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Pressure on Ambulances

Traffic congestion
Increasing call volumes
Ambulance diversion

Delays in handovers to emergency
departments

— Can double the time required for a call

Long term measures needed, but in the
meantime...
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Redeployment
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Outline

Existing methods

Approximate DP

Tuning ADP

Another service-system application

Research challenges for simulation
folks
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SIREN Live Real time View
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SIREN Live showing
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Redeployment: Current Methods

e | ots of “static” locating using |IP and sim.
e Spreadsheet tools? Unclear basis
e Solve real-time IP’s, e.g., Montreal, Optima

e Compliance Tables

e Generate a lookup table saying where n free
ambulances should be positioned, n =1, 2, ...

e Dispatch to match those locations
e Exact Dynamic Programming

e Berman et al 1970s

e Zhang, Mason and Philpott
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Approximate Dynamic
Programming

Have a function, V say, that gives the
value or quality of a configuration. Use
greedy policy wrt V, i.e.,

When want to redeploy an ambulance,
look for configuration that maximizes V

Keeping in mind that ambulance may
not get there before something changes

So choose action that maximizes
E(immediate reward + V)
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Assume send ambulance to 1
Do 10 times:

Simulate immediate future,
and look up V for final
ambulance positions, status

Compute average of V values

= 50.1 say

Assume send ambulance to 2
Do 10 times:

Simulate immediate future,
and look up V for final
ambulance positions, status

Compute average of V values
=63.2
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Where Does V Come From?

Can'’t store V values for every possible
state, so need to approximate V

WeuseV=r V,+...+r,V,

V., V,, ..., V, are fixed basis functions
that we choose

Choose r’s in initial training stage
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Basis Functions (V.'s)

* For each base, rate of calls arriving to
surrounding area, that will likely (Erlang
loss) be missed, assuming vehicles
reach current destinations
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Choosing Coefficients

Training was approximate value iteration
(TD learning, other tricks came later)

1. Choose some r;’s ... gives a V
2. Simulate performance of V

3. V was supposed to match observed
performance (principle in DP)

4. Perform a regression (r;'s) to try to get V to
match observed performance
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“Convergence’

Surprise?
A powertul function 1s given by the sum of
the basis functions, and...

regression doesn'’t find it (nor does LP)
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Direct Search

So we tried a simulation optimization to try to
find a good value function

Nelder-Mead algorithm searching 11-
dimensional space (Edmonton) for
coefficients

No attempt to be fancy!

Each function evaluation takes 40 - 60
minutes

Would take about a year, so ...
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Post-Decision State ADP

» Use post-decision state formulation
(Powell and van Roy 2004)

e |.e., take limit of micro-simulations as
their length goes to 0

* Don’t do micro-simulations, just
compute V for post-decision state

* Now sim-opt is feasible
* One short week and a half later...
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Training: Artificial Melbourne

Nelder-Mead on Erlang Heuristic for Larger City
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Missed Calls: Artificial Edmonton

« Reasonable Static Policy: (32.3 £ 0.1)%

« Best ADP policy using regression-
based search (26.5 + 0.2)%

« ADP using sim opt: (24.4 £ 0.2)%

* This is just redeploying newly free
ambulances. No wake ups!
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ADP Folks Know About This...

 ADP folks are aware that regression
isn’t always effective
* Average Tetris scores:

— 20K using regression
(Desai, Farias, Moallemi 2010)

— 350K using cross-entropy based simulation
optimization (Szita, Lorincz 2000)
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What Goes Wrong?

* Regression tries to fit value function
globally, but local changes are the key
to good performance

* Regression matches value function to
observations, but we care instead about
performance of greedy policy induced
by approximation

* So perform slow simulation optimization
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Simulation in ADP

Using Micro Post Decision
Simulations State

Training Optimization Optimization
over (simulation | over simulation
model + micro |model
sims)

Real Time Track system | Track system

state
Micro sims + V
for decisions

state
\/ for decisions
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Outline

« Existing methods
* Approximate DP
* Tuning ADP

— Practically significant improvements
— Real-time calculations are fast (< 1 sec)

— Tuning SLOW: OK for application

— Use regression sim. opt. for tuning

* Another service-system application
* Research challenges
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One View of a Call Centre
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Our View of a Call Centre

Syster

_____________________________________

A
Number of servers required :C
v
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And just as bad...

Number of servers required = A + 2 A
@ Ve

e Service rate varies between servers

* Tremendous levels of agent
absenteeism
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Consequences

* Forget queueing theory at CLT scale?

 Just increase number of servers?
— Most days you have agents sitting idle
— Some days agents cannot keep up
— Good customer service?

 Real-time control of number of servers

— Assuming you can get a contract, connect
servers in as needed (outsourcing, other)

— Easy control policy for this queue, but...
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What About This One?

Multiple incoming customer classes

nnnnnnnnnnnnnnnn



Lots of Service Systems...

Require real-time interaction between
customers and servers

Have large forecast errors in customer arrival
rates

Have high levels of service capacity variability
(both numbers and service rates)

Require high levels of customer service

Real time control via parameterized policies?
And how to do staffing knowing you will use
that policy?
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Research Challenges

Work with real organizations to try to help
them (too often overlooked)

Formulate as finitely parameterized policies -
problem specific
Search coefficient space for good policies

— Customized sim-opt methods for ADP and other
policy tuning

— Careful statistics needed for real-time control;
don’t chase noise

Optimality gap bounds
— Brown, Smith and Sun (2010), or ad-hoc
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