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One of the early call centers ...

First Direct (Larreche et al., 1997)
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A more modern call center ...
Call-Center Environment: Service Network

10
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A sweatshop call center???Call-Centers: “Sweat-Shops of the 21st Century"

10
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Queueing model for a single call center

Tutorial, background...

Queueing model associated with a
single location:

retrials

arrivals

abandon

queue

busy

lost calls

retrials

lost calls returns

N = 3 CSR-servers

5 = (k – N) places in queue

w = 5 work stations

k = 8 trunk lines (not visible)

Call-center hardware Queueing model parameters

4

Gans, Koole and Mandelbaum (2003)
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The M/M/N +∞ model or the Erlang-C model
Review, basic model...

Performance estimate uses M/M/N/∞ model:

x x
x

x
xx

x
• no blocking, abandonment, or retrials

• fixed arrival and service rates

• exponential interarrival and service times

• measures of stationary performance

10

no blocking, abandonment, or retrials

fixed arrival rate λi and service rate µi for time period i

exponential inter-arrival and service times
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Are the Erlang-C assumptions valid in call centers?

Brown, Gans, Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2005)

One Israeli call center

small: 15 seats at most
multiple types of service:

I regular banking service
I stock-trading
I IT support for online banking

450K agent-seeking calls in 1999
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Are the arrivals Poisson?
Consider short time intervals such as quarter hours,

Arrivals are Poisson with time-varying rates.
The rates are still random given available covariates:

I time-of-day, day-of-week, service types.

Hence, a doubly stochastic Poisson process, or a Cox process.

For one arrival stream, two-way dependence among the rates:
I Inter-day dependence: today/tomorrow, weekly, . . .;
I Intra-day dependence: morning/afternoon/night, . . ..

Such dependence is crucial for inter-day rate forecasting and
intra-day updating.

For multiple arrival streams, inter-stream (i.e. call type)
dependence.
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Are the service times exponential?

quick-hang: agents hang up on customers

non-exponential distribution
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In fact, service times are lognormal
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The lognormality

exists at multiple levels: individual agents, different service types,
time-of-day, ..., multiple companies (US/Israel)

becomes handy later on for understanding agent heterogeneity
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How about abandonment?
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Hazard Rate: Empirical (Im)Patience

x-axis: waiting time in queue

y-axis: instantaneous probability of abandonment, (or hazard rate)

bi-modal with an exponential tail

priority customers are more patient
Erlang-A: Garnett, Mandelbaum, Reiman (2002)

I exponential time to abandonment, (or patience)
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“Standard” model for call center capacity planning

1 Forecast offered load (e.g., by the 1/2-hour)

{Ri = λi/µi : i = 1, . . . ,m}

2 Find minimum numbers of agents to make QoS constraint

si = min{s | P{Delay ≤ α} ≥ β}

3 Find minimum cost assignment of agents to schedules

min{cy |Ay ≥ s; y ≥ 0; y integer}
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Two complications we are currently working on

The arrival rates are not certain: λi

I we forecast them, and there are forecast errors
I distributional forecasts may be better than point forecasts
I solve stochastic programs that account for forecast distributions

I one call type – Gans, Shen, and Zhou, with Genesys
I multiple call types – Luedtke, Shen and Ye

Service times are not i.i.d. random variables: µi

I vary across agents
I for a given agent, vary with experience
I vary with other factors: type of call, time of day,...

I preliminary data analysis – Gans, Liu, Mandelbaum, Shen, Ye
I current analysis – Gans, Shen, and Ye, with Genesys
I related hiring and retention problem – Arlotto, Chick, and Gans
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The arrival rate is not known with certainty
'
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Figure 1: Plot of # of Arrivals during 2 1
2 -min intervals in 2002
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Bank with a network of 4 call centers in northeast US

300K calls/day, 60K/day seeking agents, 1K agents in peak hours
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Two arrival streams

Introduction Single Queue Multiple Queues

Multiple Arrival Streams

Israel telecom company – Majority arrival streams: Private
customers(30%), Business customers(18%)

Two queues are strongly correlated.
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Israeli telecom company

Two major arrival streams: Private (30%), Business (18%)
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Work addressing arrival-rate uncertainty

Acknowledgement that arrival-rate uncertainty affects
performance

I Whitt (99), Chen and Henderson (01), Jongbloed and Koole (01)

Arrival-rate forecasting and updating methods
I Avramides et al. (04), Brown et al. (05), Shen and Huang (05, 08),

Steckley et al. (07), Taylor (07), Weinberg et al. (08), Aldor-Noiman
et al. (09)

Scheduling that accounts for arrival-rate uncertainty
I Harrison and Zeevi (05), Whitt (06), Bassamboo, Harrison and

Zeevi (05, 06, 07), Mehrotra and Ozluk (06), Bassamboo and Zeevi
(07), Robbins and Harrison (07), Bertsimas and Doan (08), Gurvich
et al. (09),
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Our goal

Develop distributional forecasts for arrival rates
I Updating given additional information

Perform stochastic scheduling using the distributional forecasts
I Recourse actions after forecast updating

I Changing staffing assignments
F send agents home early ... → reduce cost
F call in part-time agents ... → better achieve QoS measure

Test the approach in large-scale real systems
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Forecasting arrival rates using low-dimensional time
series factor models

Array of arrival counts Nij

I intervals within days, i = 1, . . . ,m
I days j = 1, . . . ,n
I xij =

√
Nij + 1/4

Intra-day feature vectors f1, . . . , fK ∈ Rm (K � m)
I summarize intra-day call arrival patterns
I reveal dominant intra-day arrival features

View xj as the composition of the K factors,

xj = βj1f1 + . . .+ βjK fK + εj
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The factor model reduces the dimensionality of the
forecasts

Use in-sample data to find the best fk ’s and βj ’s

min
βj1,...,βjK
f1,...,fK

n∑
j=1

‖εj‖2 = min
βj1,...,βjK
f1,...,fK

n∑
j=1

∥∥xj − (βj1f1 + · · ·+ βjK fK )
∥∥2

I Require f ′k f` = δk` for identifiability

Use in-sample βj ’s to forecast out-of-sample βj ’s
I βj ’s capture inter-day time series dependence

Combine (forecasted) out-of-sample βj ’s with in-sample fk ’s to
forecast future arrival rates/volumes
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Use βj ’s for distributional arrival-rate forecasts
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Stochastic program for scheduling agents

Distribution of the Λi ’s determined from the forecast
I may be driven by a parametric forecast on the βj ’s
I may be non-parametric forecast using bootstrap

With distributions for Λi ’s, solve the stochastic program

min {cy}
s.t.

m∑
i=1

EΛi [f (Λi ,aiy)] ≤ α∗
m∑

i=1

E [Λi ] i = 1, . . . ,m

y ≥ 0; y integer,

where f (Λi ,aiy) is the expected abandonment count in period i
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Night-before forecasts can sometimes be off
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Setup for intra-day forecast updates

Let Ni be the call volume during the i th upcoming time interval

Example: one-dimensional model with factor f ∈ Rm

Ni ∼ Poisson(Λi),

Xi ≡
√

Ni + 1/4 ∼ N(Θi , σ
2
0)

Θi =
√

Λi = wfi ,where w ∼ N(µ, σ2).

Suppose each day consists of an early and late part
I early intervals 1, . . . ,m0 ⇒ counts X e and unobserved rates Θe

I late intervals m0 + 1, . . . ,m ⇒ unobserved rates Θl

I forecast (hence, schedule) update performed after time m0.
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Generating forecast updates

Task: update the distribution of the unobservable rate, Θl

I based on some observed early volume X e

We know that X e ∼ N(Θe, σ2
0Im0)

We can forecast in two steps
I First use X e to update the distribution of the unobservable rate Θe.
I Then use the updated Θe to update the unobservable rate Θl .

The approach has both Bayesian and Ridge Regression
interpretations.
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Forecast updates can significantly reduce error and
uncertainty
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Stochastic programming with recourse

Stage 1:

I Solve the same stochastic program as before

I Calculate the expected abandonment rate during the latte part of
the planning horizon, αl

Stage 2:

I Based on early arrival counts, generate updated arrival rate forecast

I Updating staffing from y to z would require additional cost d(y − z)

I Solve stochastic program with recourse, with αl as the QoS target
in the latter part
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Recourse program that uses 2-stage forecast

Idea: account for recourse actions in initial schedule

Example: suppose the cost structure is such that
I it costs little to send agents home after m0
I it costs a lot to increase staffing after m0
I Should initially staff high and send people home, if necessary

In two-stage program
I First-stage periods as before: initial staffing y fixed across

scenarios
I Second-stage periods more complex: for each initial scenario,

second-stage action z varies
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We test six scheduling schemes

Two schemes with no updating
I one scenario = IP ♦

I 100 scenarios = SP100 �

Two schemes with an afternoon update of the original schedule
I one scenario = UP �

I 100 scenarios = UP100 �

Two schemes that update an original schedule with recourse

I one scenario = RP f
I 100 scenarios = RP100 v
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Testing the value of the scheduling schemes

1 Preliminary forecast using previous n days of data

2 Solve 4 scheduling problems based on initial forecast
I IP ♦ and SP100 �

I 1st phase of RP fand RP100 v
3 Update forecast based on 1st part of day

4 Update solutions based on revised forecast
I IP⇒ UP � and SP100⇒ UP100 �

I 2nd phase of RP fand RP100 v
5 Simulate using schedules and actual arrival counts

Shen, Gans et al. (UNC and Wharton) Workforce Management in Call Centers ISIM 2011 Montreal 30 / 52



One set of empirical tests

The same network of four large retail-banking call centers in US
I Schedule updates at 11am

Shift structure and costs
I 262 feasible daily schedules (7 and 9-hour shifts, with breaks)

F cost of 1 per agent per 1/2-hour interval
I 4,973 potential recourse actions (with 1/2-hour costs)

F send home (-0.75), overtime (1.5), call in (2.0)

Arrival data, forecasts, and QoS target
I Last 100 days as testing set
I Forecasts based on previous (rolling) 110 days of data
I Target expected abandonment rate of 3% across scenarios
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Updating systematically lowers cost per call
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RP and RP100 saving 3.2%–3.5% vs IP and SP100
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Work in progress: Israeli telecom, Private and
Business

Introduction Single Queue Multiple Queues

Distributional Forecast

Forecasting Distribution: Individual vs. Simultaneous for one day.
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Inter-type correlation: 0.7 to 0.8

Luedtke, Shen and Ye (2011)
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Motivation for studying service time

They are economically important
I represent the bulk of costs in call centers

They are operationally important
I drive queueing performance / QoS in call centers

They are not well understood empirically

Findings for them may carry over to other labor-intensive services
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Preliminary analysis of call-by-call data

Two years of call-by-call data
I large US bank with set of 4 retail-banking call centers

Data for about 5,000 agents
I 900-1,200 on weekdays and 200-500 on weekends

Busy agents take 50-100 calls per day

Access to a number of operations covariates
I type of call, order of call, time of call, congestion level

Gans, Liu, Mandelbaum, Shen, and Ye (2010)
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Linear regressions for a cohort of 21 agents
Log-linear learning curve model for each individual agent

I where εj are i.i.d. and N(0,σ2)

log log
agent site service intercept p-value (recnum) p-value (run_len) p-value ab_rate p-value

1 14115 U Retail 5.460 0.000 -0.087 0.000 0.034 0.001 0.019 0.000
2 14122 U EBO 5.062 0.000 -0.016 0.128 -0.014 0.204 0.018 0.000
3 14128 U Retail 5.763 0.000 -0.075 0.000 -0.048 0.030 0.019 0.018
4 14130 U Retail 5.405 0.000 -0.066 0.000 0.028 0.000 0.018 0.000
5 14136 U On-Line 5.251 0.000 -0.059 0.000 0.026 0.002 0.018 0.000
6 14151 U On-Line 5.126 0.000 -0.034 0.001 0.061 0.000 0.017 0.000
7 14235 U Loans 5.866 0.000 -0.058 0.000 -0.027 0.005 -0.003 0.571
8 14243 U Loans 5.592 0.000 -0.044 0.000 -0.030 0.000 0.013 0.003
9 14254 U Loans 5.364 0.000 -0.011 0.142 -0.040 0.000 0.001 0.817

10 26735 S Retail 4.362 0.000 -0.043 0.000 0.018 0.030 0.007 0.143
11 26737 S Retail 4.906 0.000 0.002 0.848 0.021 0.015 0.012 0.021
12 26738 S Retail 5.335 0.000 -0.046 0.000 0.005 0.561 0.017 0.006
13 26739 S Retail 5.416 0.000 -0.048 0.000 0.004 0.655 0.015 0.000
14 26740 S Retail 5.203 0.000 -0.046 0.000 -0.006 0.414 0.031 0.000
15 26741 S Retail 5.147 0.000 -0.052 0.000 0.028 0.000 0.020 0.000
16 26744 S Retail 5.209 0.000 -0.054 0.000 0.024 0.000 0.015 0.000
17 26747 S Retail 4.950 0.000 0.023 0.003 0.027 0.001 0.020 0.000
18 26764 S Retail 5.456 0.000 -0.040 0.000 -0.009 0.400 0.012 0.045
19 26909 S Retail 5.711 0.000 -0.091 0.000 0.005 0.439 0.019 0.000
20 26911 S Retail 4.369 0.000 0.087 0.000 -0.022 0.057 0.024 0.000
21 26912 S Retail 5.703 0.000 -0.078 0.000 0.008 0.212 0.018 0.000

agent unknown transfer later
agent site service term p-value term p-value term p-value segment p-value

1 14115 U Retail -0.365 0.000 0.872 0.000 0.273 0.000 0.053 0.650
2 14122 U EBO -0.450 0.000 1.069 0.000 0.300 0.000 0.109 0.379
3 14128 U Retail -0.538 0.000 0.795 0.000 0.047 0.553 -0.368 0.091
4 14130 U Retail -0.775 0.000 0.869 0.000 0.256 0.000 0.302 0.002
5 14136 U On-Line -1.020 0.000 0.803 0.000 -0.032 0.179 0.126 0.165
6 14151 U On-Line -1.258 0.000 0.699 0.000 0.091 0.004 0.220 0.068
7 14235 U Loans -0.659 0.000 0.365 0.000 -0.190 0.000 0.132 0.000
8 14243 U Loans -0.645 0.000 0.460 0.000 -0.110 0.000 0.126 0.000
9 14254 U Loans -0.750 0.000 0.376 0.000 -0.131 0.000 0.107 0.000

10 26735 S Retail 1.087 0.000 1.624 0.000 1.357 0.000 0.562 0.000
11 26737 S Retail -1.102 0.000 0.862 0.000 0.144 0.000 0.131 0.114
12 26738 S Retail -0.609 0.000 0.952 0.000 0.346 0.000 0.306 0.001
13 26739 S Retail -1.227 0.000 0.751 0.000 0.036 0.084 0.023 0.782
14 26740 S Retail -0.377 0.000 1.029 0.000 0.213 0.000 0.213 0.010
15 26741 S Retail -1.088 0.000 0.855 0.000 0.302 0.000 0.457 0.000
16 26744 S Retail -1.197 0.000 0.858 0.000 0.101 0.000 0.376 0.000
17 26747 S Retail -0.703 0.000 0.721 0.000 0.167 0.000 0.219 0.015
18 26764 S Retail -1.145 0.000 0.774 0.000 0.122 0.000 0.343 0.002
19 26909 S Retail -0.449 0.000 0.648 0.000 0.098 0.000 0.286 0.000
20 26911 S Retail -0.560 0.000 0.820 0.000 0.241 0.000 0.636 0.000
21 26912 S Retail -1.127 0.000 0.666 0.000 0.053 0.006 0.307 0.000

log log
agent site service intercept p-value (recnum) p-value (run_len) p-value ab_rate p-value

1 14115 U Retail 5.460 0.000 -0.087 0.000 0.034 0.001 0.019 0.000
2 14122 U EBO 5.062 0.000 -0.016 0.128 -0.014 0.204 0.018 0.000
3 14128 U Retail 5.763 0.000 -0.075 0.000 -0.048 0.030 0.019 0.018
4 14130 U Retail 5.405 0.000 -0.066 0.000 0.028 0.000 0.018 0.000
5 14136 U On-Line 5.251 0.000 -0.059 0.000 0.026 0.002 0.018 0.000
6 14151 U On-Line 5.126 0.000 -0.034 0.001 0.061 0.000 0.017 0.000
7 14235 U Loans 5.866 0.000 -0.058 0.000 -0.027 0.005 -0.003 0.571
8 14243 U Loans 5.592 0.000 -0.044 0.000 -0.030 0.000 0.013 0.003
9 14254 U Loans 5.364 0.000 -0.011 0.142 -0.040 0.000 0.001 0.817

10 26735 S Retail 4.362 0.000 -0.043 0.000 0.018 0.030 0.007 0.143
11 26737 S Retail 4.906 0.000 0.002 0.848 0.021 0.015 0.012 0.021
12 26738 S Retail 5.335 0.000 -0.046 0.000 0.005 0.561 0.017 0.006
13 26739 S Retail 5.416 0.000 -0.048 0.000 0.004 0.655 0.015 0.000
14 26740 S Retail 5.203 0.000 -0.046 0.000 -0.006 0.414 0.031 0.000
15 26741 S Retail 5.147 0.000 -0.052 0.000 0.028 0.000 0.020 0.000
16 26744 S Retail 5.209 0.000 -0.054 0.000 0.024 0.000 0.015 0.000
17 26747 S Retail 4.950 0.000 0.023 0.003 0.027 0.001 0.020 0.000
18 26764 S Retail 5.456 0.000 -0.040 0.000 -0.009 0.400 0.012 0.045
19 26909 S Retail 5.711 0.000 -0.091 0.000 0.005 0.439 0.019 0.000
20 26911 S Retail 4.369 0.000 0.087 0.000 -0.022 0.057 0.024 0.000
21 26912 S Retail 5.703 0.000 -0.078 0.000 0.008 0.212 0.018 0.000

agent unknown transfer later
agent site service term p-value term p-value term p-value segment p-value

1 14115 U Retail -0.365 0.000 0.872 0.000 0.273 0.000 0.053 0.650
2 14122 U EBO -0.450 0.000 1.069 0.000 0.300 0.000 0.109 0.379
3 14128 U Retail -0.538 0.000 0.795 0.000 0.047 0.553 -0.368 0.091
4 14130 U Retail -0.775 0.000 0.869 0.000 0.256 0.000 0.302 0.002
5 14136 U On-Line -1.020 0.000 0.803 0.000 -0.032 0.179 0.126 0.165
6 14151 U On-Line -1.258 0.000 0.699 0.000 0.091 0.004 0.220 0.068
7 14235 U Loans -0.659 0.000 0.365 0.000 -0.190 0.000 0.132 0.000
8 14243 U Loans -0.645 0.000 0.460 0.000 -0.110 0.000 0.126 0.000
9 14254 U Loans -0.750 0.000 0.376 0.000 -0.131 0.000 0.107 0.000

10 26735 S Retail 1.087 0.000 1.624 0.000 1.357 0.000 0.562 0.000
11 26737 S Retail -1.102 0.000 0.862 0.000 0.144 0.000 0.131 0.114
12 26738 S Retail -0.609 0.000 0.952 0.000 0.346 0.000 0.306 0.001
13 26739 S Retail -1.227 0.000 0.751 0.000 0.036 0.084 0.023 0.782
14 26740 S Retail -0.377 0.000 1.029 0.000 0.213 0.000 0.213 0.010
15 26741 S Retail -1.088 0.000 0.855 0.000 0.302 0.000 0.457 0.000
16 26744 S Retail -1.197 0.000 0.858 0.000 0.101 0.000 0.376 0.000
17 26747 S Retail -0.703 0.000 0.721 0.000 0.167 0.000 0.219 0.015
18 26764 S Retail -1.145 0.000 0.774 0.000 0.122 0.000 0.343 0.002
19 26909 S Retail -0.449 0.000 0.648 0.000 0.098 0.000 0.286 0.000
20 26911 S Retail -0.560 0.000 0.820 0.000 0.241 0.000 0.636 0.000
21 26912 S Retail -1.127 0.000 0.666 0.000 0.053 0.006 0.307 0.000

Significant variation across agents (fixed, random effects)

Other significant covariates
I learning, congestion, who handles call, who ends call
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Daily learning curves of 12 agents at site S
A cohort of 12 out of the 21 agents above

handle only “retail banking” calls
work at site S
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What the regression results tell us:

The scale of the learning curve appears to be
I significant for the long run – over days or weeks
I not significant in the short run – within a day

There appear to be significant differences among agents

I intercept⇒ initial speed; overall speed
I slope⇒ how quickly they move down the learning curve

What is the effect of agent heterogeneity on system performance?
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Staffing that ignores agent-to-agent variation...

The cohort of 12 retail agents at site S
I at week 12 have the estimated service rates (per hour) of

3.86,4.05,4.59,4.63,4.65,4.80,4.83,5.02,5.38,5.77,6.27,and 6.33

I an across-agent average of 5.015 calls per hour

The following M/M/n + M system has an ASA of 58.8 seconds
I λ = 21 calls per hour
I µ = 5.015 calls per hour
I n = 6 agents
I θ−1 = 0.5 hours to abandonment

Shen, Gans et al. (UNC and Wharton) Workforce Management in Call Centers ISIM 2011 Montreal 40 / 52



Ends up with large, unanticipated swings in QoS

If we “schedule” 6 of the 12 agents to work by random trial

Aggregate service rate and ASA vary widely across 100 trials
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Ideal: forecast individual agent rates and schedule “accordingly”
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Forecasting average log(service time)s of 129 agents
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Figure 8. Learning curves for the optimistic case

the learning curve becomes flatter, which suggests that the purely log-log linear learning

curve (Model 1) is too simple to capture the underlying behavior.

The Pessimistic Case: agents never learn

Not all agents learn during their working period, and in Figure 9, we show two agents

who never learn. As we see, Agent 74527 is getting slower as he works longer, and Agent

76859 seems to maintain a stable service rate throughout her tenure.

From the plot of Agent 74527, one also observes that the nonparametric spline model

is more sensitive to the short-term trend of the service rate. In particular, this agent’s

mean service time has a significant leap around day 130, which is captured nicely by the

nonparametric model. The three parametric models are too rigid to fit such a dramatic

change.

The Common Case: agents may learn as well as forget

We observe that most agents do not have a monotone learning curve: their log mean

service times are “zigzagging” throughout their working period; for such a behavior, the

nonparametric model captures much better the trend of the mean log service time. Figure

10 depicts the learning curves of two such agents.

Agent 33146’s mean log service time is decreasing during his first 100 working days and

afterwards has two significant leaps. The first leap starts at around day 110 and reaches
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Figure 9. Learning curves for the pessimistic case
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Figure 10. Learning curves for the common case

a peak at around day 150. After that, the log service time starts to decrease. The second

jump begins at about day 220 and arrives at the apex at about day 270, after which the

log service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure 10, her

mean log service time first drops, then starts to jump at around day 100, reaches its peak

around day 130, then begins to decrease slowly until day 240, makes a sharp drop between

day 240 and day 280, and finally seems to stabilize, from day 280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ significantly.

However, we note that the above analysis uses only the service times of the calls; other
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Figure 9. Learning curves for the pessimistic case
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Figure 10. Learning curves for the common case

a peak at around day 150. After that, the log service time starts to decrease. The second

jump begins at about day 220 and arrives at the apex at about day 270, after which the

log service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure 10, her

mean log service time first drops, then starts to jump at around day 100, reaches its peak

around day 130, then begins to decrease slowly until day 240, makes a sharp drop between

day 240 and day 280, and finally seems to stabilize, from day 280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ significantly.

However, we note that the above analysis uses only the service times of the calls; other

Typical learning patterns: improving, deteriorating, mixed

Local splines produced better forecasts than parametric models

Unable to return to the US bank to investigate anomalies
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Ongoing analysis of a second dataset from an
outsourcer

About 20 months of call data from one site serving two clients

Data for more than 300 agents
I 75% worked for one client and 25% for the other
I only 3 agents had worked for both clients

Busy, experienced agents
I took about 75 calls / day for one client
I took about 120 calls / day for the other client

Currently, access only to time-stamps
I arrival time, delay, start time, call duration, end time, call-parts

Gans, Shen, and Ye with Genesys
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Fitting hyperbolic curves to learning episodes

Service time of the j th call on the i th day of an episode

sij = k ·
(

i + r
i

)b

· eεij ⇒ log sij = log k + b log
(

i + r
i

)
+ εij

where
k – asymptote
r and b – shape
εij are i.i.d. and N(0,σ2)

Generalizes hyperbolic curves used to fit repetitive learning
I Mazur and Hastie (1978), Nembhard and Uzumari (2000)

Learning episodes separated by breaks of n or more days
I as of now, n = 7, but this is ad hoc
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More than 200 of the agents’ plots look well behaved
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About 40 have very few days of calls
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About 30 have unusually many breaks
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About 25 do not seem to fit the hyperbolic curve
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Next steps for the analysis

Continue to talk with the outsourcer about the data
I check agents whose data display anomalies
I try to obtain other covariates (HR, other data)

Analyze forgetting during breaks
I see positive, negative, and apparently insignificant instances

I Nembhard and Uzumari (2000) consider function of agent
experience

I Bailey (1989) estimates forgetting on an episode-by-episode basis

Analyze call-by-call patterns within days
I once day-by-day analysis is stable
I a two-way model, similar to arrival rate models
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Forecasting the effects of experience and breaks
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What we’ve learned
Fruitful marriage: queueing theory + statistical analysis

Common framework: a doubly stochastic process
I rates (and 2nd moments) are inputs to queueing models
I forecasting generates random distributions of rates

Pretty good grip on arrival rates
I arrival-rate realization generates poisson process
I large call centers have high rates with relatively low CV’s
I scheduling problems relatively straightforward

Service rates harder to characterize
I natural object of analysis: a single agent – less data
I many highly significant covariates; potentially complex interactions
I but something better than current characterization (nothing)

Larger impact of these analysis
I while can be cost benefits (e.g., in scheduling)
I main impact is to better manage / stabilize QoS
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Future problems

Data availability

I mainly operational, human resource data very difficult to obtain

I tremendous amount of efforts involved, hard to sustain due to
administrator turnover

Workload involves both arrival rate and service rate

I prediction of service rate: little work, lack of meaningful covariates

I forecasting needs to be combined with staffing, scheduling, routing
(for multiple types)

Most often, need simulation for evaluation of the impact
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