HEC Montréal, Canada, 2 - 4 mai 2011
Journées de l'optimisation 2011
HEC Montréal, Canada, 2 — 4 mai 2011
MA10 Données de survie et processus de Poisson / Survival Data and Poisson Processes
2 mai 2011 10h30 – 12h10
Salle: Van Houtte
Présidée par Marc Fredette
4 présentations
-
10h30 - 10h55
The Poisson-Maximum Entropy Model for homogeneous Poisson Processes
This article proposes the use of the maximum entropy principle for the prediction of recurrent events. The maximum entropy (MaxEnt) distribution is the one that maximizes the entropy subject to specific constraints.
We suggest a Bayesian model with the maximum entropy prior distribution to predict the number of future events for subjects already under observation. In our case, the intensity function we will use to model these events will be the one corresponding to a homogeneous Poisson process where the unknown rates are unobservable i.i.d. random effects. The prior distribution for these random rates was based on the principle of maximum entropy and obtained by maximizing Shannon's entropy subject to the conditions that the first two theoretical moments equal the empirical ones. In this article, we propose an approach which uses a Poisson-Maximum Entropy (P-MaxEnt) model based on the maximum entropy prior distribution as a competitor to the negative binomial model (NB). There are several reasons for comparing the (P-MaxEnt) model to a NB for the recurrent events. First, the (NB) is most commonly used model for over-dispersed recurrent events data and many data analysts are not familiar with the (P-MaxEnt). Secondly; there could be several models that provide a reasonable fit for a particular data set, but maximizing entropy is based on sound philosophical principles and merits study in this case. Therefore, we will investigate the advantages and the disadvantages of each.
For the first two theoretical moments, the (MaxEnt) prior distribution corresponds to the truncated normal prior and for this reason the (P-truncated normal) model was compared with the (NB) one via two methods of estimation matching moments and maximum likelihood. The performance of the proposed approach is studied through Monte Carlo simulations. -
10h55 - 11h20
On Estimation and Testing for Jumps in the Hazard Density from Right Censored Prevalent Cohort Survival Data
We propose a methodology for estimating both the location and the size of a possible jump (change) in the hazard function based on right-censored data collected on prevalent cases. Both large and small sample behavior of the estimators are studied, analytically and by the means of simulations. The methodology is then applied to analyze a set of survival data collected as part of the Canadian Study of Health and Aging (CSHA) on patients with dementia.
-
11h20 - 11h45
Sample Size/Power Calculation for Poisson and ZIP Regression Models
We investigate an approach for sample size calculations proposed by Shieh (2001) and we propose an extension to the ZIP regression model.
We also study the effect of additional covariates on the Poisson regression
model with various types of correlation matrices when the covariates have a multivariate normal distribution. -
11h45 - 12h10
Modélisation multidimensionnelle de données de comptage présentant de la surdispersion
Très souvent observé dans la réalité, le phénomène de surdispersion a largement été étudié dans le cas unidimensionnel. Cependant, le traitement des données multidimensionnelles souffrant de cette particularité s'avère nettement plus complexe. Nous présentons un modèle de Poisson multidimensionnel avec effets aléatoires afin de traduire la surdispersion. Une nouvelle méthode d’estimation basée sur l'intégration par Monte Carlo y est présentée, de même que les résultats d’une simulation. Enfin, une application en écologie mettant en relief l'impact des changements climatiques sur la répartition des espèces animales et végétales au Québec selon différents scénarii servira d’illustration.