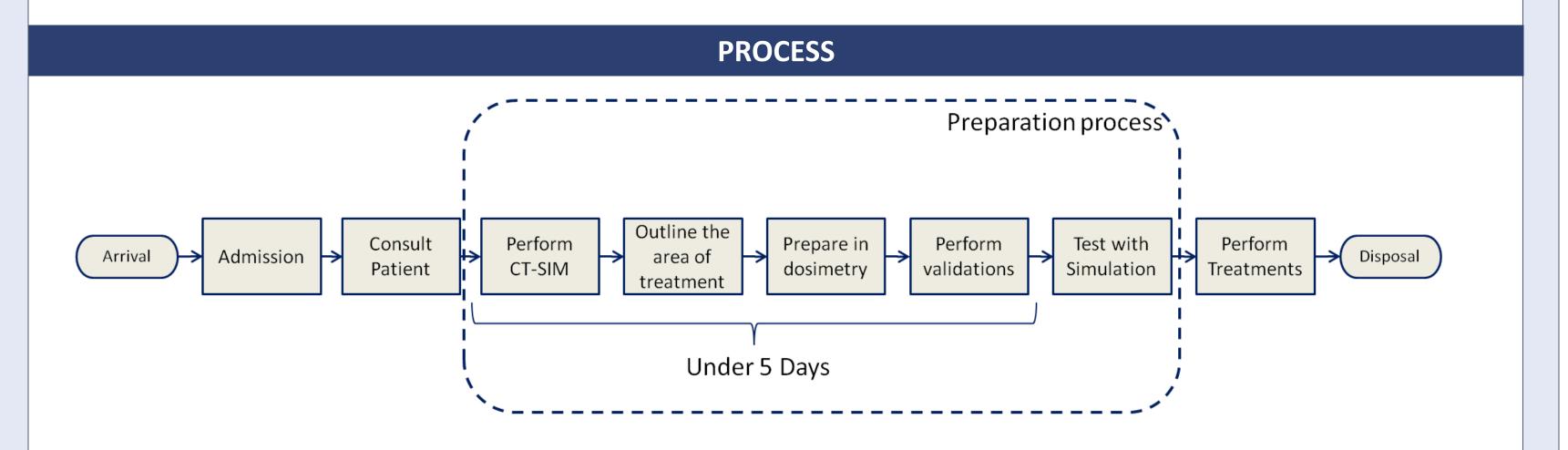
The admistrators of l'Hôpital Cité de la Santé in Laval are confronted with uncertain decisions in designing a new Department of Oncology.

However, the difficulty, at this stage, is to assess the impact of decisions on the functioning of operations.

By simulation, key parameters are analyzed such stochasticity at patients' arrival, coordination of operations and resources allocation.

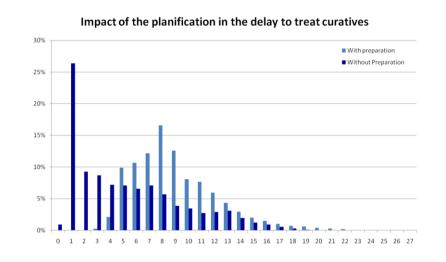
GENERAL ISSUES

Increase of waiting time, postponement of appointments and reallocation of resources due to:


- Augmentation of new cancer by 3% in Canada
- Shortage of Staff
- Impact of palliatives patients on the appointments of curatives patients
- Accumulation of patients in the system

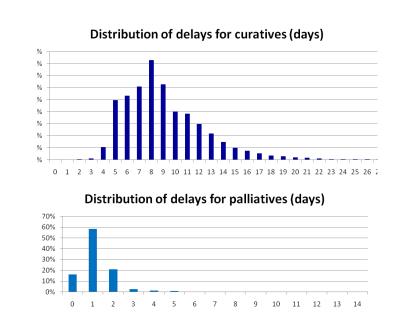
OBJECTIVES FOR THE NEW ONCOLOGY CENTER

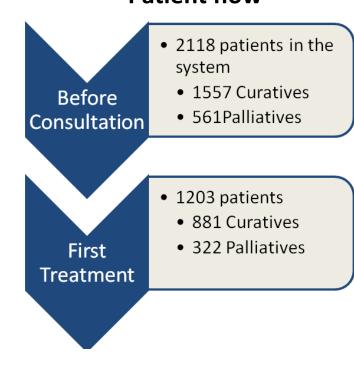
Reduce the time between the CT-SIM and the first day of treatment to 5 days (Actual 20 days)


Expected Benefits:

High quality of treatment, Stabilization of process, Planning of resources, Staff Satisfaction

SIMULATION'S ROLE


Elimination of bottlenecks Validation of organizational resources

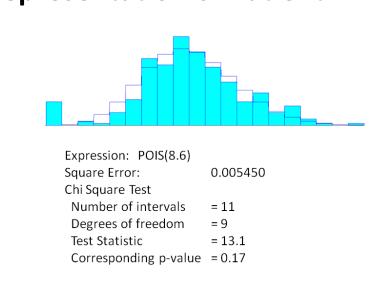

Standardization of Physician's tasks Create a weekly Schedule

	Monday		Tuesday		Wednesday		Thursday		Friday	
	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
Phy A										
Phy B										
Phy C										
Phy D										
Phy E										
Phy F										
Phy G										

Slot reservation for palliative Find the right amount of slots to reserve

Patient flow

DATA COLLECTED


Cancer Distribution Gynecology 5% C.N.S 6% Digestive 6% Pulmonary 9% O.R.L 19% Urothelial 13%

Resources

Equipments

- 4 linears accelerators (machines)
- 2 CT-SIM Scanners
- Human Resources
- 7 physicians
- 28 technologists4 dosimetrists
- 9 physicists

Representation of Patient Arrival

RESULTS AND FURTHER WORK

Validation of the maximum delay

Type Cancer	Delay	Respect	Less than 5 days
Digestive	14	92%	49%
Skin	28	100%	35%
Urothelial	28	100%	49%
Central Nervous System	14	96%	54%
Pulmonary	14	94%	49%
Lymphoma	14	92%	51%
ORL	14	93%	52%
Breast	28	100%	47%
Gynecology	14	95%	59%
Metastasis	3	98%	

Next Steps

Revise capacity of the linears accelerators Implement an heuristic model to improve the physician's schedule

AKNOWLEDGMENT

Dr Marie-Andrée Fortin and her Team Ing Alexandre Ouellet Pr Louis-Martin Rousseau Pr Pierre Baptiste